TEXAS INSTRUMENTS
PROCRAMMEBLE

e maEeEERE s man Fmennmmme I
P T RERERENGE

N

)

TEXAS INSTRUMENTS

174

PROGRAMMING
REFERENCE
GUIDE

Manuals The staff of Texas Instruments Instructional
developed by: Communications

Jacquelyn F. Quiram
Kenneth E. Heichelheim
Mike Keller

Brenda Cornitius

Chris M. Alley

With Bruno Didier

contributions Robert A. Pollan

by: Stephen L. Reid
Floyd R. Gerwig
Robert E. Whitsitt, IT

Copyright © 1985, 1986, 1990 by Texas Instruments Incorporated.

Table of Contents

This guldebook contains information about the BASIC
programming ianguage of the Texas Instruments TI-74
BASICALC™ calculator. You can find operating instructions in
the TI-74 User’s Guide.

Chapter 1: - General Programaming Information . . ., 1-2
Overview of BASIC Assigning Valuesto Variables ., 1-4
Displaying Information. 1-5
NumericOperations 16
StringOperations 1-9
Amrays ..o 1-11
Relational and Logical Operators 1-12
Control Statements. 1-14
Subroutines and Subprograms 1-15
EmorHandling 1-16
Storing and Retrieving Programs 1-17
Storing and Retrieving DataFiles 1-18
Sending Informationtoa Printer 1-19
Chapter 2: Conventionsin this Chapter 2.2
Reference Saction Alphabetical reference section 2:3—-2.133
Chapter 3; Guidelines for Selecting Equipment, 3.2
Using Optional Caring for Your Equipment 3-3
Accessorigs Connecting Your Recorder tothe TI-74 34
Prompts for Using the Cassette Recorder 3:5
Determining the Recorder Settings 3-6
Guidelines for Good Recording 3-10
Procedure for Saving Programs 3-12
Verifying Program Storage and Retrieval 3-13
Procedure for Retrieving Programs. 3-14
Setting Up a Sample Program and DataFile 3-16
If You Have Recording Difficulties 3-18
Controlling the Printer From BASIC, 3-19
Accessing Cartridge Memory 3.23
Appendices Appendix A: Reserved Word List, A2
Appendix B: ASCII Character Codes A-4
Appendix C: Logical Operations A-ll
Appendix D: ErvorMessages A-l16
Appendix E: Numeric Accuracy, A-32
Appendix F: Differences Between TI-74 BASIC and Others . . A-34
AppendixG:Index A-37
ii

Chapter 1: Overview of BASIC

Use this chapter if you know the type of operation you want to
perform but do not know the keyword. After you locate the
keywords that apply to that type of operation, refer to Chapter 2
for a detailed description of each keyword and an example of how
o use it.

Table of
Contents

General Prograrnming Information 1:2
Assigning Valuesto Variables 1-4
Displaying Information. 1-5
NumericOperations 1-6
StringOperations 1-9
AITAYS ... 1-11
Relational and Logical Operators 1-12
Control Statements. i-14
Subroutines and Subprograms 1-15
EmorHandling 1-16
Storing and Retrieving Programs 1-17
Storing and Retrieving DataFiles 1.18
Sending Information toaPrinter, 1-19
Overview of BASIC 1-1

li General Programming Information

This section briefly describes some of the conventlons and
teatures of TI-74 BASIC.

Line Numbers Each program fine must begin with a line number. The line Remarks You can document your prograrms by using remark
number must be an integer in the range of 1 to 32766. The statements. A remark isa mmder for the programmer and
following keywords enable you to generate new line is ignored by the computer during program execution.
! numbers and to change existing ones, o
I e e REM Signifies that the rest of a program line isa
l NUM Automatically generates program line remark.

L numbers 1t enter a program.
wye erapro ! Can be substituted for the REM keyword.

REN Renumbers the lines of a program.

| Memory TI-74 BASIC contains two keywords that help you manage
I Duplicating a You can duplicate a program line by recalling an existing Management memory space.

Program Line line and typing a new line number in place of the old . .
number, This creates a new line without affecting the ADDMEM Appends the memory in a RAM cartridge
original line. to the built-in memory of the TI-74,

' {Because this is a built-in subprogram, use

Multiplé- In general, you can include more than one statement ina CALL ADDMEM.)

Statement program line. The statements must be separated by a colon.)

Lines FRE Indicates the total amount of memory
100 X=3:PRINT X:PAUSE available for program and data storage, or

reports the amount of memory used by the
The following restrictions apply to multiple-statement lines, current program.
* You cannot use an IMAGE or DATA statement in a
multiple-statement line.
| » If you use the SUB statement in a multiple-statement
‘ line, it raust be the first statement in the line.
» If you use a remark in a multiple-statement line, it must
be the last statement in the line.
> If you use a DIM statement in a multiple-statement line,
it must be the last statement in the line. (You can use
only one DIM statement in a line.)
1.2 Overview of BASIC Overview of BASIC 1.3

‘p

Assigning Values to Variables

Displaying Information

You can assign values to variables from data eith '
s er contained
bty ::t m'pmgram or entered from the keyboard during program

Variable Names

Data Contained
Within a'Program

Data Entered
From the
Keyboard

The keywords in this section enable you place infermation in the
display.

A valid variable name must follow the rules listed below.

Unformatted
> A variable name can have as many as 15 characters. Dieplay
* The first character must be a letter, underline, or @

symbol, The remaining characters can be letters
numbers, underlines, or @ symbols. ’
* A string variable name must end witha $
symbol. (You
Cann. i i
g; use the $ symbol as part of a numeric variable
The following statements enable assign
> ' you to val
variables by using data contained within progra:lrlfs w0
READ Asmgns values to variables by sequentially
reading values from DATA lists.
DATA Pro_vides a list of values to be assigned to
variables by READ statements.
RESTORE Determines which DAT,
A stat i
 mine ement will be
The following statements sus gram i Drenian e
pend pro, ex
enable you to enter data from the keyboard. centionand Display
INPUT Waits for you to enter one or more values,
INPUT can display a prompt.
LINPUT Waits for you to enter a string value.
LINPU';‘ accepts your entry exactly as
\ mclud11_1g commas and quotes,
LINPUT can display a prompt,
ACCEPT Waits for you to entera value. ACCEPT

has several options that are not avail
with INPUT or LINPUT. vatlable

1-4 Overview of BASIC

The following keywords enable you to display numeric and
string values.

Displays a constant, the value of a
variable, or the result of an expression.
{You normally use a PAUSE following the
PRINT statement.)

PRINT

Similar to PRINT, except that DISPLAY
has several options that make it more
versatile than PRINT. (You normally use a
PAUSE following the DISPLAY
statement.)

DISPLAY

Suspends program execution for a
specified period of time to allow you to
view the information in the display.
Without PAUSE, results are displayed too
quickly to be viewed.

PAUSE

INPUT and LINPUT also allow you to display a prompt or
message related to the desired input.

You can use several options with PRINT and DISPLAY to
control the way information is displayed.

Defines a format string for displayed
information or references a format string
contained in a separate IMAGE statement.

USING

Allows a format string to be placed on a
separate line so that it can be referenced
by more than one PRINT USING or
DISPLAY USING statement.

IMAGE

TAB Positions information at a specified column
in the display.

Overview of BASIC 1.5

! Numeric Operations

TI-74 BASIC includes a wide variety of mathematical operators
and functions.

Arithmetic
Operators

| Hierarchy of
Operators

You can use the following operators in a numeric
expression,

A+B Adds A and B.

A-B Subtracts B from A.

A*B Multiplies A and B.

A/B Divides A by B.

A~B Raises A to the power of B.

+ and —can also be used as unary operators to indicate
Dositive or negative values, such as +4 or — 6.

The TI-74 also has relational and logical operators that let
Yyou compare two numeric expressions. For information on
these operators, refer to page 1-12.

The fo]_lowing list shows the order in which arithmetic
operations are performed.

unary +, unary —

t,/‘
+, -

An expression enclosed in parentheses is given priority over
operations outside the parentheses.

1.6 Overview of BASIC

Trig Functions

Hyperbolic
Functions

The following keywords select an angle setting for
trigonometric calculations. All angles are interpreted

according to the current setting.

DEG Selects the degree setting.
RAD Selects the radian setting,.
GRAD Selects the grad setting.

Always begin trig calculations by selecting the appropriate
angle setting. You can then use the following trig functions.

ACOS Computes the arccosine of a number.
ASIN Computes the arcsine of a number,
ATN Computes the arctangent of a number.
Cos Computes the cosine of an angle.

SIN Computes the sine of an angle.

TAN Computes the tangent of an angle.

TI-74 BASIC includes the following hyperbolic functions.

ACOSH Computes a hyperbolic arccosine.
ASINH Computes a hyperbolic arcsine.
ATANH Computes a hyperbolic arctangent.
COSH Computes a hyperbolic cosine.
SINH Computes a hyperbolic sine.
TANH Computes a hyperbolic tangent.
Overview of BASIC 1.7

r

Numeric Operations (Continued)

e

String Operations

: Other Numeric
| Functions below.

! ABS
I EXP

PI

RANDOMIZE

SGN

SQR

Overview of BASIC

Other numeric functions available in TI-74 BASIC are listed

Computes absolute value.

Computes e raised to a power.

Returns the integer portion of a number,
Computes natural logarithm.

Computes common logarithm.

Returns the value of pi as 3.14 1592654,
Ensure§ that a random number is
unpredictable by setting a random starting
value (seed) for the random number
generator,

Returns a random number.,

Tests a number to see if it is positive,
negative, or zero.

Computes square root.

The computer’s string operations enable you to include prompts
and messages In your programs and to write programs that
process string information.

String Constants

Concatenating
Strings

When you type a string constant, enclose it in quotation
marks. The quotation marks identify the string, but they are
not considered part of the string. If you want to include a
quotation mark within a string, type a pair of consecutive
quotes.

String Typed String Displayed
"Quote Test” Quote Test
"Quote” "Test” Quote”Test
rerQuote” " " "Test™"" "Quote” "Test”

Toenter a null (empty) string, type the open and close
quotation marks with no characters between them.

The concatenation operator (&) combines twao strings into a
single string. The resulting string cannot have more than
255 characters.

The following program segment shows an example of string
concatenation. {Notice that the first character of STRING2$
is a blank space, so that the concatenated string is properly

spaced.)

100 STRING1$="THIS 15 A"

110 STRING2$ = " CONCATENATED STRING”

120 STRING3$ = STRING1S & STRING2$
130 PRINT STRING3$:PAUSE

The program segment displays:
THIS IS A CONCATENATED STRING
The TI-74 also has relational and logical operators that let

you compare two string expressions. For information on
these operators, refer to page 1-12.

Overview of BASIC 19

String Operations (Continued)

String
Functions

The following string functi
¢ ons operate on a string
expression and return a numeric value,

ASC Qonverrs the fust character of a string to
1ts corresponding ASCIT character code.

N .
UMERIC Tes_ts a string expression tosee if itisa
valid representation of a numeric value.

VAL Returns the mumeric value of a string
expression.
LEN Calculates the length of a string.
POS Searches a stri
string for th
> ubstring e first occurrence of

The following string functi
. ctions operate on a i
expression and return a string Vg.ﬁle. numene

CHR$ Converts an ASCII character code to its
corresponding display character.

STR$ Converts a number into a string.

The following string functi
(ctions operate on a string
expression and return a string value. oSt

RPT$ Crgates a string by repeating a starting
string a specified number of times.

SEG$ Returns a substiing of a string.

1-10 Overview of BASIC

Arrays

Ti-74 BASIC allows one-, two-, and three-dimensional arrays.

space in memory. You can define an array

Defining the Size An array requires
accept the default

of an Array with the DIM statement, or you can
provided by the T1-74.

Defines the number of dimensjons and the
number of elements in each direension of

an array.

DIM

If you refer to an array that has not been defined by a DIM
statement, the TI-74 automatically sets an array size of 11
elements (numbered 0 through 10} for each dimension in

the array.

For example, if you use the following statement without
first dimensioning the array SOMENAME, the array
defaults to two dimensions with each dimension having

space for eleven elements.

SOMENAMEQ,0)=123

If your program references an array element outside the

range established for the array, the TI-74 returns an error
message. If you enter a non-integer as a subscript, the TI-74
rounds the number. If you enter a negative integer as a
subscript, the TI-74 returns an €rror message.

Overview of BASIC 1.11

Relational and Logical Operators

A relational expression compares two numeric or string values
and then checks to see if a specified relationship is true or false.
A logical expression connects two relational expressions.

‘ \ Relational
| Operators

String
Comparisons

Logical

The following table shows the six relational operators. In
Operators

each example, the cperator compares the values of A and B,
which represent either numeric or string expressions.

A<B True if A is less than B.

A<=B Trueif Aisless than or equal to B.
A>B True if A is greater than B.

A>=B True if A is greater than or equal to B.
A=B True if A is equal to B.

A<>B True if A is not equal to B.

Note: In most programs, it is important only that a condition
is true or false. However, some programs can take
advantage of the fact that a relational expression evaluates
to — 1 if the condition is true or 0 if the condition is false.

When a relational expression compares two string values,
the TI-74 takes one character at a time from each string and
compares their ASCIT codes. Leading and trailing blanks are
included in the comparison. (For a list of ASCII codes, refer
to Appendix B.)

» If the ASCI codes differ, the string with the lower code
is Jess than the string with the higher code.

> If all the ASCII codes are the same and both strings are
the same length, the strings are equal.

*» If one of the strings is longer, the comparison is
performed for as many characters as there are in the
shorter string. If all the ASCII codes are the same, the
longer string is considered greater.

* The null string (” "} is less than every other string.

1.12 Overview of BASIC

The following table shows examples using the four logical
operators.

A ANDB True only if both A and B are true.

AORB TrueifeitheerrBistrue,orifbothAa.nd
B are true.

AXORB True if either A or Bis true, but false if both
A and B are true.

NOTA True only if A is false.

j d to manipulate
logical operators can also be use !)
tl[r‘lhcﬁv(i)ﬁlal bits of a numeric value. For more information,

refer to Appendix C.

Overview ot BASIC

1

-13

Control Statements

Control statements enable you to alter the order in which |
program statements are executed. Control statements can result
in unconditional branching, conditional branching, or looping.

Uncom?itlonal An unconditional branching statement always tranfers
Branching control to a specified line number.
GOTO Tran:sfers control to one and only one
specified line number.
Conditional A conditjonal branching stateme gram
¢ nt enables a pro to
Branching select one of several alternative paths, depenI()iing on certain
conditions within the program.

IF/THEN/ELSE Uses rg]ational and logical operators to test
a cqndltion in the program and determine
which statements to execute,

ON GOTO Transfers control to one of several line
numbers, depending on the value of 2
numeric expression.

ON GOSUB Transfers control to one of several
subroutines, depending on the value of 3
numeric expression.

Looping A FOR/NEXT loop repeats the statements in the loop a
specified number of times. The following keywords enable
you to set up a FOR/NEXT loop.

FOR/TO/STEP Marks the beginning of a FOR/NEXT loop.
NEXT Marks the end of a FOR/NEXT loop. When
the NEXT statement is executed, control

return_s to the statement immediately
following the FOR/TO/STEP statement,

1-14 Overview of BASIC

——

Subroutines and Subprograms

As your programs becoms more complicated, you may need to
use the same group of lines at several different places. Instead of
duplicating the lines at each place, it is more convenient to enter
them as a subroutine or a subprogram. A program ¢an access a
subroutine or a subprogram from any place within the program.

Using a
Subroutine

Usinga
Subprogram

Builtin
Subprograms

The following keywords enable you to use subroutines.

GOSUB Transfers control from the main program
to a subroutine that begins at a specified
line number.

ON GOSUB Transfers control to one of several
subroutines, based on the value of a
numeric expression.

RETURN Marks the end of the subroutine, and
transfers control back to the statement
that follows the GOSUB or ON GOSUB

statement.

It is common practice to place subroutines after the main
sequence of a program. However, it is invalid to place
subroutines after the END statement.

The following keywords enable you to define and access a
subprogram.

CALL Transfers control from the main program
to a specified subprogram name.

SUB Labels the beginning of a subprogram.

SUBEND Marks the end of a subprogram.

SUBEXIT Terminates the execution of a subprogram.

This statement is used when you want to
exit the subprogram before the SUBEND
statement.

A subprogram must be placed after the last statement in the
main program.

The TI-74 has six built-in subprograms—ADDMEM, ERR,
GET, I0, KEY, and PUT. To access these subprograrns,

remember to use the CALL statement. For example, use
CALL ADDMEM to access the ADDMEM subprogram.

Overview of BASIC 1.15

Error Handling

The TI-74 has several statements that help you locate errors in
the program. Some staternents help you debug the program, and
ather statements enable you to trap any emors that may occur

- during program execution.

Debugging a
Program

Handling Errors
and Wamings

When debugging a program, you can use the following
keywords to interrupt program execution so you can test
the value of variables in the program.

BREAK Sets breakpoints within a program.
Note: You can also press the IBREAK] key
to interrupt program execution.

CON Continues program execution following a
breakpoint.

ON BREAK Enables you to select the action taken
when a breakpoint occurs.

UNBREAK Removes the breakpoints set with the

BREAK statement.

By processing errors and warnings, a program can often
correct problems before they interfere with program
execution.
ON ERROR Enables you to determine the action taken
when an error occurs during program
execution.

ON WARNING Enables you to determine the action taken

when a warning occurs during program
execution.

1-16 Overview of BASIC

Storing and Retrieving Programs

You may want {o save a copy of your program for future use by
storing it on an extemal device such as a cassetie playetirecorder
of a RAM cartridge. After It is stored, you can easily retrieve the
program at any time and reload It Into the TI-74. (For detailed
information on using cassette tapes, refer to Chapter 3 in this
book.)

Storing a
Program

Retrieving a
Program

The following keywords enable you to store a copy of the
program that is currently in the TI-74's memory.
FORMAT Initializes the storage medium on an
external device. (Cassette tapes do not
need to be formatted.)

Caution: If a medium that already
contains stored programs is reformatted,
those programs are erased.
SAVE Copies the program to an external storage
device, such as a cassette recorder.

Checks the copy stored on the external
device to make sure that it was copied
correctly.

VERIFY

PUT Copies the program to a RAM cartridge.
(Because this is a built-in subprogram, use
CALLPUT.)

The foliowing keywords enable you to retrieve a copy of a
program stored on an external device.

Caution: When you retrieve a program from an external
device, any program currently stored in the TI-74’s memory
is erased. If you want to save the current program, be sure
to store it before retrieving the new program.

OLD Retrieves a program from an external
device. such as a cassette player.

GET Retrieves a program from a RAM cartridge.
{Because this is a built-in subprograr, use
CALLGET.)

Overview of BASIC 1.17

Storing and Retrieving Data Files

When a program processes a large amount of data, it is usually
more convenient to store the data on an extsmal device such as a

~ cassetle playerirecorder.

Naming a The valid name for a file opened on an external device

Data File depends on the design of the peripheral. For cassette files, a
file name can have from 1 to 18 characters. The name must
start with a letter but can have any character except
cormma or period in the rest of the name. Cassette file
names can include a .NM extension to omit messages.

Using The following keywords enable you to store and retrieve

Data Files data records. You can also delete data files.

FORMAT Initializes the storage medium on an
external device. (Cassette tapes do not
need to be formatted.)

Caution: If you reformat a medium that
already contains stored programs, those
programs are erased.

OPEN # Opens a communication link between the
TI-74 and the external device.

CLOSE # Closes the conununication link between
the TI-74 and the external device.

PRINT # Stores a record on an open data file.

L}

mPW # Retrieves a record from an open data file.

EOF Tests the data file to see if there are any
remaining records in the file.

‘ RESTORE Selects the next data record to be input.
. (You cannot use RESTORE with a cassette
e player/recorder.)
| DELETE Deletes a specitied data file from an
| external device.
|
Overview of BASIC

L 1-18

Sending Information to a Printer

By attaching an optlonal printer to the TI-74, you can print a
listing of the program curmently in memory. You cart also include
statements in your programs to send information to the printer.

Listing a Program

Using a Printer
From Within a

Program

You can list a program by using a single keyword. You do
not have to OPEN and CLOSE the printer for a listing.

LIST Prints a line-by-line listing of the program.
LIST must be used as a command; it cannot
be used in a program.

The following keywords can be used as statements within a
program.

OPEN # Opens a communication link between the
TI-74 and the printer.

CLOSE # Closes the communication link between
the TI-74 and the printer.

PRINT # Sends a number or string to the printer.

10 Performs additional control operations that

are not built into TI-74 BASIC. (Because
this is a built-in subprogram, use CALL 10.)
The operations possible with the 10
subprogram depend on the design of your
printer.

Refer to *‘Controlling the Printer From BASIC” in Chapter 3
of this manual for information about using the PC-324
thermal printer.

Overview of BASIC 1.19

Chapter 2: Reference Section

This chapter describes each command, statement, and function
of TI-74 BASIC. The keywords are presented In alphabetical

order.
Table of ConventionsinthisChapter. 2:2
Contents Alphabetical reference section 2.3—2.133

JL Reference Section 241
- S .

——
Conventions in this Chapter ABS
‘ i lute value of a numeric
f the BASIC keywords follow the same order of The ABS function computes the: absol 0
:Irle::g:ﬁ::r'lrsh: order and the cy::nventions used in the expression. The absolute value is always a positive number or
) descriptions are explained below. zero.
Co
P . .
i “I b Order The purpose of the keyword is stated first. Format ABS{ntumeric-expression)
. The Format section gives the complete syntax of the Description The ABS function operates on the numeric expression as
keyword. described below:
? on i iti returns
The Description section explains the keyword’s use or » If numeric-expression is positive or zero, ABS
function and includes the options that the keyword can use. the value.
; jon i i the
The Example section gives examples of the keyword's use, » If numeric-expression is negative, ABS returns
where appropriate. negative of the value.
I The Cross Reference section refers to similar and Examples 140 PRINT ABS(42. 3) : PAUSE
! complementary keywords, where appropriate. Prints 42 . 3.
Format The Format sections use the following conventions. 370 V=ABS(-6.124)
Conventions Sets V equal to 6.124.

.JL 2.2

» KEYWORDS are capitalized.

* Variables are in italics.

*» Optional items are enclosed in brackets (]).

» All parentheses are required. Parentheses included with

an optional item must be included when the optional
item is used.

*» Items that may be repeated are indicated by ellipses(...).

Reference Section

Cross Reference

SGN

Reference Section

2-3

ACCEPT

The ACCEPT statement suspends program execution and
enables you to enter data from the keyboard. This statement can
accept data al any column in the display, erase all or part of the
display, limit the number and type of characters accepted, and
provide a default value for the input.

'y Format

Description

JM 2.4

ACCEPT [[AT{(column)] [SIZE(numeric-expression)]
[ERASE ALL] [VALIDATE(data-type,...))
[NULL{expression)},jvariable

The general form of the ACCEPT statement
ACCEPT variable

assigns the data entered from the keyboard to variable. The
variable can be either numeric or string, depending on the
type of data to be entered. You can enter a maximum of 80
characters, and any trailing spaces are ignored.

The display is cleared from the current cursor position to
the end of the 80-colurnn line. Input begins in column 1
unless a pending input/output statement positions the
cursor elsewhere, in which case input is accepted at the
cursor location.

Note: To enter a string that contains a comma, a quotation
ma:rk, or leading or trailing spaces, you must enclose the
string in quotation marks. A quotation mark within a string
is represented by two adjacent quotation marks.

When an ACCEPT statement is waiting for data, ICLR] clears
only the input field; [CTU[t] (home) and [CTL [+] (back tab)
move the cursor to the beginning of the input field; and

TCTL] -] has no effect.

Reference Section

Options

You can use one or more of the following opticns, in any
order, with the ACCEPT statement. Precede each option by
a space {unless it is preceded by the close parenthesis *')”" of
a previous option}, and be sure to place a comma after the
last option before variable. '

» AT(column)—positions the cursor at the column
specified by the reunded value of column. The input
field extends from the cursor position to the end of the
80-column line.

valid column values range from 1 through 31. If the
rounded value of column is outside this range, the error

message Bad value is displayed.

» SIZE(numeric-expression)—limits the maximum number
of characters that can be entered. You can enter up to
the absolute value of numeric-expression characters.

If the value of numeric-expression is positive, the input
field is cleared before input is accepted.

If the value of numeric-expression is negative, the input
field is not cleared. This allows you to use & previous
DISPLAY or PRINT statement to place a default value
into the input field.

The cursor is left in the first position following the input
field for subsequent input/output statements.

Note that the SIZE option specifies only the maximum
numbser of characters that can be input. Regardless of
the specified size, the input field cannot extend beyond
the end of the 80-column line.

» ERASE ALL—clears the entire 80-column display line
before accepting input.

Reference Section 25

ACCEPT (continued)

Options
(Centinued)

* VALIDATE(data-type}—allows you to enter only the
chargcters specified by data-type. If more than one data-
type is specified, a character from any of the types is
acceptable,

Data-type can be one of the types shown below.

Type Valid input

ALPHA All alphabetic characters

UALPHA Only uppercase alphabetic characters

DIGIT Al digits (0—9)

NUMERIC All digits (0—9}, the decimal point (),
the plus sign (+), the minus sign (-),

and the uppercase letter E

ALPHANUM All alphabetic characters and digits

UALPHANUM Only uppercase alphabetic characters

and digits

Note: When using the UALPHA and UALPHANUM
data-types, any lowercase alphabetic characters entered
are automatically accepted as uppercase characters.

Data-type can also be a string expression, in which case
any character or combination of characters in the string
Is acceptable as input.

» NULL{expression)—provides a default value specified by

expression. If you press [ENTER] with a blank (or null)
mpqt field, the default value is automatically assigned to
variable. Note that the default value is hot affected by
the VALIDATE option.

2:6 Reference Section

Additional
Entry Methods

Examples

Cross Reference

There are two additional methods of entering data during
the execution of an ACCEPT statement. You can:

» Use the [FNl key to input keywords and user-assigned
strings.

» Enter a numeric expression if varéable is nuraeric. The
expression is evaluated and the result is assigned to
variable.

100 ACCEPT AT(5)ERASE ALL.T

Clears the display and accepts data starting in column 5
through the end of the line. The data is assigned to the
variable T.

320 ACCEPT VALIDATE("YN") SIZE(1l), A$
Accepts a one character field consisting of either Y or N.
The character is assigned to the variable A$.

430 ACCEPT AT(3)SIZE(-5) VALIDATE(DIGIT."+-").X
Accepts up to 5 characters, beginning in column 3, for the
variable X. The input characters must consist of digits or the
characters + or — . The input field is not erased because the
SIZE specification is negative.

570 ACCEPT NULL(PI),C
Accepts data for the variable C. If no data has been entered

when you press [ENTER], the value of P1is stored in C.

210 DISPLAY "ADDRESS:”;:ACCEPT AT(10), ADDR$
Shows ADDRESS : and positions the cursor after the prompt.
Accepts data for the variable ADDRS$. Notice that a pause is
not needed with DISPLAY because the semicolon creates a
pending print condition.

INPUT, LINPUT

Reference Section 247

ACOS

The ACOS function computes the arccesine of a numeric
expression.

Format

Description

Examples

Cross Reference

ACOS(rumeric-expression)

The ACOS function returns the angle whose cosine is
numericexpression. This angle is interpreted as radians,
degrees, or grads according to the current setting of the
angle units (RAD, DEG, or GRAD).

The value of numeric-expression must be in the range of
~ 1 through 1. Otherwise, the error message Bad argument
is displayed.

The range of values returned by the ACOS function for the
three angle settings is shown below.

Angle Setting -Range of Values

DEG 0< ACOS(X) < 180

RAD 0< ACOS(X)< P1

GRAD 0< ACOS(X) < 200

100 DEG:PRINT ACOS(1):PAUSE
Prints 0. (The cosine of 0 degreesis 1.)

220 RAD:T=ACOS(.75)
Sets T equal to .7227342478,

ASIN, ATN, COS, DEG, GRAD, RAD, SIN, TAN

2.8 Reference Section

ACOSH

The ACOSH function computes the hyperbolic arccosine of a
numeric expression.

Format

Description

Examples

Cross Reference

ACOSH(numeric-expression)

The ACOSH (hyperbolic arccosine) functior'l returns tpe
number whose hyperbolic cosine mnumerw—expresswn
The definition of hyperbolic arccosine is:
ACOSH(X)=LN(X +SQRX*X - 1))

100 PRINT ACOSH(1): PAUSI?
Prints 0 (the hyperbolic arccosine of 1).

230 A=ACOSH(4/3) y ‘
Sets A equal to .7953654612 (the hyperbolic arccosine of
4/3).

ASINH, ATANH, COSH, SINH, TANH

Reference Section

2:9

210

ADDMEM Subprogram ASC
The ADDMEM subprogram appends the Random Access The ASC function converts the first character in a string to its
Memory (RAM) contained in an Installed 8K Constant Memory™ equivalent ASCI| character code.
cariridge 1o the available resident memory.

Format CALL ADDMEM Format ASC(string-expression)

Description The ADDMEM subprogram expands resident memory to Description The ASC function returns the ASCII code of the fn~§t
include the memory in a RAM cartridge. The TI-74 then character in stréng-expression. You can use any string
treats the combined mémory as continuous resident except the null string, in which case the error message
memory, Bad argument is displayed.

The ADDMEM subprogram can be used only asa command; ASC is the inverse of the CHR$ function. A list of the ASCII
it cannot be used in a program. codes is given in Appendix B.
The memory capacity resulting from adding cartridge Examples 100 X = ASC("A")

Cross Reference

memory to resident memory is 16K bytes.

The error message E31 No RAM is displayed if no 8K
Constant Memory cartridge is installed when CALL
ADDMEM is executed.

When the memory in an 8K Constant Memory cartridge is
appended to resident memory, the system retains stored
BASIC program lines.

Before you execute an ADDMEM subprogram, the memaory
in an 8K Constant Memory cartridge is identified by the
T1-74 as a separate memory area. The contents of resident
memory can be stored in the cartridge by a PUT command.
After an ADDMEM subprogram is executed, however, the
TI-74 considers the cartridge to be part of resident RAM,
and the cartridge memory is no longer available as a
separate memory area,

The memory in an 8K Constant Memory cartridge remains
appended to the resident memory until a NEW ALL
command is executed, the computer is turned on without
the cartridge installed, the batteries are removed, or the
system is initialized.

GET, PUT

Reference Section

Cross Reference

Sets X equal to 65 (the ASCII code for the letter A).

130 DISPLAY ASC(”HELLO") :PAUSE
Displays 72 (the ASCII code for the letter H).

790 DISPLAY ASC(AS%) : PAUSE
Displays the ASCI code for the first character in A$.

CHR$

Reference Section 2.11

L
The ASINH function computes the hyperbolic aresine of a
l‘:; rs‘ilil:;unclion computes the arcsine of a numeric numeric expression.
Format ASIN(numeric-expression) Format ASINH(numeric-expression)
Description The ASIN function returns the angle whose sine is numeric- Description The ASINH (hyperbolic arcsine) function calculates the
jom. This angle is interpreted as radians, degrees, or nur.n‘t.)e.r whose hyperl?ohc sine is numeric-expression. The
gra] ds according to the current setting of the angle units definition of hyperbolic arcsine is shown below.
Gl .
(RAD, DEG, or GRAD) ASINH(X) = LN(X + SQR(X*X + 1))
The value of numeric-expression must be in the range of
~1 through 1. Otherwise, the error message Bad argument Examples ;?_31 Pg INT ASINH(O) : PAUSE
is displayed. ’ t5 0.
: 230 A=ASINH(4/3)
f 1; d function for th
e e e b onc ASIN function for the Sets A equal to 1.008612289 (the hyperbolic arcsine of 4/3).
Cross Reference ACOSH, ATANH, COSH, SINH, TANH
Angle Setting Range of Values
DEG -90 < ASIN(X) < 90
RAD -PL/2 € ASIN(X) < P12
GRAD — 100 € ASIN(X) < 100
Examples 140 DEG:PRINT ASIN({1) :PAUSE
Prints 90. (The sine of 90 degreesis 1.)
240 RAD:B=ASIN(.9)
Sets B equal to 1.119769515.
Cross Reference ACOS, ATN, COS, DEG, GRAD, RAD, SIN, TAN

QLJL 2.12 Reference Section Reference Section 2.13

ATANH

ATN

The ATANH function computes the hyperbolic arctangent of a
numeric expression.

The ATN function computas the arctangent of a numeric
expression.

Format

i \ Description

Examples

Cross Reference

ATANH(numeric-expression)

The ATANH (hyperbolic arctangent} function calculates the
number whose hyperbolic tangent is nimeric-expression.
The definition of hyperbolic arctangent is shown below.
ATANH(X)=.5"LN({(1 +X){1-X))

100 PRINT ATANH(O):PAUSE

Prints 0.

230 A=ATANH(4/7)

Sets A equal to .6496414921 (the hyperbolic arctangent of
4/7).

ACOSH, ASINH, COSH, SINH, TANH

2.14 Reference Section

Format

Description

Examples

Cross Reference

ATN(numeric-expression)

The ATN function returns the angle whose tangent is
numeric-expression. This angle is interpreted as radians,
degrees, or grads according to the current setting of the
angle units {(RAD, DEG, or GRAD).

The range of values returned by the ATN function for the
three angle settings is shown below.

Angle Setting Range of Values

DEG —90 € ATN(X}< 90

RAD _ ~PI’2 € ATN(X) < PL/2

GRAD - 100 € ATN{X) < 100

130 DEG:PRINT ATN(1):PAUSE
Prints 45. (The tangent of 45 degreesis 1.)

810 RAD:Q=ATN(Z2.5%)
Sets Q equal to 1.19028995.

ACOS, ASIN, COS, DEG, GRAD, RAD, SIN, TAN

Reference Section 2-15

BREAK

The BREAK statement suspends program execution at specified
points, cafled breakpoints, in a program.

Formats

Description

Examples

Cross Reference

BREAK
BREAK line-nutmber-list

The two formats for the BREAK statement are described
below.

» BREAK-—causes an immediate breakpoint when the
statement is executed.

» BREAK line-number-list—sets a breakpoint(s)
immediately before the specified line{s). If more than
one line-number is specified, the lines must be separated
by a comma.

When a breakpoint occurs, the message BREAK is displayed.
A breakpoint remains in the program until you edit or delete
the line or use the UNBREAK statement.

BREAK is useful in debugging a program. When program
execution halts at a breakpoeint, you can print variables and
perform calculations to determine why a program is not
executing correctly. You can use the CONTINUE command
to resume program execution.

The BREAK statement is often used as a command, in
which case you must include a line number. The [BREAK]
key also causes the program to halt as if a BREAK statement
had been executed.

150 BREAK
Causes a breakpoint when the BREAK statement is
executed.

100 BREAK 120,130
Causes breakpoints before execution of lines 120 and 130,

BREAK 10,400,130 ,
Causes breakpoints before execution of lines 10, 400, and
130. '

CONTINUE, ON BREAK, UNBREAK

2-16 Reference Section

CALL

The CALL statement transfers control from the main program to a
specified subprogram. After the subprogram is executed, control
retums to the first statement foflowing the CALL statement.

Formats

Description

Subprogram
Priority

Example

Cross Reference

CALL subprogram-name
CALL subprogram-name (argument-list)

The two formats for the CALL statement are described
below.

» CALL subprogram-name—transfers program control to
the first subprogram found with the given subprogram-
name. The subprogram-name must be the name of an
existing subprogram. Otherwise, the error message
E13 Not foundis displayed.

» CALL subprogram-name (argument-list)—uses the
argument-list to pass data to and from a subprogram.
The list may consist of one or more arguments separated
by commas. The number and types of arguments in
argument-list must match the parameters in the
parameter-list of the subprogram. Otherwise, the error
message E23 Bad argument orEl Syntaxis
displayed.

The order in which the computer searches for a specified
subprogram is as follows.

1. Built-in subprograms such as ADDMEM, ERR, IO, and
KEY

2. BASIC subprograms defined with the SUB statement

3. Subprograms located in software cartridges

Each built-in subprogram is discussed under its own entry in
this chapter. BASIC subprograms are discussed in Chapter 1
and in this chapter under SUB.

100 CALL KEY(K,S)
Calls the built-in subprogram KEY,

ADDMEM, ERR, GET, 10, KEY, PUT, SUB, SUBEND,
SUBEXIT

Reference Section 2.17

CHR$

CLOSE

The CHRS function converts a specified ASCI| character code to
its corresponding display character.

The CLOSE statement closes a specified file.

Format

Description

Examples

Cross Reference

2-18

CHRS$(numeric-expression) Formats
The CHR$ function returns the character that corresponds
to the ASCII code specified by the rounded value of
numeric-expression. The value of numeric-expression
must be in the range of 0 through 32767. Otherwise, the
error message Bad argument is displayed.

Description

Because valid ASCII character codes only range from 0
through 255, any value of numeric-expression from 256
through 32767 is automatically reduced by 256 until the
value represents a valid ASCII code.

The CHR$ function is commonly used in PRINT and
DISPLAY statements to display the extended character set,
such as the special graphics characters, which is not directly
accessible from the keyboard. CHR$ is also used to send
control codes to a peripheral device, such as a printer.

CHRS$ is the inverse of the ASC function. A list of the ASCII
codes is given in Appendix B.

Additional
Methods of
Closing a File

440 PRINT CHR$(72) :PAUSE
Prints H.

640 X3$=CHR$(33)
Sets X$ equal to !.

ASC

Exampie

Cross Reference

Reference Section

CLOSE #file-number
CLOSE #file-number, DELETE

The CLOSE statement terminates the association between a
file and its current file nuumber.

The two formats for the CLOSE statement are described
below.

» CLOSE #file-number—closes the file that was previously
opened as file-number. If you attempt to close a file that
is not open, the message Fi le error isdisplaved.

» CLOSE #file-number, DELETE—closes and deletes the
file that was previously opened as file-number. This
format applies only to peripherals that allow you to
delete files.

After a file is closed, it cannot be accessed by the program
unless it is reopened. After a file is closed, file-rumber can
be assigned to another file or device.

To protect the data in your files, open files are also closed
when you do any of the following.

» Edit the program or subprogram.

» Enter a NEW, OLD, RENUMBER, RUN, SAVE, or
VERIFY command.

List the program to a peripheral device.

Call the ADDMEM subprogram.

Turn the system off or press the {RESET] key.
Press the [MODE] key to switch to CALC mode.

yYvyvyy

Normal program termination also closes all open files.

790 CLOSE #6
Closes the file that was opened as file #6.

DELETE, OPEN

Reference Section 2-19

CONTINUE

The CONTINUE (or CON) command resumes program execution
following a breakpoint.

€O0S

Formats

Description

Exceptions

Cross Reference

CONTINUE
CONTINUE line-number

The two formats for the CONTINUE command are
described below. The abbreviation CON may be used
instead of CONTINUE.

» CON-—resumes execution beginning at the program line
that immediately follows the breakpoint.

» CON lineanumber—‘resumes execution beginning at the
specified line-number,

If the breakpoint occurred in the main program, line-
rumber must refer to a line number in the main
program, If the breakpoint occurred in a subprogram,
line-number must refer to a line number in that
subprogram. Entering an improper line-number
produces unpredictable results.

If you do any of the following after the breakpoint oceurs,
the CON command will not resume program execution.

» Edit the program or subprogram.

» Enter a NEW, OLD, RENUMBER, RUN, SAVE, or
VERIFY command.

¥

List the program to a peripheral device.

¥

Call the ADDMEM subprogram.

» Turn the system off or press the [RESET] key.

» Press the [MODEI] key to switch to CALC mode.
BREAK

2.20 Reference Section

The COS function computes the trigonometric cosine of a
numeric expression.

Format

Description

Examples

Cross Reference

COS(numeric-expression)

The COS function returns the cosine of numeric-expression.
The value of numeric-expression is interpreted as radians,
degrees, or grads according to the current setting of the
angle units (RAD, DEG, or GRAD).

The value returned by the COS function is in the range of
—1 through 1 for any angle units you select.

100 RAD:T=COS(PI)
Sets T equal to — 1 (the cosine of PI radians).

200 GRAD:PRINT COS(30):PAUSE
Prints .8910065242 (the cosine of 30 grads).

ACOS, ASIN, ATN, DEG, GRAD, RAD, SIN, TAN

Reference Section 2-21

———

The DATA statement is used with the READ statement to assign
values to variables.

Cross Reference

COSH DATA

The COSH function computes the hyperboli i i
S Drassion, yperbolic cosine of a numeric

Ik | Format COSH(numeric-expression) Format

| | ; s 4y N .

I | ‘ | Description The COSI:I (hyperbohc cosine) function calculates the Description

‘ ‘ |f1 hyperbol!c cosine of numeric-expression. The definition of

i ‘ ‘| hyperbolic cosine is shown below.

lif"

i COSH(X) = .5*(EXP(X) + EXP(- X))

| "I| H Examples 100 PRINT COSH (D) : PAUSE

Prints 1.

230 T=COSH(0.75)
Sets T equal to 1.294683285.

ACOSH, ASINH, ATANH, SINH, TANH

2.22 Reference Section

DATA data-list

When a READ statement is executed, the values in data-list
are assigned to the variables specified in the variable list of
the READ statement.

Data-list may consist of one or more numeric or string
constants separated by commas. Leading and trailing spaces
are ignored. Therefore, a string constant that contains
commas or leading or trailing spaces must be enclosed in
quotes.

A quotation mark within a string is represented by two
adjacent quotation marks. A null string is represented by
two adjacent commas, or by two commas separated by two
adjacent quotation marks.

If a numeric variable is specified in the variable list of the
READ statement, a numeric constant must be in the
corresponding position in the data-list of the DATA
statement.

If a string variable is specified in the READ statement,
either a string or a numeric constant may be in the
corresponding position in the DATA staternent. However,
the data will be interpreted as a string.

Reference Section 2.23

DATA (Continued)

Using the DATA
Statementin a
Program

Examples

Cross Reference

A DATA statement must be the only statement on a line. It
may be located anywhere in a program or subprogram. If a
program has more than one DATA statement, the
statements are normally read in sequential order beginning
with the lowest numbered line.

The RESTORE statement can be used to reread DATA
statements or to alter the order in which DATA statements
are read.

Notice that the DATA statements can be placed anywhere
within the program.

100 FOR A=1 TO 5

110 READ B,C

120 PRINT B;C:PAUSE 1.1

130 NEXT A

Lines 100 through 130 read five sets of data and print their
values, two to a line.

140 DATA 2,4,6,7,8

150 DATA 1,2,3,4.5

160 DATA "*"THIS HAS QUOTES”“*

170 DATA NO QUOTES HERE

180 DATA “NO QUOTES HERE, EITHER”

Lines 160 and 180 use quotation marks to enclose strings
that contain quotation marks and a comma.

190 FOR A=1 TO 7

200 READ BS

210 PRINT B$:PAUSE 1.1

220 NEXT A
Lines 190 through 220 read seven data elements and print
each on its own line.

230 DATA 1, NUMBER, Ti ’
Line 230 uses a null string.

READ, RESTORE

2-24 Reference Section

DEG

The DEG statement sets the units of angle calculations to
degrees.

Format

Description

Examples

Cross Reference

DEG
The DEG statement sets the angle units to degrees until yow:

» Enter RAD or GRAD as a command or staterment to
change the units.

» Enter the NEW ALL command.
» Initialize the system.
» Change the angle setting in CALC mode.

Entering the NEW ALL command or initializing the system
autematically changes the angle setting to RAD.

1006 DEG .
Selects the DEG angle setting.

200 DEG:PRINT COS(90):PAUSE
Prints 0 (the cosine of 90 degrees).

GRAD, RAD

Reference Section 225

The DELETE (or DEL) commarnd removes Iines from the program
currently in memory or a file from an externai storage device.

Formats

Description

DELETE line-group |, linegroup . |]

Description
DELETE “dewice. filename’’

{Continued)

The two formats for the DELETE command are described
below. The abbreviation DEL may be used instead of
DELETE.

» DEL linegroup|, line-group . .]—deletes the specified
lines from the program in memory. You can specify line-
group as asingle line number or g range of line numbers,
You can also specify several line-groups by separating
them with a comma.

Line-group Lines Deteted Examples

DEL 10¢ Line number 100 only

DEL 100 - Lines from nurnber 100 to the

highest line nurber, inclusjve

DEL -100 Lines from the lowest line number

to line number 100, inclusive

DEL 100- 300 Lines from number 100 to number

300, inclusive

If line-group specifies only one line number and that line
number does not exist, the message W1l Line number
error isdisplayed. However, any other listed fine-group
is deleted when you press [ENTER],

If the initial line of 2 range does not exist, the next
higher-numbered line is used as the initial line. If the
final line does not exist, the next lower-numbered line is
used as the final line,

2-26 Reference Section

Cross Reference

» DEL "‘device. filename —deletes the file speciﬁc?d by
device. filename, where device identifies the pe}'lphe@
device on which the file is stored and filename identifies
the name of the file.

Device must be a number from 1 through 255 that
corresponds to the device number of the per_'ipheral.
Refer to the peripheral manual for information
concerning the device number.

Some peripheral devices also enable you to delete data
files by using DELETE in the CLOSE statz_ament. Refer to
the peripheral manual for more information.

DEL 10-50,90,110-220
Deletes lines 10 through 50, 90, and 110 through 220.

DEL 900-
Deletes lines $00 through the end of the program.

DEL -500, 750)
Deletes all lines through 500 and line 750.

DEL ”"8.inventory”)
Deletes the file *‘inventory’ from device 8.

CLOSE, NEW

Reference Section 2.27

2.28

The DIM staterent defines the dimensions, size, and type of an
amay.

Format

Description

DIM array-name (indegerl [|, integer2] [, integer3])}, ...]

When a DIM statement is executed, the TI-74 chooses a
block of memery, labels it with the specified array name,
and allocates enough memory space to contain the elements
of the array. Note that a DIM statement can define more
than one array.

Using a DIM
Statement

Array-name is a string or numetric variable name. The data
contained in an array must be either string or numeric data,
as specified by the array name.

The number of values in parentheses following array-name
determines the number of dimensions in the array. Arrays
with up to three dimensions are allowed. Each value
represents the maximum subscript in that dimension of the
array. Examples
The lowest value of a subscript is zero. Therefore, the
number of elements in each dimension is one more than the
maximum subscript. For example, an array defined by DIM
A(6) is a one-dimensional array with seven elements, A(0)
through A(6).

When execution of a program begins, each element of a
numeric array is set to zero, and each element of a string
array is set to the null string. Cross Reference
If an array is not defined by a DIM statement, the maximum

value of each subscript is set to 10 when your program first

references the array.

Reference Section

‘When you are using a DIM staternent in a program, the

following rules apply.
» An array can be dimensioned only once.

» Todefine an array, a DIM statement rmust be executed
before the first reference to the array.

» Remarks (REM) and tail remarks (!) are the only
statements which may appear after a DIM statement on
a multiple-statement line.

» A DIM statement cannot appear in an IF THEN ELSE
statement.

120 DIM X$(30)

Reserves space in the computer’s memory for 31 elements
of the string array called X$. Each element is initialized to
the null string.

430 DIM D(100) ,B(10,9)

Reserves space in the computer's memory for 101 elements
of the array called D and 110 (11 times 10) elernents of the
array called B. Each element of each array is initialized to
ZEro.

Refer to ““Using Arrays’ in Chapter 1.

Reterence Section 2.29

DISPLAY

The DISPLAY statemaent displays the value{s) included in print-
fist. (The options available with DISPLAY often make it more
versatile than the PRINT statemant.)

Formats

Description

Options

DISPLAY [{AT(column)} [ERASE ALL] [SIZE(rumeric-
expression)] [USING line-number, |Jprint-list

DISPLAY [[AT(column)] [ERASE ALL] [SIZE(numeric-
expression)] [USING string-expression,]] print-list

The DISPLAY statement formats and displays the value(s)
included in print-list.

Print-list consists of print items and print separators. A
print item can be a numeric expression, a string expression,
or a TAB function. A print separator can be a comma or a
semicolon, which determines the position of the next print
item in the display. For information about the effect of
commas and semicolons on spacing, refer to PRINT in this
chapter.

The options available with DISPLAY give you control over
the format of displayed information. They can be included
in any order and must be preceded by a space (unless
preceded by the close parenthesis ‘)" of a previous option).

> AT{column)—positions the first character of the
displayed information at the column specified by the
rounded value of column. Valid column values are from
1 through 80. If column is larger than 80, the TI-74
returns the E4 Bad value error message.

The evaluation of the TAB function and comma
separators is relative to the starting position specified by
the AT option. However, if the characters to be
displayed exceed column 80, the displayed information
begins in colurn 1, not in the column specified by the
AT option, the TAB function, or a comma separator.

The AT option may be affected by the SIZE option. See
the following page for additional information.

2:30 Reference Section

Options
{Continued)

If AT is omitted, output begins in location 1 unless a
pending input/output statement exists, and the TAB
function and comma separators are relative to column 1.

ERASFE ALL—clears the line before displaying data.

SIZE{(numeric-expression)—limits the number of
displayed characters to the absolute value of numneric-

expression.

If numeric-expression is larger than the number of
remaining positions, the display field extends from the
current display position to the end of the line. The length
of the display field defined in this manner becomes the
new record length for evaluating the TAB function and
cormma separators in prini-list. The display field is
cleared prior to displaying data.

If the SIZE option is omitted and the characters to be
displayed exceed column 80, you can only view the
information by including a PAUSE ALL statement prior
to the ouput line. You can then view the print item one
line at a time, pressing [ENTER] or [CLR] to display the
next segment. However, if the SIZE option is used when
characters exceed column 80, the text is truncated to 80
columns or to the number of characters specified by
SIZE, whichever is shorter.

When the SI[ZE option is omitted, the display is not
cleared (unless ERASE ALL is specified) prior to
displaying data. If there is no trailing separator after
print-list, termination of the DISPLAY statement clears
the display from the last item displayed to the end of the
line.

USING—may be used to specify an exact format for the
output. If USING is specified, it must appear last in the
option list. Refer to IMAGE and USING for a description
of format definition and its effect upon the output of the
DISPLAY staternent.

Reference Section 2-31

DISPLAY (Continued)

Examples

Cross Reference

120 DISPLAY AT(7).Y

Displays the value of Y starting at column 7 and clears
everything following the number. The value actually
appears in colurn 8 since the sign precedes the number.

150 DISPLAY N
Displays the value of N in column 1 of the display and clears
the rest of the display.

190 DiSPLAY ERASE ALL.B
Clears the entire display before displaying the value of B.

370 DISPLAY AT(C) SIZE(19).X
Clears 18 characters starting at position C and displays the
value of X starting at position C.

IMAGE, PAUSE, PRINT, TAB, USING

2:32 Reference Section

END

The END statement closes all open files and then stops program
execution. Although it may appear anywhers, END Is often placed
as the last line in the main program.

Format

Description

Cross Reference

END

The END statement is not a required statement. Normally, a
program stops automatically after the highest-numbered
line in the main program is executed.

All subroutines of the main program must occur before the
END statement. However, subprograms can be placed after
the END statement.

STOP

Reference Section 2-33

R _ o

EOF
The EOF function is used when a program Is inputting records
from a flle. i tests whether there are records remaining in the
specified file.
Format EOF(file-number)}
Description The EOF function returns a value that indicates the current
position in the file specified by file-nmumber, The value of
Jéle-rarmber must corfespond to the number of an open file.
Otherwise, the error message File erroris displayed.
Value Position
0 Not end-of -file
-1 Logical end-of-file
The logical end-of-file occurs when all records on the file
have been input. EOF always treats a file as if it were being
accessed sequentially, even if it has been opened for
relative access,
Using the EOF is often placed before an INPUT statement to test the
EOF Statement file status before attempting to read from the file. When a
program uses pending INPUT statements (refer to INPUT
with files), EOF does not indicate whether pending input
data remains in the memory buffer,
“ Examples 710 IF EOF(27) THEN 1150
i/ Transfers control to line 1150 if the end-of-file has been
il reached for file #27.
“ The following statements open a file and check to see if the
end-of-file is reached before trying to read a record. When
; the end-of-file is reached, the file is closed.
I 100 OPEN #3,72.CFILE”, INTERNAL
110 IF EOF(3) THEN CLOSE #3:STOP
120 INPUT #3, A$.D.E
130 PRINT A$;D;E:PAUSE 1
140 GOTO 110
Cross Reference INPUT (with files)
P 2.34 Reference Section

ERR Subprogram

—

The ERR subprogram retums the emor code, error type, and
optionally, the file number and line number of the last uncleared

aIror.

Format

Description

Parameters

Options

Examples

Cross Reference

CALL ERR({error-code,error-type |, file-number,
line-number])

When an error oceurs, a subroutine can be called (see ON
ERROR) that contains CALL ERR. The error is cleared when
this error-processing subroutine terminates with a
RETURN.

If no error has occurred, CALL ERR returns all values as
Zeros.

» errorcodes—range from () through 127. The meaning of
each error code is listed in Appendix D.

» error-type—is always 0 unless error-code is 0, which isan
input/output (I/0) error. For an IO error, error-typeis an
/0 error code specified by each IO device. The range for
I/O error codes is 0 through 255.

» file-magmber—is 0 unless the error is an VO error. For an
VO error, file-number is the file number used in the VO
statement that caused the error.

» line-number—is the number of the line being executed
when the error occurred. It is not always the line that is
the source of the problem since an error may occur
because of values generated or actions taken elsewhere

in a program.

170 CALL ERR(A.B)
Sets A equal to the error-code and B equal to the error-type
of the most recent uncleared error.

390 CALL ERR(W.X.Y.Z)

Sets W equal to the error-code, X equal to the error-type, Y
equal 1o the file-nuwmber, and Z equal to the line-number of
the most recent uncleared error.

ON ERROR, RETURN (with ON ERROR)

Reference Section 2.35

EXP FORTO STEP
The EXP function computes the antilogarithm, e*, of 2 numeric The FOR TO STEP and NEXT statements are used to set off a
expression. The internal value for e is 2.71828182846. series of statements to be performed a specific number of times.

Format EXP(numeric-expression) Format FOR control-variable = initial-value TO limit
[STEP increment)
Description The EXP function returns the value of eX, where x equals
the value of rumeric-expression. Description The FOR TO STEP statement is used with the NEXT
statement to form a loop, a series of staterments performed a
EXP is the inverse of the LN function. specific number of times. Control-variable is an
unsubscripted numeric variable that acts as a counter for
Examples 150 PRINT EXP(7) :PAUSE the loop. Initial-velue, limit, and increment are numeric

Prints 1096 . 633158 (the value of e raised to the Tth
power),

390 L=EXP(4.354960467)

Sets L equal to the value of e raised to the 4.394960467
power, which is 81.04142689.

.Cmss Reference [N

2-36

Reference Section

expressions.

When the FOR statement is executed, initial-value is
assigned to control-variable. If initinl-value exceeds limit,
the loop is skipped and execution continues with the
statement after the NEXT statement. Otherwise, the
statements following the FOR statement are executed until
the correspending NEXT statement is executed. Increment
is then added to control-variable. If control-variable is not
greater than limit, execution returns to the statement
following the FOR statement.

When control-variable becomes greater than limit, control
transfers to the statement following the NEXT statement.
Control-variable then equals the value it had in the last pass
through the loop plus the value of increment.

A loop contained entirely within another loop is called a
nested loop. Nested loops must use different control
variables. Program execution can be transferred out of a
loop using GOTQ, GOSUB, or IF THEN ELSE and then
returned back into the loop.

If a NEXT statement is executed before its corresponding
FOR statement, an error occurs.

STEP increment specifies the value that is added to control-
variable each time the loop is executed. If STEP increment
is omitted, the increment is 1. If increment is negative,
control-variable is decreased each time through the loop
and l#mit should be less than éndtial-value. The loop is
skipped if initial-value is less than Iimit. Otherwise, the
loop is executed until control-variable is less than limit.

Reference Section 2-37

238

FOR TO STEP (continued)

FORMAT
Examples 140 FOR A=1 TG 5 STEP 2

_ Format

‘ Description
190 NEXT A '
]i_}xecubes the statements between FOR and NEXT A three
times, with A having values of 1, 3, and 5. After the loop is
finished, A has a value of 7.
250 FOR J=7 TO -5 STEP -.%
350 NEXT J
Executes the statements between FOR and NEXT J 25
times, with J having valuesof 7, 6.5, 6, ..., —4, —4.5, and

—5. After the loop is finished, J has a value of —5.5.
700 FOR X=1 TO 1l -

. 2 STEP -1 Example

Cross Reference

The FORMAT statement initializes a medium on an extemal
storage device.

780 NEXT X

Does not execute the loop because increment is negative

- and the initial valye is already less than the limit.

NEXT

Reference Section

FORMAT device

Some external storage devices cannot store on a medium
unless the medium has been initialized. The FORMAT
statement initializes the medium installed on an external
storage device.

Device is the number associated with each physical device
and can be from 2 through 255. Refer to the peripheral
manuals to obtain the device code for each peripheral
device.

Initializing destroys all information previously stored on a
medium.

Note: Formatting does not apply to cassette tapes used on &
cassette recorder.

140 FORMAT 2

Initializes the medium currently in the mass-storage device
designated as device number 2. All data previously stored
on the medium is destroyed.

Reference Section 2-39

The FFIE_funciion provides information about the cument use of
memory in the computer.

Format

Description

Example

FRE(numeric-expression)

The FRE function returns information about mermory
availability and usage:

* How much is currently available for program and data
storage.

* How much is eccupied by the current program in
memory.

The value of numeric-expression selects the type of
information as follows.

Value Meaning

0 Memory available for program and data storage

{memory space not reserved for system operation).

1 Total space occupied by the program currently in
memory. The value returned includes 11 bytes for
program overhead.

300 A=FRE(1)
Sets A equal to the number of bytes required to store the
current program.

2.40 Reference Section

GET Subprogram

el

The GET subprogram replaces the contents of system memory
with information from a RAM cartridge.

Format

Description

Examples

Cross Reference

CALL GET (image-number)

The GET subprogram retrieves a copy of a system RAM
image from an 8K Constant Memory cartridge. The term
“image”” applies to alt contents of the 8K system RAM,
including program lines, variables, and unused space.

The image-mumber can be 1 or —1. The 1 causes the
cartridge image to be copied into memory and the -1
causes an exchange of memory images. This option enables
you to store the program from memory while retrieving a
cartridge program.

As cartridge contents are copied or exchanged, the

computer checks to see that the cartridge contains an image
of system memory. If not, the computer returns an error

message.

CALL GET(1)
Copies the cartridge image into system RAM.

CALL GET(-1)
Exchanges the cartridge image with the system RAM.

PUT, ADDMEM

Reference Section 2.4

'GOTO

Cross Reference

Transfers control to line 200. The statement at line 200 and
all the statements that follow are performed until RETURN
is encountered.

ON GOSUB, RETURN

2.42 Reference Section

- GOSUB

The GOSUB statement stores a retum location and then transfers The GOTO statement transfers program execution to another line
program control to a subroutine. within a program.

Format GOSUB line-number Format GOTO line-number

Description The GOSUB statement transfers control to the subroutine Description When a GOTO statement is executed, control is passed to
that begins at line-number. The statements of the the first statement on the line specified by line-number.
subroutine are executed until a RETURN statement is)
encountered. A RETURN statement returns control to the The GOTO statement cannot be used to transfer control into
statement following the GOSUB statement. or out of a subprogram. Attempting to do so results in an

Ell Line number error message.

Subroutines may be called any number of timesin a
program and may call themselves or other subroutines. The Example 100 GOTO 300 '
GOSUB statement cannot be used to transfer control into or Transfers control to line 300.
out of a subprogram.
Note: When a subroutine references itself, you must make
the GOSUB conditional. Otherwise, the computer’s memory
can be filled with return addresses.

Example 100 GOSUB 200

Reference Section 2-43

GRAD

IF THEN ELSE

The GRAD siatement sets the units of angle calculations to
grads.

Format

Description

Examples

Cross Reference

GRAD
The GRAD statement sets the angle units to grads until you:

» Enter DEG or RAD as a command or staternent to change
the units.

» Enter the NEW ALL command.
» [Initialize the system.
» Change the angle setting in CALC rode.

Entering the NEW ALL command or initializing the system
automatically changes the angle setting to RAD.

100 GRAD '
Selects the GRAD angle setting.

200 GRAD:PRINT COS(160) :PAUSE
Prints 0 (the cosine of 100 grads).

DEG, RAD

2:44 Reference Section

The IF THEN ELSE statement performs a choice of actions based
on & condition. A true condition causes one action and a false
condltion causes a different action.

Format

Description

IF condition THEN actionl [ELSE actionZ]

The IF THEN ELSE statement performs one of two
specified actions based on a specified condition. If condition
is true, actiond is performed. If condition is Talse, action2is
performed. If ELSE is omitted and condition is false, control
passes to the next line.

Condition can be either a relational expression or a numeric
expression. When a relational expression is evaluated, the
result is O if it is false and — 1 if it is true. When a numeric
expression is evaluated, a zero valie is considered to be
false and a nonzere value is considered to be true.

Actionl and action? may be line numbers, statements, or
groups of statements separated by colons. If a line number is
used, control is transferred to that line, If statements are
used, those statements are performed.

The IF THEN ELSE statement must be contained on one
line. IF THEN ELSE statements can be nested by including
an IF THEN ELSE statement in actiond or action2. If a
nested IF THEN ELSE statement does not contain the same
number of THEN and ELSE clauses, each ELSE is matched
with the closest unmatched THEN.

IF THEN ELSE statements cannot contain DIM, IMAGE,
SUB, or SUBEND statements.

Reference Section 2:45

IF THEN ELSE (continued)

Examples

2.48

140 |F MBB=0 THEN 200

150 PRINT “NON-ZERO” :PAUSE 2

If MBB is zero, control passes to line 200. If MBB is not zero,
NON—ZERQ is displayed and program execution halts for 2
seconds before executing the next statement.

230 IF X>5 THEN GOSUB 300 ELSE X=X+5

If the value of X is greater than 5, GOSUB 300 is executed.
When the subroutine is completed, control returns to the
line following the IF THEN ELSE statement. If X is 5 or less,
X is set equal to X +5 and control passes to the next line.

250 IF § THEN C=C+1:GOTO 500 ELSE L=L/C:

GOTO 300
If Q is not zero (true), Cisset equal to C+1 and control is
transfered to line 500. If Q is zero (false), L is set equal to L/C
and control is transferred to line 300.

290 |F A$="Y"* THEN COUNT=COUNT4+1:

DISPLAY AT(4).”Enter value:”;:GOTO 200
If A$ is equal to **Y"", COUNT is incremented by 1,a
message is displayed, and control is transferred to line 200.
If A$ is not equal to Y™, control passes to the next line.

350 |F HRS<=40 THEN PAY=HRS*WAGE ELSE
PAY=HRS*WAGE+.5*WAGE *(HRS-40):0T=1

“ If HRS is less than or equal to 40, PAY is set equal to

HRS*WAGE and control passes to the next line. If HRS is
greater than 40, PAY is set equal to
HRS*WAGE + .5*WAGE*(HRS - 40), OT is set equal to 1,
‘and control passes to the next line.

700 IF A=1 THEN IF-B=2 THEN C=3 ELSE D=4
FAisequaltol and B is equal to 2, Cis set equal to 3 and
control passes to the next line. If A is equai to 1 and Bisnot
equal to 2, D is set equal to 4 and control passes to the next
line. If A is not equal to 1, control passes to the next line.

Reference Section

IMAGE

The IMAGE statement enables you to define an output format.
Format IMAGE string-constant
Description The IMAGE statement specifies an output format for use in

Format Definition

DISPLAY USING and PRINT USING statements. The format
is used by placing the line number of the IMAGE statement,
in the USING option of DISPLAY or PRINT {see USING in
this chapter).

Stnngwnstam may be enclosed in quotation marks. If
string-constant is not enclosed in quotation marks, leading
and trailing blanks are ignored.

The IMAGE statement must be the only statement on a
program line and must appear in the program or
subprogram that uses it. When an IMAGE statement is
encountered, execution immediately continues with the
next line of the program.

When a PRINT or DISPLAY statement uses a format
definition, the format fields are replaced by the values of
the print items, and the literal fields are printed exactly as
they appear in the format definition.

The three characters that may be used to define a format
field are t‘he.number sign (#), the decimal point (.}, and the
exponentiation symbol { ~). The number sign defines a

- character position in the format field. It is replaced by one

of the characters from the ASCII representation of the value
of the print item. The decimal point is used in a decimal
format field to specify the position of the decimal point. The
exponentiation symbol (~ } is used in an exponential format.
field to specify the number of positions in which to print the
exponent value.

All other characters are literal and thus form literal fields.

Reference Section 2.47

IMAGE (continued)

Types of Fields

Integer Fleld

Decimal Field

The five types of fields in a format definition are integer,
decimal, exponential, string, and literal. The rules that
apply to each type are listed below.

» Up to 14 significant digits may be specified.
» An integer field is composed of number signs.

» When the number does not fill the field, the number is
right-justified.

» When the number is longer than the field, asterisks (*)
are printed in place of the value.

» Non-integer values are rounded to the nearest integer.

» When the number is negative, one number sign is used
for the minus sign.

» Up to 14 significant digits may be specified.

» A decimal field is composed of number signs and a single
decimal point. The decimal point may appear anywhere
in the format field.

» The number is placed with the decimal point in the
- specified position.

» When the integer part of the value is longer than the
integer part of the format, asterisks (*) are printed
:instead of the value.

» The number is rounded to the number of places specified
to the right of the decimal point.

» When the number is negative, at least one number sign
must precede the decimal point to be used for the minus

sign.

2.48 Reference Section

Exponemial Field

String Field

Literal Field

-

Up to 14 significant digits may be specified.

An exponential field consists of a decimal or integer
field, which defines the mantissa, followed by 4 or 5
exponentiation symbols that define the exponent. When
fewer than 4 are used, they are treated as literal
characters. When more than 5 are used, the first 5 are
used to define the exponential field, and the remainder
are considered to be literal characters.

The number is rounded according to the mantissa
definition.

When the mantissa definition specifies positions to the
left of the decimal point, one of these positions is always
used for the sign, minus if negative and a space if
positive,

The size of the field is limited only by the size of the
string that defines the format.

A string field is an integer, decimal, or exponential field.
In addition to the number signs, the decimal point and
the exponentiation symbols define character positions.

When the string is shorter than the field, it is left-
justified.

When the string is longer than the field, asterisks (*} are
printed instead of the value.

The size of the field is limited only by the size of the
string that defines the format.

A literal field is composed of characters that are not
format characters. However, decimal points and
exponentiation symbols may also appear in literal fields.

Literal fields appear in the printed output exactly as they
appear in the format definition.

Reference Section 2-49

IMAGE (Continued)

-~

Examples The following program prints two nurabers per line using Examples The program below illustrates a use of IMAGE. It reads and

the IMAGE statement. {Continued) prints seven numbers and their total. The amounts are

100 FOR COUNT=1 TO 6 printed with the decimal points lined up.

110 READ A B

120 PRINT USING 150; A, B:PAUSE i?g :::gg ?#§§§##§#~
130 NEXT COUNT .

Lines 100 and 110 set up the images. They are the same
-9.99,-7,-3.459.0,0,14.8,12.75, :
140 ESTQng . 82 gz 77 3 except for the dollar sign. To keep the blank space where
' PO D the dollar sign was, the string-constant in line 110 is
HH HE : . i
150 IMAGE THE ANSWERS ARE ##4# AND enclosed in quotation marks,
120 DATA 233.45,-147.95,8.4,37.263,-51.299,
85.2,464
130 TOTAL=0
140 FOR A=1 TO 7
. 150 READ AMOUNT
-9.99 ’ 160 TOTAL=TOTAL+AMOUNT
) 170 IF A=1 THEN 180 ELSE 190
180 PRINT USING 100,AMOUNT:PAUSE: GOTO 200
190 PRINT USING 110,AMCUNT : PAUSE
- Prints the values using the IMAGE statements.
0 0 THE ANSWERS ARE O AND .00 : 200 NEXT A
o 210 PRINT USING "S##HE 44" TOTAL:PAUSE
AND 12.75 ,

12.75 THE ANSWERS ARE 15 Uses the format directly in the PRINT statement.

The following chart shows the results.

;I Values Displayed Results

99 -9.99 THE ANSWERS ARE 99 AND

-7 —-3.459 THE ANSWERS ARE -7 AND -3 .46

D *xErs
79 862 THE ANSWERS ARE 79 AN When you run the program, the following values are

displayed:

-84 64.7 THE ANSWERS ARE ** AND 64.70

i $ 233.45
b -147.95
: 8.40
o) 37.26
. : -51.30
85.20
.' L 464.00
I : $ 629.06 (total amount)

Cross Reference DISPLAY, PRINT, USING

Reference Section 2.-51

M 2-50 Reference Section
Ij
ti

INPUT (with keyboard)

The INPUT statement enables you to enter data from the
keyboard when you run a program.

‘

Format

Description

INPUT [input-prompt;] variable-tist [, input-prompt;
variable-list] [. .]

When INPUT is executed, program execution is suspended
until you enter data from the keyboard. The entered data is
assigned to a variable and execution resumes.

Input-prompt is a string expression that must be followed
by a semicolon. If a string constant is used, it must be
enclosed in quotes. Input-prompt is displayed beginning at
the current display position as left by pending input/output
staterments. If input-prompt is omitted, a question mark
followed by a space is used for the prompt.

Following the prompt, the flashing cursor is displayed. If the
resultant cursor position is greater than 31, the display is
cleared and the cursor position is set to column 1 prior to
displaying the prompt. When input-prompt is greater than
30 characters, it is truncated to 30 characters.

Variable-list is a list of variables separated by commas. The
variables may be numeric or string, subscripted or
unsubscripted. When more than one variable follows input-
prompt, the prompt is displayed for the first variable only.
Thereafter, the question mark prompt is used until another
input-prompt is encountered. Each value is assigned to the
corresponding variable name before the computer prompts
for the next value.

2.52 Reference Section

Descn'ptibn
{Continued)

When variable-list specifies numeric input, you can enter a
numeric constant or a numeric expression. The expression is
evaluated and the result is assigned to the variable. In string
entries, leading and trailing spaces are ignored. Thus, if a
string value includes commas, leading spaces, or trailing
spaces, you must enclose the string in quotes. Two
consecutive quotation marks within a quoted string become
a single quotation mark in the displayed string.

If an error occurs during data entry, a descriptive error
message is displayed. After the [ENTER] or [CLR] key is
pressed, the INPUT statement reprompts and the data can
be entered in the correct form.

When data is entered, the following validations are made.

» [f more than one value at a time is entered, the message
El at line number Syntaxisdisplayed and the data
must be reentered one item at a time.

» If a string constant is entered for a numeric variable, the
message E3 at lnernumber Mismatch is displayed
and a numeric value must be entered.

» If a number whose absolute value is greater than
9.99999999999999E + 127 is entered, the message
W25 at line number Overflowis displayed and the
value must be reentered.

» If a number whose absolute value is less than 1E- 128 is
entered, the value is replaced with 0 and no message is
displayed.

Note: When an INPUT statement is waiting for data, [CLRI
clears only the input field, [CTLI [t](home) and [CTLH -]
(back tab) move the cursor to the beginning of the input
field, and [CTL [~] has no effect.

Reference Section 2.53

i INPUT (with keyboard) (continued)

=

‘ 2:54

4]

Examples

Cross Reference

100 INPUT X

Causes the computer to display the question-mark prompt
and wait for an input value. When [ENTER] is pressed, the
entered value is stored in the variable X.

100 INPUT X8,Y,“ENTER Z";Z(A)

Causes the computer to display the question-mark prompt
and wait for an input value for X$. When [ENTER] is pressed,
the entered value is assigned to X$. The question-mark
prompt is again displayed and the computer waits for a
value to be entered for Y. Then ENTER Z is displayed and
the computer waits for an input value for Z(A). The
subsc(;'ipt is evaluated for Z{A) before the data value is
stored.

ACCEPT, INPUT (with files), LINPUT

Reference Section

M INPUT (with files)

The INPUT statement reads data from files that have been
opened in INPUT or UPDATE mode.

Format

Description

gﬁ:ﬂw\mw; R A e e

INPUT #file-number [, REC numeric-expression] ,
variable-list

The INPUT statement assigns information in a file to the
variables specified in variable-list. For INPUT to read a file,
it must be opened in INPUT or UPDATE mode.

File-number is a number from 0 through 255 that refers to
an open file or device. File number 0 refers to the keyboard
and display and is always open. See INPUT (with keyboard).
File-number is rounded to the nearest integer.

REC numeric-expression is used when file-number refers to
a RELATIVE record file. Numeric-expression specifies the
record to be read from the file. The first record of a file is
record zero. (Refer to individual peripheral manuals for
information about RELATIVE record files and the use of the
REC clause.} Note that relative files cannot be used with a
cassette recorder.

Variable-list is a list of variables separated by commas. The
variables may be numeric or string, subscripted or
unsubseripted. The data values in the current record are
assigned to the variables in the list. If the current record
does not contain enough data, another record is read.
Successive records are read until each variable is assigned a
value or the end-of-file is encountered.

When an INPUT statement terminates, any remaining data
values in the current record are ignored. The next INFUT

- statement that accesses the file reads another record.
However, when variable-list ends with a comma, the input
is left pending. That is, the remaining values in the current
record are maintained. The next INPUT statement that
accesses the file begins with the next available data value.

If pending input data exists when a PRINT, RESTORE, or
CLOSE statement accesses the file, the pending data is
discarded. If pending output data exists when an INFUT
statement is encountered, the pending data is output before
the INPUT statement is executed.

Reference Section 255

! INPUT (with files) (continued)

File Types

Examples

The computer interprets data differently when reading
DISPLAY and INTERNAL files.

DISPLAY-type data has the same form as data entered from
the keyboard. The values in each record are separated by
commas. Leading and trailing spaces are ignored unless they
are part of a string value enclosed in quotation marks.
Within a string value enclosed in quotes, two quotation
marks represent a single quotation mark. When the INPUT
statement encounters two adjacent commas, a null string is
assigned to the variable. Each item is verified to ensure that
numeric values are placed in numeric variables and string
values in string variables,

INTERNAL-type data is in binary format, the format used
internally during execution. Each value is preceded by its
length. The INPUT statemeni uses the lengths to separate
and assign the values to the variables. The only validation
performed by the INPUT statement is to assure that
numeric data is from 2 to 8 bytes long.

100 INPUT #1 X%
Stores in X$ the next value available in the file that was
opened as #1.

250 INPUT #23,X.A,LLS
Stores in X, A, and LL$ the next three values from the file
that was opened as #23.

320 INPUT #3.A,B,C,

Stores in A, B, and C the next three values from the file that
was opened as #3. The comma after C creates a pending
input condition.

J 256 Reference Section

iR riadil v

Examples
{Continued)

Cross Reference

The following program formats the medium in external
device number 2 (thereby destroying any data that was
previously on the medium), opens it in update m'ode, and
prints five values to the file MYFILE on the medium. The
values are then reread and displayed.

100 FORMAT 2

110 OPEN #1,72.MYFILE” , INTERNAL, UPDATE

120 FOR A=1 TO 5

130 READ DATAQUT

140 PRINT #1,DATAOUT

Lines 120 through 140 read five records from the DATA

statement and write them to file #1.

150 PRINT DATAOUT:* 1S WRITTEN TO FILE #1.":
PAUSE 1.5

160 NEXT A

170 RESTORE #1

18G¢ FOR B=1 TO 5

190 INPUT #1,DATAIN

200 PRINT DATAIN:"|S RECORD ¥".B:PAUSE 1.5

210 NEXT B

Lines 180 through 210 read the five records that were

written on file #1 and then display their values.

220 CLOSE #1, DELETE

Deletes the file.

230 DATA 15,30,72,36,94

CLOSE, INPUT (with keyboard), LINPUT, OPEN, PRINT,
RESTORE

Reterence Section 2-57

INT

The INT function converts a number into an integer.

Format INT(ruemeric-expression)

Description The INT function returns the largest integer less than or
: equal to numeric-expression.

Examples 250 P=INT{3.999999999})

Sets Pequal to 3.

470 DISPLAY AT(7),INT(¢4.0):PAUSE
Displays 4 in column 8.

610 K=INT(-3.0000001)
Sets K equal to — 4.

Reference Section

!
i
l 2.58

% 10 Subprogram

e

The 10 subprogram performs certain operations with peripherais
that are not built into TI-74 BASIC.

;" Format

Description

&
A

% Example

" Cross Reference

CALL IO (device,command] status-variable])

The IO subprogram addresses an external device to perform
a special control operation not available in TI-74 BASIC.
The control operations available with an external device
depend on the design of the device.

Proper use of this subprogram requires knowledge of
input/output (I/0) data structures and specific peripheral
capabilities. Chapter 3 provides information about I'Q
commands that are available with the PC-324 printer.

Device is the number associated with the external device
and can be from 1 through 255.

Command is a numeric code that specifies the operation to
be performed by the device.

Status-variable is a numeric variable in which information
regarding the result of the operation is stored. If no I'O error
occurred, status-variable is zero. If an I/0 error occurred,
status-variable contains the corresponding error code.

The inclusion of a status-variable affects the computer’s
response to the occurrence of an I/O error. If an I/0 error
oceurs when status-variable is included, no error message is
displayed and the error cannot be handled by ON ERROR. If
an error occurs when status-variable is omitted, the
message is displayed or the error can be handled by ON
ERROR.

140 CALL 10¢(1.1)
Closes device 1. (A command code of 1 is a CLOSE
operation.)

ON ERROR

Reference Section 2-59

KEY Subprogram

The KEY subprogram enables you to check whether or not a key
is being pressed. If a key is pressed, the KEY subprogram detects
which key itis.

The KEY$ function enters a one-character string during program
execution.

Format CALL KEY(return-variable,status variable) KEY$

Description The KEY subprogram scans the keyboard for input and E(l;; 115(EZ;:;;I C‘t;;%léllllilf program e)éecution gntij asingle
assigns the ASCII code of akey pressed to return-variable. pro continues i e?; ;i’elfre:lsﬁ I,(%}s}s;ution of the
Ifno key 15 presseq, return-tarioble is set equal to 265. See character string that comespon}criS to the keyr‘:;urlelrmssz:c‘r;l (;%r:;er
Appendix B for alist of the ASCII codes. to Appendix B for a list of the ASCII character codes.
The value assigned to status-variable represents the status . - . "
of the scan. A value of 0 means no key is pressed. A value of glLBl?riAaE Is pressed while KEYS$ is waiting for a response,
1 means a different key is pressed since the last time the oceurs as usual.
keyboard was scanned for input (e.g., since CALL KEY, The following program continues if Y is d and stops if
KEY$, INPUT, LINPUT, or ACCEPT was last executed), A : wing presse ops

] N is pressed.

value of — 1 means the same key is pressed.

Example The following program segment prompts twice for a key to 100 PRINT "Press Y to continue, N to stop”

be pressed. To determine that the responses are distinct, the
status-variable is compared to 1 (S<>1) in lines 520 and 560,

500 PRINT “MORE ENTRIES? (Y OR N)”

510 CALL KEY(K,KS)

520 IF S<>1 THEN 510

530 IF K=ASC(”Y") OR K=ASC("y") THEN 400
540 PRINT “"END SESSION? (Y OR N)*

550 CALL KEY(K,S)

%60 IF S<>1 THEN 550

570 IF K=ASC("Y”) OR K=ASC("y") THEN STOP

110 A$=KEY$

120 IF A$="Y" OR A$="y” THEN 140

130 IF A$="N* OR A$="n” THEN 150 ELSE 110
140 PRINT "Continue”:PAUSE 1.5 :GOTO 100
150 PRINT “Stop”:PAUSE

Reference Section 261

2-60 Reference Section

LEN

=

The LEN function returns a string’s length.

Format

Description

Examples

LEN({string-expression)

The LEN function returns the number of characters in
string-expression. A space counts as a character.

170 PRINT LEN(”ABCDE~"):PAUSE
Prints 5.

230 X=LEN(*THIS IS A SENTENCE.")
Sets X equal to 19.

540 X%="THIS IS A SENTENCE." :X=LEN(X$}
Sets X equal to 19.

910 DISPLAY LEN(”*"):PAUSE
Displays G.

2-62 Reference Section

The LET keyword can begin a statement that assigns values to
variables.

[LET) numeric-variable],numeric-variable . . .]
= RUMETriC-exXpression

[LET] string-variablel,string-variable. . .}

= string-expression
The LET statement assigns the value of an expression to the
specified variable(s). The computer evaluates the
expression on the right and places the result into the
variable(s) on the left.
The keyword LET is optional.

If you list more than one variable, they must be separated
with commas.

All subscripts on the left are evaluated before any
assignments are made.

110 LET T=4
Sets T equal to 4.

170 XY, Z=12 .4
Sets X, Y, and Z equal to 12.4.

200 A=3<5
Sets A equal to — 1 because it is true that 3 is less than 5.

350 L%.D$.B%S="B"
Sets L%, D$, and B$ equal to "B"".

Reference Section 2-863

LINPUT

.

The LINPUT statement assigns an input string or record o a
variable,

2.64

Formats

Description

Using LINPUT
with Files

LINPUT [éinput-prompt;|string-variable

LINPUT (#file-number.[REC numeric-expression, ||
string-variable

The LINPUT statement assigns a string, an entire input
record, or the remainder of a pending input record to
string-variable. Unlike INPUT, LINPUT performs no editing
on the input data. Thus, all characters including commas,
leading and trailing spaces, semicolons, and quotation marks
are placed into string-variable.

Input-prompt is a string expression that must be followed
by a semicolon. If a string constant is used, it must be
enclosed in quotes, Input-prompt is displayed beginning at
the current display position as left by pending input/output
staterents. If input-prompt is omitted, a question mark
followed by a space is used for the prompt.

Following the prompt, the flashing cursor is displayed. If the
resultant cursor position is greater than 31, the display is
cleared and the cursor position is set to column 1 prior to
displaying the prompt. When ¢nput-prompt is greater than
30 characters, it is truncated to 30 characters,

LINPUT can be used to read display-type data from a file or
a device. File-number is the number of an open file. If the

‘specified file has pending input, the remainder of the

pending record is read. The message E? Bad data is
displayed if the record or partial record is longer than 255
characters.

The optional REC clause may be used with devices that
support relative record (random access) files. Numeric-
expression specifies the record to be accessed. Refer to the
appropriate peripheral manual for more information
concerning relative files. Note that relative files cannot be
used with a cassette recorder.

Reference Section

300 LINPUT L%
Causes the computer to display the question-mark prompt
and store the entered data into L$.

470 LINPUT “NAME: “;NM$

Causes the computer to display NAME: and store the
entered data into NMS$.

470 LINPUT #3, PHONES$

Causes the computer to read a record from file #3 and assign
the record to PHONES.

INPUT, OPEN, CLOSE, PRINT, RESTORE

Reference Section 2.65

[

LIST

™

The LIST command enables you to view or print program lines.

Formats

Description

Examples

LIST [line-group]
LIST “*device-name’' [line-group)

The LIST command begins a program listing. If line-group is
not included, the entire program is listed. When line-group
is included, only those lines are listed. Line-group may
specify any of the following line ranges.

Line-group Eftect

100 Lists line 100 only.

100 - Lists line 100 and all following lines.

-300 Lists line 300 and all preceding lines.
100 - 300 Lists line numbers 100 through 300,

inclusive.

When device-nameis included, the lines are listed to the
spectfied device. If device-rame is omitted, the lines are
shown in the display. During 2 listing to the display, the

lines may be edited.

To suspend a listing to a device, press and hold any key until
the listing stops. Pressing the key again resumes the listing.
Pressing [BREAK] terminates the listing to the display or a

. device. Pressing [t] terminates only a listing to the display.

LIST 100-200
Lists all lines from 100 through 200 to the display.

LIST "12*
Lists the entire program to peripheral device 12 (a
compatible printer).

LIST *"50.R=C", -200
Lists all lines up to and including line 200 to device 50.

2-66 Reference Section

The LN function computes an expression’s natural logarithm.

$Pross Reference

LN(rumeric-expression)

The LN function returns the natural logarithm of rumeric-
expression. Numeric-expression must be greater than zero
or the error message E23 Bad argument is displayed.

The LN function is the inverse of the EXP function.

710 PRINT LN{(3.4):PAUSE
Prints the natural logarithm of 3.4, whichis 1.223775432.

850 X=LN(EXP(2.7))

Sets X equal to the natural logarithm of e raised to the 2.7
power, which equals 2.7.

910 S=LN(SQR(T))

Sets S equal to the natural logarithm of the square root of
the value of T.

EXP, LOG

Reference Section 2-67

LOG
The LOG function computes an expression’s common logarithm, The NEW command prepares the computer for a new program by
deleting the program and variables currently in memory.
Format LOG(numeric-expression) NEW
- . . NEW ALL
Description The LOG function returns the common logarithm of
numeric-expression. Numeric-expression must be greater The NEW command closes any open files and then deletes
than zero or the error message E23 Bad argument is the program and variables currently in memory.
displayed.
The NEW ALL command performs the following
Examples 150 PRINT LOG(3.4):PAUSE

R . Lo operations:
Prints the commeon logarithm of 3.4, which is . 531478917,

» Deletes the current pro, and variables in memory.
230 S=LOG(SQR(T)) program
Sets S equal to the common logarithm of the square root of

» (Closes any open files.
the value of T. S any Opel

Cl -assigned strings.
Cross Reference LN > ears user-assigned strings

» Cancels any expansion of memory implemented by
CALL ADDMEM.

» Sets the angle units to radians.

2.68 Reference Section Reference Section 2-69

NEXT

=

The NEXT statement is used in conjunction with a FOR TO STEP
statement to form a loop.

Format

Description
|

Exampie

Cross Reference

2.70

NEXT [control-variable]

The NEXT statement increments a control-variable during
the execution of a FOR/NEXT loop. NEXT also sends
execution back to its corresponding FOR TO STEP
statement unless control-variable is exceeded. A loop that
begins with FOR TO STEP must end with NEXT.

If comtrol-variable is included, it must be the same as
control-variable in the FOR TO STEP statement. If control-
variable is omitted, NEXT is paired with the most recent
unmatched FOR TO STEP statement. It is good
programming practice to include control-variable.

Wh(_an FOR/NEXT loops are nested, the NEXT statement for
the inside loop must appear before the NEXT statement for
the outside loop.

See FOR TO STEP for a description of the looping process.

The program below illustrates a use of the NEXT statement.
The values printed are 30 and -2.

100 TOTAL=0
110 FOR COUNT=10 TO O STEP -2
120 TOTAL=TOTAL+COUNT

130 NEXT COUNT

140 PRINT TOTAL ; COUNT : PAUSE

FORTO STEP

Reference Section

The NUMBER (or NUM) command causes automatic line
numbering during the entry of program lines.

Rl

Cross Reference

NUMBER [initial-line] [,increment]

The NUMBER (or NUM) command generates sequenced line
numbers. A line number is displayed with a trailing space
for convenience in entering a program line. After you type a
line and press [ENTER), the line is stored in memory and the
next line number is displayed.

If initial-tine and increment are not specified, the line
numbers start at 100 and increase in increments of 10,
Otherwise, lines are numbered according to the énitial-line
and increment specified. If a generated line number
specifies a line that already exists, that line is displayed and
may then be replaced or changed using the edit functions. If
a generated line number is altered, the sequence of line
numbers continues from the new line number.

To terminate the numbering process, press [ENTER] when a
line comes up with no statements on it, or press [BREAK]

when any line is displayed.

NUM 110
Instructs the computer to number starting at 110 with
increments of 10.

NUM 105,5
Instructs the computer to number starting at line 105 with
increments of 5.

RENUMBER

Reference Section 2.71

NUMERIC

_The NL!MERIC function tests whether or not a string expression
is a valid representation of a numeric constant. This test enables

you to prevent VAL from using an invalid representation of a
namber,

Format

Description

Example

Cross Reference

272

NUMERICstring-expression)

Th(? NUMERIC function returns a value of — 1 (true) if
sm.ng-emession is a valid numeric constant, and 0 (false) if
string-expression is not a valid numeric constant.

Leading and trailing blanks in string-expression are ignored.
NUMERIC can be used to determine if the VAL function can
work correctly on a string meant to represent a number.

The following program segment determines if an entry from
the keyboard is a valid representation of a numeric
constant. If not, an error message is displayed until data is
reentered. If the data can be represented as a numeric
constant, its numeric value is stored in variable A.

100 LINPUT “ENTER VALUE: ”;A$

110 |F NOT NUMERIC(A$) THEN LINPUT "ERROR,
REENTER: *;A$:GOTO 110

120 A=VAL(A%)

VAL

Reference Section

The OLD command loads a program from an extemnal device into
memory.

Format

Description

Examples

*

: Cross Reference

OLD *‘device. file-name"”

The OLD command closes all open files, removes the
program currently in memory, and loads a stored program.
A BASIC program can be stored on dewvice. file-name with
the SAVE command.

Device. file-name identifies the device where the program is
stored and the name of the file. Device is the number
associated with the physical device and can be from 1
through 255. File-name identifies the particular file. Refer
to a peripheral manual for the device code for that
peripheral device and for specific information about the
form of file-name. Refer to Chapter 3 for information about
using a cassette recorder.

Note: You cannot retrieve information from a cartridge
with the OLD command. Also, you cannot load a data file
with the OLD command. If file-name specifies a data file
rather than a program file, it may be necessary to press the
[RESET] key.

OLD "2 .PROGRAM1”
Loads the file PROGRAM] into the computer’s memory
from peripheral device 2.

oLD 1.~

Loads the next file into the computer's memory from
peripheral device 1, the cassette recorder. If the next file is
not a program file, the TI-74 displays an error.

GET, INPUT (with files), PUT, SAVE, VERIFY

Reference Section 2.73

ON BREAK

The ON BREAK statement determines the action taken when a
breakpoint occurs.

Formats

Description

ON BREAK STOP
ON BREAK NEXT
ON BREAK ERROR

The ON BREAK statement sets the computer to respond to
a breakpoint according to the option selected.

» ON BREAK STOP selects the normal function of BREAK,
which is to halt program execution and display the
standard breakpeint message. The RUN command also
selects this function of breakpoints.

* ON BREAK NEXT causes breakpoints to be ignored.
When a breakpoint that immediately precedes a line
number is encountered, the breakpoint is ignored and
the program line is executed. The [BREAK] key is also
ignored. However, a BREAK statement that does not
contain a line-number-list halts the program even
though ON BREAK NEXT is in effect. ON BREAK NEXT
can be used to ignore breakpoints that you have

specified in a program for debugging purposes.

Note: Because the [BREAK] key is ignored, the [RESET]
key must be pressed to stop a program that does not stop
normally.

* ON BREAK ERROR causes breakpoints to be treated as
- errors, thus allowing the ON ERROR statement to
process breakpoints. See ON ERROR for more
information.

The ON BREAK statement remains in effect until another
ON BREAK statement changes it. When a subprogram ends,
the ON BREAK status in effect when the subprogram was
called is again in effect.

2-74 Reference Section

Bross Reference

The program below illustrates the use of ON BREAK. When
the message W29 at 120 Break is displayed, resume
execution with the CON command,

100 BREAK 140

Sets a breakpoint in line 140.

110 ON BREAK NEXT

Sets breakpoint handling to ignore breakpoints.

120 BREAK

A breakpoint occurs in line 120 in spite of line 110. Press
[CLR], type CON, and press [ENTERL.

130 FOR A=1 TO 500

140 PRINT “(BREAK) 1S DISABLED”

150 NEXT A

The IBREAK] key does not work while lines 130 through 150
are being executed.

160 ON BREAK STOP

Restores the normal use of [BREAK].

170 FOR A=1 TO 50

180 PRINT ”"NOW (BREAK) WORKS”

190 NEXT A

The IBREAK] key again works while lines 170 through 190
are being executed.

BREAK, ON ERROR

Reference Section 2:75

ON ERROR

The ON ERROR statement determines the action taken when an
error occurs during the execution of a program.

Formats

Description

ON ERROR STOP
ON ERROR line-number

After the ON ERROR statement is executed, any errors that
oceur are handled according to the option selected.

» The ON ERROR STOP statement selects the normal way
of handling errors, which is to halt program execution
and print a descriptive error message. The RUN
command also selects this way of handling errors.

» The ON ERROR line-rumber statement transfers contro!
to the specified line when an error occurs. Line-numbeyr
must be the beginning of an error-processing subroutine.
Once an error has occurred and control has been
transferred, error handling reverts to ON ERROR STOP.
If the ON BREAX ERROR option was selected, it is
changed to ON BREAK NEXT. For an error-processing
subroutine to handle any new errors, an ON ERROR line-

number must be executed again.

The ON ERROR statement remains in effect until another
ON ERROR statement changes it. If a subprogram ends, and
no errars occurred while the subprogram was executing, the
ON ERROR status in effect when the subprogram was called
is again in effect. If an error occurred in a subprogram, any
changes in the error-handling status made by the error
handler is in effect when the subprogram ends.

The main program and subprograms can share the same
error-processing subroutine, which is called by means of the
line-number in the ON ERROR statment. The main program
and subprograms cannot share subroutines called by

GOSUB.

2:76 Reference Section

Example

Cross Reference

The program below illustrates the use of ON ERROR.

100 ON ERROR 150

Causes any error to pass control to line 150.

110 X$="A"

120 X=VAL(X$)

Causes an error.

130 PRINT X;”SQUARED 15" :X*X:PAl

140 STOP TPASE 2

150 REM ERROR SUBROUTINE

160 ON ERROR 220

Causes the next error to pass control to li

to line 220.

170 CA.LL ERR(CODE, TYPE ,FILE, LINE)
Determines the error using CALL ERR.

%?O IfF LINE<>120 THEN RETURN 220

ansiers control to line 220 if the error i i

et pont 1s not in the
190 IF CODE<>23 THEN RETURN 220

Transfers control to line 220 if the error is not the one
expected.

200 X$="5"

Changes the value of X$ to an acce

: eptab)
210 RETURN prable value.
Returns control to the line in which th
e erro
220 REM UNKNOWN ERROR roceured
230 PRINT "ERROR”;CODE:" |N LINE"
; : i LINE : PAUSE

Reports the nature of the unexpected error and the
program stops.

ON BREAK, ON WARNING, RETURN (with ON ERROR)

Reference Section 2.77

ON GOSuB

The ON GOSUB statement sends execution to a choice of
subroutines.

Format

Description

Examples

Cross Reference

JL 2-78

ON numeric-expression GOSUB line-number!
[,line-number?] [, . . .]

The ON GOSUB statement determines which subroutine to
execute by evaluating numeric-expression.

» If the value of numeric-expression is 1, the subroutine
starting at line-numberl is executed; if 2, the subroutine
starting at line-number2 is executed, and so forth,

» [f numeric-expression is a non-integer, it is rounded.

v If mumeric-expression is zero, negative, or larger than
the list of line numbers, the error message E4 Bad
value is displayed.

Each line number raust be the first statement of a
subroutine. After the RETURN statement of the subroutine
is executed, control returns to the statement following ON
GOSUB. ON GOSUB may not be used to transfer control into

or out of a subprogram.

140 ON X GOSUB 1000, 2000,300
Transfers control to 1000 if X is 1, 2000 if X is 2, and 300if X

is3.

240 ON P-4 GOSUB 200,250,300.800,170
Transfers control to 200 if P—4is 1 (Pis5), 250if P-4 1is 2,
3001fP—4is3, R00ifP-4is4, and 170if P-41s5.

GOSUB, RETURN (with GOSUB)

Reference Section

w

~ ONGOTO

TI:le ON GOTO statement sends execution to a choice of lines
within a program.

Format

Description

Examples

Cross Reference

ON numeric-expression GOTO line-number]
[[line-numberl] [, ...

The ON GOTO statement determines where to transfer
control by evaluating numeric-expression.

» If the value of numeric-expression is 1, control is
transferred to line-numberl if 2, control is transferred
to line-number?, and so forth.

» If numeric-expression is a non-integer, it is rounded.

» If nu_merz’c_—ea,;m"es.s"wn is zero, negative, or greater than
the list of line numbers, the error message E4 Bad
value is displayed.

ON GOTO may not be used to transfer control into or out of
a subprogram.

130 ON X GOTO 1000,2000,300

Transfers control to 1000if X is 1, 2000if X is 2, and 300 if X
is 3.

210 ON P-4 GOTO 200,250,300,800,170

’I‘rar}sfers control to 200 P-4is 1 (Pis 5), 250 if P-4 is 2,
300ifP-4is3, 800ifP-4is4,and 170if P-4 is 5.

GOTO

Reference Section 2.79

___—

ON WARNING

The ON WARNING statement determines the effect a waming
has during program execution.

Formats

Description

ON WARNING PRINT
ON WARNING NEXT
ON WARNING ERROR

The ON WARNING statement sets the computer to respond
to a warhing according to the option selected.

» ON WARNING PRINT selects the normal use of
warnings, which is to print a descriptive warning
message and continue program execution after the
[ENTERI or ICLR] key is pressed. The RUN command also
selects this option of ON WARNING.

» ON WARNING NEXT causes the program to continue
execution without printing any message.

» (ON WARNING ERROR causes the occurrence of a
warning to be treated as an error, thus allowing the ON
ERROR statement to process warnings.

The ON WARNING statement remains in effect until
another ON WARNING statement changes it. When a
subprogram ends, the ON WARNING status in effect when
the subprogram was called is again in effect.

2.80 Reference Section

Example

.. Cross Reference

The program below illustrates the use of ON WARNING.

100 ON WARNING NEXT

Sets warning handling to go to the next statement.

110 PRINT 110,5/0:PAUSE

Prints the result without any message.

120 ON WARNING PRINT

Sets warning handling to the normal optionr, which is to
print a message and enable execution to continue when a
warning occurs.

130 PRINT 130,5/0:PAUSE

Prints the warning. When [ENTER] or [CLR] is pressed,
prints 130 followed by the value of 5/0.

140 ON WARNING ERROR

Sets warning handling to treat warnings as errors.

150 PRINT 150,5/0:PAUSE

Prints the warning message and treats the warning as an
error. Program execution stops.

Note: When you clear the error condition, the display is
cleared. However, you can press [SHIFTI[PB] to see the
printed value 150.

ON ERROR

Reference Section 2.81

OPEN

The OPEN statemeant sets up a link to a peripheral device for the
purpose of transfermring data.

Format

Description

OPEN #file-number, device. file-name”’ [jibe-myanizaiion]
[file-type) [record-length] [,open-mode]

The OPEN statement enables 2 BASIC program to use data
files and peripheral devices by providing a link between
Sfile-mumber and a file or device. In setting up this link, the
OPEN statement specifies how the file or device can be
used (for input or output) and how the file is organized. -

The OPEN statement must be executed before any BASIC
statement in a program attempts to use a file or device
requiring a file number. If an OPEN statement references a
file that already exists, the file-organization, file-type, and
record-length attributes in the OPEN statement must be the
same as those attributes of the file. If an OPEN statement
references a file that is already open, an error occurs.

File-number is a number from 1 through 255 that the OPEN
statement associates with a file or device. This file-nmember
is used by all the input/output statements that access the
file or device. File-number is rounded to the nearest
integer. File number 0 is the keyboard and display of the
computer. It cannot be used for other files and is always

open.

Device. file-name is an actual peripheral device number and
other device-dependent information. Device. file-name may
be a string expression, Device is the number associated with
the physical device and can be from 1 through 255. File-
name supplies information to the peripheral device for the
OPEN statement. For example, with an external storage
device, file-rrme specifies the name of the file. With other
devices, file-name specifies options such as parity, data
rate, etc. Refer to the peripheral manuals for the device
code for each peripheral device and for specific information
about the form of file-name.

2.82 Reference Section

File Attributes

The file attributes listed below may be in any order or may
be omitted. If an attribute is omitted, defaults are used.

File-organization specifies either a sequential or relative
(random access) file. Records in a sequential file are read or
written in sequence from beginning to end. Recordsin a
RELATIVE (or random access) file can be read or written in
any record order, including sequentially. The default file-
organization is sequential; therefore, omit file-
organization to indicate sequential files, or specify
RELATIVE for random-access files.

File-type may be either DISPLAY or INTERNAL. DISPLAY
specifies that the data is written in ASCII format.
INTERNAL specifies that the data is written in binary
format. Binary records take up less space, are processed
more quickly by the computer, and are more efficient for
recording data on external storage devices. However, if the
information is going to be printed or displayed for people to
read, DISPLAY format should be used. If file-type is
omitted, DISPLAY is assumed.

Record-length consists of the word VARIABLE followed by
a numeric expression that specifies the maximum record
length for the file. The maximum record length is
dependent on the device used. If record-tength is omitted,
the peripheral device specifies a default record length.

Open-mode instructs the computer to process the file in
UPDATE, INPUT, OUTPUT, or APPEND mode. UPDATE
specifies that data may be both read from and written to the
file. INPUT specifies that data may only be read from the
file. QUTPUT specifies that data may only be written to the
file. APPEND specifies that data may only be written at the
end of the file. If open-mode is omitted, UPDATE is
assumed.

Note that if a file already exists on external storage,

specifying OUTPUT mode results in new data being written
over the existing data.

Reference Section 2.83

b

i OPEN (Continued)

Opening Files to
a Cassetie Tape
Recorder

Examples

Cross Reference

The cassette interface is designated as device 1 in an OPEN
statement. The attributes for a cassette recorder file are as
follows.,

» Files must be sequential.

» The default record length is 256 bytes.

» Files must have an open-mode of INPUT or QUTPUT.
» Files must be DISPLAY file-type.

Note that you cannot use the RESTORE or DELETE
commands, the UPDATE or APPEND open-maode, or
INTERNAL file-type with files on a cassette recorder.

Refer to Chapter 3 for instructions on using a cassette
recorder for storage and retrieval of files.

100 OPEN #23,72.X", INTERNAL,UPDATE

Opens the file named “'X"' on peripheral device 2 and
enables any input/output statement to access the file by
using the number 23. The type of the file is INTERNAL.
Because the file is opened in UPDATE mode, data can be
both read from and written to the file.

150 OPEN #243,A3&" .ABC”, INTERNAL

if A$ equals ‘2", opens a file on device 2 with a name of
ABC. The file type is INTERNAL, UPDATE mode is
assumed, and the device specifies the default record length.

200 OPEN #1,71 DATALl" DISPLAY,OUTPUT

Opens the file named 'DATA1" on a cassette recorder. The
type of the file is DISPLAY. Because the file is opened in
OUTPUT mode, data can only be written to the file.

CLOSE, DELETE, INPUT, LINPUT, PRINT, RESTORE

2:.84 Reference Section

The PAUSE statement allows displayed information to stay in the
display by suspending program execution either for a fixed
duration or indefinitely.

1 f: Formats

3 & Description

PAUSE numeric-expression
PAUSE
PAUSE ALL

The PAUSE statement suspends program execution either
for a specified number of seconds or until the [CLR] or
[ENTER] key is pressed. The three forms of the PAUSE
statement are described below.

» PAUSE numericexpression suspends program
execution for the number of seconds represented by the
absolute value of numeric-expression. If numeric-
expression is positive, the timed pause can be overridden
by pressing the [ENTER] or [CLRI key. If mumeric-
expression is negative, the timed pause can only be
overridden by pressing the [BREAK] key.

A timed pause is performed in tenths of a second. If
numeric-expression is less than .1, the program does not
pause. During a timed pause, the cursor is not displayed
and the display cannot be scrolled.

» PAUSE (without numeric-expression or ALL) performs
an indefinite pause. The underline cursor is displayed in
column one to indicate an indefinite pause is occcurting.
The cursor control keys can then be used to view the
contents of the 80-column line. Execution continues
when either [ENTER] or [CLR) is pressed. '

» The PAUSE ALL statement suspends program execution
each time a complete output line is sent to the display.
Execution continues when [CLR] or [ENTER] is pressed.
PAUSE ALL remains in effect until a timed PAUSE of
length zero is executed.

PAUSE ALL remains in effect when a subprogram is
called. If the subprogram includes a PAUSE (statement,
PAUSE ALL is again in effect when the subprogram
ends.

Reference Section 2.85

PAUSE (continued)

Pl represents the numeric constant r, the ratio of a circle’s
circumference to its diameter.

Examples 120 PAUSE 2.2 Format Pl
L{alt§ executl(;)n for 2.2 seconds or until the [CLA] or [ENTERI Description The PI function returns the value of m accurate to 13 digits,
ey Ispressed. 3.141592653590.
190 PAUSE

Example 130 VOLUME=4/3*PI*R ~3) . _
Sets VOLUME equal to four-thirds times PI times phe radius
cubed, which is the volume of a sphere with a radius of R.

Halts execution until the [CLR] or [ENTER] key is pressed.

The following program changes degrees Fahrenheit to
degrees Celsius.

160 PRINT “ENTER DEG: *;

Prints the prompt ENTER DEG: . The pending print,

created by the semicolon at the end of the PRINT

statement, causes the prompt to be displayed until data is

entered.

110 ACCEPT DG

120 PRINT DG; "DEG =", {DG-32)*5/9; "DEGREES C":
PAUSE

Prints the answer. The PAUSE statement that follows the

PRINT statement causes the answer to be displayed until

the [ENTER] or I[CLR] key is pressed.

130 GOTO 100

The following program demonstrates the effect of PAUSE
ALL.

100 PAUSE ALL

110 PRINT “FIRST PAUSE”:PAUSE 1.1

Displays FIRST PAUSE until the [ENTER] or [CLR] key is
pressed. Note that the timed pause is performed after you
press [ENTER} or [CLR].

120° PRINT “SECOND PAUSE"

Displays SECOND PAUSE until the [ENTER] or [CLR} key is
pressed,

130 PAUSE O:PRINT "THIRD PAUSE” :PAUSE .9
Cancels the automatic pause and displays THIRD PAUSE for
approximately .9 seconds.

Cross Reference DISPLAY, PRINT

Reference Section 2-87

2:86 Reference Section

POS
The POS function computes the starting position of a string
contained within another string.

Format POS{string1, string2, numeric-expression)

Description The POS function returns the starting position of the first
occurrence of string2in stringl. The search begins at the
position specified by numeric-expression. If no match is
found, the function returns a value of zero.

Examples 110 X=POS({"PAN”, K “A" 1)

Sets X equal to 2 because A is the second letter in PAN.,

140 Y=POS("APAN”, *A" 2)
Sets Y equal to 3 because the A in the third pesition in

APAN is the first occurrence of A in the portion of APAN
that was searched.

170 Z=POS("PAN" A" 3)
Sets Z equal to 0 because A was not in the part of PAN that
was searched,

290 R=POS{"PABNAN" *AN" 1)
Se't.s R equal to 5 because the first occurence of AN starts
with the A in the fifth position in PABNAN.

2-88 Reterence Section

 PRINT (with display)

This version of the PRINT statement places information in the
display.

§ Formats

4§ Description

Print lfems

PRINT [{USING line-number,] [print-tist]
PRINT {USING string-expression,] [print-list]

The PRINT statement is used to format and write data to
the display with the following options.

» USING—may be used to specify an exact format for the
items in print-list. Refer to IMAGE and USING for a
description of format definition and its effect on the
cutput of the PRINT statement.

» Print-list—consists of print items and print separators. A
print item can be a numeric expression, a string
expression, or a TAB function. A print separator can be a
comma or a semicolon, which determines the position of
the next print item in the display. If print-list is omitted,
the PRINT statement clears the display.

When a PRINT statement is executed, the values of the
expressions in print-list are displayed in order from left to
right in the positions determined by the print separators and
TAB functions.

» A string expression is evaluated to produce a string
result. A string constant must be enclosed in quotation
marks. Blank spaces are not inserted before or after a
string. To print a blank space before or after a string,
include it in the string or insert it separately with quotes.

» A numeric expression is evaluated and displayed with a
trailing space. Positive values are printed with a leading
space (instead of a plus sign), and negative numbers are
printed with a leading minus sign.

» The TAB function specifies the starting position for the
next item in print-list. See TAB for more information.

Reference Section 2-89

PRINT (with display) (continued)

Y

Print Items
{Continued)

Print Separators

Pending Print

Conditions

If a print item is longer than the remainder of the current
line, the line is cleared and the print item is displayed
starting in column 1. If a numeric print item fits on the
current line without its trailing space, it is printed on the
current line. If a print item is longer than 80 characters, you
can only view the information by including a PAUSE ALL
statement prior to the ouput line. You can then view the
print item one line at a time, pressing [ENTER] or {CLR] to
display the next segment.

You must place at least one separator between adjacent
print items. Multiple print separators in a PRINT statement
are evaluated from left to right.

» The semicolon prints the next item in the print-fist
immediately after the last print item, with no extra
spaces between the values.

» The comma prints the next print item at the beginning of
the next print field. The first five print fields are 15
characters long, beginning in columns 1, 16, 31, 46, and
61. The last print field begins in column 76, completing
the 80-column line. If the current column position is past
the start of the last print field, the comma clears the line
and displays the next printed item starting at column 1.

Using a comma or a semicolon after pring-list creates a
pending print condition. A pending print condition allows
information from a subsequent input/output statement to
be printed on the current line. If a comma ends the PRINT
statement, the computer spaces over to the start of the next
field for the next print item. If a semicolon ends the
statement, the computer starts the next print item at the
next position unless the subsequent input/output statement
changes the position.

2.90 Reference Section

anding Print
B Conditions
IContinued)

29

2% Numeric Formats

A pending print condition can be used to create an input
prompt for the ACCEPT, INPUT (with display), or LINP{UT
staternent. The next INPUT or LINPUT statement places its
prompt after the pending print item. See ACCEPT, INPUT
(with display), and LINPUT for more information.

If print-list is not followed by a comma or a sersicolon, the
line is cleared when a subsequent input/output statement is
executed. Therefore, the print items of the next
input/output statement begin in column 1.

Numbers are printed in either normal decimal form or
scientific notation. Scientific notation is used for very small
or very large numbers,

When a number is printed in normal decimal form, the
following conventions are observed.

» Integers are printed without a decimal point.

» Non-integers are printed with a decimal point. Trailing
zeros in the fractional part are omitted. If the number
has more than ten significant digits, the value is rounded
to ten digits.

*» A number whose absolute value is less than one is
printed without a zero to the left of the decimal point.

A number printed in scientific notation is in the following
form.

mantissa E exponent

Reference Section 2-91

PRINT (with display) (Continued)

PRINT (with files)

Numeric Formats
{Continued)

Examples

Cross Reference

When a number is printed in scientific notation, the
following conventions are observed.

» The mantissa is printed with seven or fewer digits with
one digit always to the left of the decimal.

» Trailing zeros are omitted in the fractional part of the
mantissa.

» The exponent is displayed with a plus or minus sign
followed by a two- or three-digit exponent.

» When the exponent is two digits, the mantissq IS limited
to seven digits. When the exponent is three digits, the
mantissa is limited to six digits. When necessary, the

mantissa is rounded to the appropriate number of digits.

100 PRINT
Prints a blank line.

210 PRINT "THE ANSWER iS”; ANSWER:PAUSE
Prints THE ANSWER | S immediately followed by the value
of ANSWER.

320 PRINT X.Y/2:PAUSE
Prints the value of X and in the next field the value of Y/2.

450 PRINT “NAME: *;
460 ACCEPT N$
Prints NAME : and accepts the entry after the prompt.

ACCEPT, DISPLAY, IMAGE, INPUT, LINPUT, PAUSE,
TAB, USING '

2-92 Reference Section

The PRINT statement is used with files to send datato afile ora
device.

PRINT #file-raumber{, REC numeric-expression)
[,USING line-number] [, print-list]

PRINT #file-number[,REC numeric-expression]
[,USING string-expression) ,print-list)

The PRINT statement may be used to format and write data
to a file or device.

File-muember is a number from 0 through 255 that refers to
an open file or device. The file must have been opened in
OUTPUT, UPDATE, or APPEND mode. File-number 0
refers to the display, which is always open. File-number is
rounded to the nearest integer.

The following options may be used in the PRINT statement.

» REC numeric-expression—may be included only when
Jile-number refers to a RELATIVE record file. Refer to
the peripheral manuals for information about
RELATIVE record files and the proper use of REC.

Numeric-expression is evaluated to designate the
specific record number of the file to which to write.

> 1SING—specifies an exact format for a DISPLAY-type
file. Refer to the IMAGE and USING sections for a
description of format definition and its effect upon the
PRINT statement. Including USING in a reference to an
INTERNAL-type data file results in an error.

* Print-list—consists of print items and print separators.
Print items are numeric and string expressions and TAB
functions. Print separators are commas or semicolons
that indicate the position of print items in the record.

Print-list is interpreted in order from left to right. The
form of the output depends upon the type {DISPLAY or
INTERNAL) of the file or device. See OPEN fora
description of file-type.

Reference Section 2-93

i

PRINT (with files) (Continued)

-~

Options
(Continued)

DISPLAY-type
Files

When prind-list is omitted and there isno pending
record, the result depends upon the file type. If the file is
DISPLAY-type, the PRINT statement writes a blank (zero
length) record. If the file is INTERNAL-type, an error
occurs because INTERNAL-type files do not support zero
length records.

During execution of a PRINT statement that referstoa
DISPLAY-type file, print-listis evaluated as follows.

» String expressions are evaluated to produce a string
result. String constants must be enclosed in quotation
marks. Blank spaces are not inserted before or after a
string. To print a blank space before or after a string,
include it in the string or insert it separately with quotes.

» Numeric expressions are evaluated and displayed with a
trailing space. Positive values are printed with a leading
space (instead of a plus sign) and negative numbers are
printed with a leading minus sign.

» The TAB function specifies the starting position in the
record for the next iter in print-fist. See TAB for more
information.

You must place at least one print separator between
adjacent print items. Multiple print separators in a PRINT
statement are evaluated from left to right.

» The semicolon writes the next item in the print-list
immediately after the last print itern, with no extra
spaces between the values.

» The comuma writes the next print item at the beginning of
the next print field. The print fields are 15 characters
long and are located at columns 1, 16, 31, and so forth. if
the current colurn position is past the start of the last
print field, the comma causes the next printed item to be
printed in the next record.

2.94 Reference Section

If a print item is longer than the remainder of the current
record, the current record is written without that item, and
the print item is written at the start of the next record. Ifa
numeric print item fits in the current record without its
trailing space, it is written in the current record. If a print
item is longer than the record length, it is divided into
segments that are the length of the record until the last
segment is the length of the record or less. The segments are
then written in successive records.

During execution of a PRINT statement that refers to an
INTERNAL-type file or device, print-list is evaluated as
follows,

» String expressions are evaluated and written in the
record in internal string representation.

» Numeric expressions are evaluated and written in the
record in intermal numeric representation.

» The TAB function causes an error.

You must place at least one print separator between
adjacent print items. Multiple print separatorsin a PRINT
statement are evaluated from left to right.

» The semicolon writes the next print iterm immediately
after the last print item, with no extra spaces between
the values.

» The comma functions exactly the same as the semicolon
separator.

If a print item is longer than the remainder of the current
record, the current record is written without that item, and
the print item is written at the start of the next record. If a
print item is longer than the record length, an error occurs.

Reference Section 2.95

PRINT (with files) (Continued)

Pending Print
Conditions

2-96

Using a corama or a semicolon after print-list creates a
pending print condition. If the print-list ends with a comma
or semicolon, the current record is not written. If a comma
ended the PRINT statement, the computer advances to the
start of the next field. If a semicolon ended the statement,
the next output statement that accesses this file writes data
on this same record, beginning at the current position unless
the statement changes the position.

When print-list is omitted and there is a pending output
record, the PRINT statement writes the pending record.

If print-list ends without a comma or a semicolon, the
record is immediately written to the file. The next
input/output statement that accesses the file begins a new
record.

Reference Section

4 Cross Reference

150PRINT #32 ,A.B,C,

Causes the values of A, B, and C te be written to the next
record of the file that was opened as number 32. The final
comma creates a pending print condition. The next PRINT
statement accessing file #32 is written to the same record as
this PRINT statement.

The program below writes data to a file.

100 OPEN #5,71 _WYPROG” ,DISPLAY,QUTPUT
Opens file number 5. MYPROG is created on the cassette
tape in the recorder.

110 DIM A(50)

Dimensions an array for 51 values.

120 B=0

Initializes the summation variable.

130 FOR J=0C TO 50

Lines 130 through 180 facilitate data input.

140 PRINT *ENTER VALUE”;

150 ACCEPT A(J)

160 B=B+A(J)

170 PRINT 45, A(J):

Value of A(J)is written to the file.

180 NEXT J

190 PRINT #5,B

Value of summation variable is written to the the file.
200 CLOSE #5

IMAGE, INPUT (with files}, OPEN, TAB, USING

Reference Section 2.97

PUT Subprogram

»

——

The PUT subprogram sends the contents of system memory o a
RAM cartridge.

The RAD statement sets the units of angle calculations to
radians.

Format

Description

Examples

Cross Reference

2-98

CALL PUT (image-number)

The PUT subprogram stores a copy of the system RAM
image in an 8K Constant Memory cartridge. The term
“image’’ applies to all contents of the 8K system RAM,
including program lines, variables, and unused space.

The image-number can be 1 or — 1. The 1 causes the
memory image to be copied inte the cartridge and the -1
causes an exchange of memory images. This option enables
you to store the program from memory while retrieving a

cartridge program.

As the cartridge contents are exchanged with memory, the
computer checks to see that the cartridge contains an image
of system memory. If not, the computer returns an error

message.

CALL PUT(1)
Copies the system RAM image into the cartridge.

CALL PUT(-1}
Exchanges the cartridge image with the system RAM.

GET, ADDMEM

Reference Section

[Pross Reference

RAD
The RAD statement sets the angle units to radians until you:

» Enter DEG or RAD as a command or statement to change
the units.

» Change the angle setting in CALC mode.

Entering the NEW ALL command or initializing the system
automatically sets the angle units to RAD.

100 RAD
Selects the RAD angle setting.

200 RAD:PRINT COS(PI/2):PAUSE
Prints O (the cosine of w/2 radians).

DEG, GRAD

Reference Section 2-99

RANDOMIZE

The RANDOMIZE statement randomizes the sequence of random
numbers generated by the RND function.

N

Format

Description

Cross Reference

2-100

RANDOMIZE [rumeric-expression)

The RANDOMIZE statement sets the random number
generator to an unpredictable sequence.

If RANDOMIZE is followed by numeric-expression, the
same sequence of random numbers is produced each time
the statement is executed with that value. Different values
produce different sequences.

The program below accepts a value for numeric-expression
and prints the first 10 random numbers obtained using the
RND function. Press IBREAK] to stop the program.

10¢ INPUT "SEED: *;8

110 RANDOM!IZE S

120 FOR A=1 TO 10:PRINT A;RND:PAUSE 1.1
130 NEXT A

140 GOTO 100

RND

Reference Section

The READ statement is used with the DATA statement to assign
values to variables.

pss Reference

READ variable-list

The READ statement assigns a constant listed in a DATA
statement to the corresponding variable in variable-list.

Variable-list consists of string and numeric variables, either
subscripted or unsubscripted, separated by commas. The
value from the DATA statement must be the same type as
the variable to which it is assigned in READ. Note that a
number listed in a DATA statement can be read into a string
variable. When two adjacent commas are encountered in
the data list, a null string is read.

A single READ statement may read from more than one
DATA statement, and several READ statements may read
from a single DATA statement.

» The READ statement begins reading from the first DATA
statement in the current program or subprogram and
proceeds to the next DATA statement when the current
data list has been read.

= If a READ statement does not read all of the current data
list, the next READ statement begins with the first
unread item in the list.

» An attempt to read data after all the data in the current,
program or subprogram has been read results in an error.

The RESTORE statement can be used to alter the order in
which DATA statements are read.

READ can read data only from a DATA statement that is in
the same program or subprogram as the READ statement.
Each time a subprogram is called, data is read from the first
DATA statement.

DATA, RESTORE

Reference Section 2-101

REM

-

The REM statement makes the rest of a program line into an
explanatory remark.

Formats

Description

Examples

24102

REM [characier-string)
Heharacter-string)

The REM statement enables you to enter explanatory
remarks into your program. Remarks may include any type
of information, but they usually explain a section of a
program. Although remarks are not executed, they do take
up space in memory.

Character-string may include any displayable character.
Any character that follows REM, including the statement
separator symbol ;) is considered part of the remark.
Therefore, if REM is part of a multiple-statement line, it
must be the last statement on the line.

The exclamation point (!) is called a tail remark symbol and
may be used instead of the word REM. The exclamation
point can appear as the first statement on a line or after the
last staterment in a multiple-statement line. If the
exclamation point appears after a statement, the statement
separator (:) is not needed. Using the tail remark symbol
saves space in the listed form of the program.

150 REM BEGIN SUBROUT INE
Identifies a section beginning a subroutine.

" 270 SUBTOTAL=L4B !Calculate subtotal

Identifies statements that perform a specific catculation.

Reference Section

RENUMBER

The RENUMBER command enables you to change the numbers
of program lines.

SFormat

2o gscription

I Examples

& Cross Reference

RENUMBER [initial-line] [increment]

The RENUMBER (or REN) command changes the line
numbers of a program. If no {nitial-line is provided, the
renumbering starts with 100. If no éncrement is included, an
tncrement of 10 is used.

REN also changes all references to line numbers to match
the renumbered lines. If a statement refers Lo a line number
that does not exist, the program is renumbered, but a
warning is displayed and the line number reference is
replaced with 32767, which is not a valid line nurber.

If the values entered for initial-line and increment result in
the creation of line numbers larger than 32766, the program
is left unchanged and the message E11 Line number

error is displayed.

REN
Renumbers all lines to start with 100 and increment by 10.

REN ,100
Renumbers all lines to start with 100 and increment by 100.

REN 100C0,5
Renumbers all lines to start with 10000 and increment by 5.

NUMBER

Reference Section 24103

MTF----------------------

accesses the first item in the DATA statement specified by
line-number.

Line-razmber must be in the same program or subprogram
as the RESTORE statement. If no line-number is included,
the DATA statement with the lowest numbered line in the
current program or subprogram is used. If line-number is
not a DATA statement, the next DATA statement following
it is used.

RESTORE #file-nunber positions that file to the first
record. The next input/cutput statement that refers to file-
number accesses the first record in the file. Any pending
output data is written to the file before the RESTORE
statement is executed. Any pending input data is ignored.
File-number O refers to the keyboard and display; therefore
RESTORE #0 performs exactly like RESTORE as described
above.

Note: The RESTORE statement cannot be used with files
stored by a cassette recorder,

REC may be used with devices that support RELATIVE
record (random-access) files. Numeric-expression specifies
the record to which the random-access file is positioned.
The next input/output statement that refers to that file
accesses that record. Refer to an appropriate peripheral
manual for information about RELATIVE files.

Note: The first record of a file is record zero.

24104 Reference Section

: Cross Reference

RESTORE
I o
: ‘ The RESTORE statement changes the order in which data is read
i from DATA statements or from a file.
Fomats RESTORE [line-number] Examples 150 RESTORE
Selects the first DATA statement in the program as the next
RESTORE [#file-rnumber{ REC numeric-expression]] DATA statement to be read.
Description RESTORE specifies that the next READ statement executed 200 RESTORE 130

Selects the DATA statement at line 130 as the next DATA
statement to be read. If line 130 is not a DATA statement,
the next DATA statement after line 130 is selected.

230 RESTORE #1 _
Sets file #1 to the first record in the file, which is record 0.

DATA, READ

Reference Section 2.105

RETURN (with GOSUB)

RETURN ends execution of a subroutine and then retums
program control to the line following the subroutine call.

Format RETURN

Description Used with GOSUB, RETURN transfers control back to the
statement following the GOSUB or ON GOSUB statement
that was last executed.

A subroutine may contain more than one RETURN
statement.

Cross Reference GOSUB, ON GOSUB

2-106 Reference Section

ETURN (with ON ERROR)

RETURN is used with ON ERROR to end an error-processing
subroutine.

: ‘-Form ats

Description

RETURN
RETURN NEXT
RETURN line-number

Used with ON ERROR, RETURN ends an error-processing
subroutine, An error-processing subroutine is called when
an error occurs after an ON ERROR ling-number statement
has been executed. The error-processing subroutine can
contain any BASIC statements, including another ON
ERROR statement.

RETURN with no option transfers control to the statement
in which the error occurred, and the statement is executed

again.

RETURN NEXT transfers control to the statement following
the one in which the error occurred,

RETURN line-number transfers control to the line specified.
The specified line must be in the same program or
subprogram as the error-processing subroutine, even
though the error may have occurred in some other
subprogram.

Reference Section 2.107

: RETURN (with ON ERROR) (Continued)

Example

Cross Reference

2-108

The program below illustrates the use of RETURN with ON
ERROR.

100 ON ERROR 150
Transfers control to line 150 when an error occurs.

110 X=VAL{"D")

Causes an error, so control is transferred to line 150.
120 PRINT ”DONE” :PAUSE 2

Prints DONE.

130 STOP

140 REM ERROR HANDLING

150 |IF A>4 THEN 200

Checks to see if the error has occurred four times and
transfers control to 200 if it has.

160 A=A+l

Increments the error counter by one.

170 PRINT A:“ERROR(S)”:PAUSE 2

Prints the nurmnber of errors that have occurred.

180 ON ERROR 150

Because of the error, ON ERROR STOP was selected.
Line 180 resets the error handling to transfer to line 150.
190 RETURN

Returns to the line that caused the error and executes it

again.

200 PRINT "LAST ERROR” :PAUSE 2:RETURN NEXT

[s executed only after the error has occurred five times.
Prints LAST ERROR and returns to the line following the one
that caused the error.

ON ERROR

Reference Section

| RND

The RND function generates a pseudo-random number.

§ Format

; [Description

' Example

Cross Reference

RND

’.I‘he RND function returns the next. pseudo-random number
in the current sequence of pseudo-random numbers. The

number returned is greater than or equal to zero and less
than one.

Unless a RANDOMIZE statement is used, RND generates the
same sequence of numbers each time a program is run.

lq PRINT 10*RND:PAUSE
Prints a random number greater than or equal to 0 and less
than 10.

RANDOMIZE

Reference Section 2:109

The RUN statement can be used to start execution of a program

0} 'n
The RPTS function forms a new string by repeating a stanting or to retrieve and execute a program with one command.

string.

| Formats RUN [line-number]
1 RUN “program-name'’
RUN ““device. file-name”

Rlyr$(smm-expression,numer£c-expm9ion)

Description The RPT$ function returns a string that 1s numeric-
expression repetitions of string-expression.

] Description The RUN statement starts execution of a program.

If RPT$ produces a string longer than 255 characters, the
excess characters are discarded, and the warning message
W28 Truncation isdisplayed.

RUN line-number starts execution of the program in
memory at the specified line-number. Entering RUN
without lirne-number starts execution of the program
currently in memory beginning with the lowest numbered
line.

Examples 100 M$=RPT$(”ABCD" .4))
° Sets M$ equal to * ABCDABCDABCDABCD'".

RUN “‘program-rame”’ searches a software cartridge and
starts execution of program-name when it is found. If
program-name is not found or refers to a subprogram, an
error occurs. A string expression may be used to specify
program-rame.

100 PRINT USING RPTS("#",40) ;X$: PAUS_E
Prints the value of X$ using an image that consists of 40
number signs.

RUN “‘device. file-name” deletes the program currently in
memory, loads the contents of file-name from device into
memory, and executes it. A string expression may be used
to specify device. file-name.

Neote: If an 1O error occurs, the program currently in
memory may be unaffected. Also, if file-rame specifies a
data file rather than a program file, it may be necessary to
press the [RESET] key. ‘

Before a program is executed, the following process takes
place.

» Numerijc variables are set to zero, string variables are set
to null strings, and all open files are closed.

» Certain errors, such as a FOR staterment without a NEXT
statement or a line reference out of range, are detected.

* ON BREAK STOP, ON WARNING PRINT, and ON
ERROR STOP are selected.

. Reference Section 2111
2-110 Reference Section

RUN {Continued)

Examples RUN '
Causes the computer to begin execution of the program in
mermory, starting with the lowest numbered line.

RUN 200]
Causes the computer to begin execution of the program in
memory starting at line 200.

RUN "1.PRG3"
Causes the computer to load and begin execution of the
program in file PRG3 on device 1.

. ‘ RUN "MAT”]
. Executes the program MAT (matrices) in the Mathematics
" software cartridge.

The program below illustrates the use of the RUN statement
to execute a program from a program. A menu is created to
enable the person using the program to choose what other
program to run. The other programs should run this
program rather than ending in the usual way, so that the
menu is displayed again after they are finished.

100 PRINT YEnter 1, 2, or 3 for programs”:
PAUSE 2

110 PRINT *... or enter 4 to stop” :PAUSE 2

120 INPUT *“YOUR CHOICE: *;C

"130 I{F C=1 THEN RUN *1.PRGl”

140 {F C=2 THEN RUN “1.PRG2"

150 IF C=3 THEN RUN "1.PRG3”"

160 IF C=4 THEN STOP

170 GOTO 100

2.112 Reference Section

i

| SAVE

The SAVE command storas a BASIC program on an extemal
device.

- Format

Description

Examples

Cross Reference

SAVE “‘device. file-name”’ [,PROTECTED)

The SAVE command sends a copy of the BASIC program in
memory to an external device. By using the OLD command,
you can later recall the program into memory.

Before storing the program, SAVE removes any variables
from the system that are not used in the program.

Device, file-name identifies the device where the program is
to be stored and the file name. Device is the number
associated with the physical device and can be from 1
through 2565, File-name identifies the file that contains the
program.

When PROTECTED is specified, the program in memory is
left unprotected, but the copy on the external storage
device is saved in protected format. A protected program
cannot be listed, edited, or saved.

Note: You cannot store information in a cartridge with the
SAVE command.

SAVE "1.PRGL”

Saves the prograr in memory to device 1 under the name
PRGI.

SAVE 2 .PRG2” ,PROTECTED

Saves the program in memory to device 2 under the name
PRGZ. The program may be loaded into memaory and run,
but it may not be edited, listed, or resaved.

GET, OLD, PRINT (with files), PUT, VERIFY

Reference Section 2.113

| SEG$

| SGN

The SEGS$ function forms a string that is a portion of another
string.

"

The SGN function enables you to detect whether a value is
positive, zero, or negative.

Format

Description

Examples

2-114 Reference Section

SEG$(string-expression, position, length) Format

The SEG$ function returns a substring of a string. The string Description

returned starts at position in string-expression and extends
for length characters.

If position is beyond the end of string-expression, the null
string (**'"} is returned. If length extends beyond the end of
string-expression, only the characters through the end are
returned.

| Examples

100 X$=SEGS$ ("FIRSTNAME LASTNAME” K 1.,9)
Sets X$ equal to “FIRSTNAME™.

200 Y$=SEGS ("FIRSTNAME LASTNAME” K 11,8)
Sets Y$ equal to “LASTNAME"". Cross Reference
240 2%=SEGS(”FIRSTNAME LASTNAME” , 10,1)
SetsZ$ equal to “* .

280 PRINT SEG$(A$.B,C) :PAUSE
Prints the substring of A$ starting at character B and
extending for C characters.

SGN(numeric-expression)

The SGN function returns the mathematical signum
function. If numeric-expression is positive, a value of 1 is
returned. If it is zero, 0 is returned, and if it is negative, -1
is returned.

140 IF SGN(A)=1 THEN 300 ELSE 400
Transfers control to line 300 if A is positive and to line 400 if
A is zero or negative,

790 ON SGN(X)+2 GOTO 200,300,400
Transfers control to line 200 if X is negative, line 300 if X is
zero, and line 400 if X is positive.

ABS

Reference Section 2-115

SIN
The SIN function computes the trigonometric sine of an
expression.

Format SIN(runeric-expression)

Description The SIN function returns the trigonometric sine of numeric-
expressiom. The expression is interpreted as radians,
degrees, or grads according to the current setting of angle
units.

Example 150 DEG:PRINT SIN{3*21.5+4):PAUSE

Cross Reference

Sets angle units to degrees and prints .930417568.

ACOS, ASIN, ATN, COS, DEG, RAD, GRAD, TAN

2-116 Reference Section

§ SINH

The SINH function computes the hyperbolic sine of an
expression.

| ~ Format

' .' Description

‘ Examples

| Cross Reference

SINH(rnumeric-expression)

The SINH (hyperbolic sine) function calculates the
hyperbolic sine of numeric-expression. The definition of
hyperbolic sine is shown below.

SINH(X) = .5*(EXP(X) - EXP(- X))

100 PRINT SiINH(O) :PAUSE
Prints 0.

230 T=SINH(0.75)
Sets T equal to .8223167319.

ACOSH, ASINH, ATANH, COSH, TANH

Reference Section 2.117

! SQR STOP
The SQR function computes the square root of an expression. The STOP statement stops program execution.
.
Format SQR (numeric-expression) Format STOP
Description The SQR function returns the positive square root of Description The STOP statement stops program execution. [t can be
numeric-expression. SQR(X) is equivalent to X ~ (1/2). used interchangeably with the END statement except that
STOP may not be placed after subprograms.
Numeric-expression cannot be a negative number.
& Example The program below illustrates the use of the STOP
Examples 150 PRINT SQR(4) :PAUSE statement. The program adds the numbers from 1 to 100.
Prints 2.
100 TOT=0
110 NUMB=1

780 X=SQR(2.57E5)
Sets X equal to the square root of 257,000, which is
506.9516742.

120 TOT=TOT+NUMB

130 NUMB=NUMB+1

140 IF NUMB>100 THEN PRINT TOT:PAUSE 2:5TOP
150 GOTO 120

Cross Reference END

u 2-118 Reference Section Reference Section 2.-119
ill

Cross Reference

f
i STR$
] : The STR$ function converts a numeric vaiue into a string.
L,
I
Format STR$(numeric-expression)
Description The STR$ function returns the string representation of the
. value of numeric-expression. No leading or trailing spaces
are included. :
The STR$ function is the inverse of the VAL function.
Examples 150 NUM$=STR$(78.6)

Sets NUM$ equal to **78.6"".

220 LL$=STR$(3E15)
Sets LL$ equal to “3.E+ 15",

330 J3=STRS$ (A*4)

Sets dJ $. equal to a string equal to the value obtained when A
is multiplied by 4. For instance, if A is equal to — 8, J§ is set
equal to ** —32".

NUMERIC, VAL

2:120 Reference Section

. SUB

The SUB statement labels the beginning of a subprogram.

Format

Description

SUB subprogram-name[{parameter-list))

The SUB statement is the first staterment in a subprogram
and must be the first statement on the line.

A subprogram is a group of statements separated from the
main program and accessed by a CALL statement. A
subprogram is an efficient way to handle a task that is
repeated several tirmes in a program.

Subprogram-name consists of 1 to 15 characters. The first
character must be an alphabetic character or an underline.
The remaining characters may be alphabetic, numeric, or
underline characters. The CALL statement searches for
subprograms in a specific order (see CALL for the order) and
executes the first subprogram found with subprogran-
name. If the name of one of your subprograms is the same
as a built-in subprogram, the built-in subprogram is
exequited.

Parameter-list receives the information passed to the
subprogram through the argument-list of the CALL
statement. A parameter may be a simple string variable, a
simple numeric variable, or an array. An array is listed as a
parameter by writing the array name followed by
parentheses. A one-dimensional array is written as A(), &
two-dimensional array as A(,}, and a three-dimensional
array as A(,,).

The arguments of argument-list and the parameters of
parameter-list need not have the same names. However,
the number and the types of arguments in argument-tist
must match the number and types of parameters in
parameter-list of the SUB statement.

A subprogram terminates when a SUBEXIT or SUBEND

statermnent is executed. Control is returned to the statement
following the CALL statement.

Reference Section 2.121

suB {Continued)

Passing Datato a
Subprogram

-Information is passed to a subprogram either by reference

or by value.

If an argument is passed by reference, the subprogram uses
the same variables as the calling program. If the value of the
variable is changed in the subprogram, the value is also
changed in the calling program. A simple variable, an
element of an array, or an array listed in argument-list is
passed by reference. Arrays are always passed by
reference.

If an argument is passed by value, only the value of the
variable is passed to a variable in parameter-tist. If the
value of the variable is changed in the subprogram, it does
not affect the variable in the calling program. Any type of
expression in argument-list is evaluated and passed by
value to the subprogram. Simple variables may be passed by
value by enclosing them in parentheses.

Any variables used in a subprogram other than those in
parameter-list are local to that subprogram, so the same
variable names may be used in the main program and in
other subprograms. Changing the values of local variables in
a program or subprogram does not affect the values of local
variables in any other program or subprogram.

Any local variables in the subprogram are initialized each
time the subprogram is called.

2.122 Reterence Section

B using the SUB
2 Statement

§ Cross Reference

Subprograms appear after the main program. If a SUB
statement is encountered in a main program, it terminates
as if a STOP statement had been executed. Only remarks
and END statements may appear between the SUBEND of
one program and the SUB of the next subprogram.

The ON BREAK, ON WARNING, ON ERROR, and PAUSE
ALL statements in effect when a CALL is executed remain
in effect while the subprogram is executing. If the
subprogram changes any of these settings, they are changed
back when the subprogram terminates.

A subprogram cannot contain another subprogram or share
any subroutines except error-processing subroutines.

100 SUB MENU
Marks the beginning of a subprogram. No parameters are
passed or returned.

220 SUB MENU (COUNT ,CHOICE)

Marks the beginning of a subprogram. The variables COUNT
and CHOICE can be used and may change value in the
subprogram. If s0, their corresponding arguments in the
calling staternent are changed.

330 SUB PAYCHECK (DATE,Q,5SN,PAYRATE , TABLE(,))
Marks the beginning of a subprogram. The variables DATE,
Q, S5N, PAYRATE, and the array TABLE with two
dimensions can be used and may change value in the
subprogram. If so, their corresponding arguments in the
calling statement are changed. However, if the
corresponding argument of DATE, Q, SSN, or PAYRATE is
enclosed in parentheses in the CALL statement, the value
of that argument cannot be changed. The corresponding
array argument of TABLE is passed by reference in the
CALL statement and therefore any of its values can be
changed by the subprogram.

CALL, ON BREAK, ON ERROR, ON WARNING, RETURN,
SUBEND, SUBEXIT

Reference Section 2:123

SUBEND

The SUBEND statement ends a subprogram and retums
execution to the line after the subprogram was called.

Format

Description

Cross Reference

2-124

SUBEND

The SUBEND statement marks the end of a subprogram.
When SUBEND is executed, control is passed to the line
following the statement that called the subprogram.

The SUBEND statement must always be the last statement
in a subprogram and cannet be in an [F THEN ELSE
statement.

Only remarks and END statements may appear between a
SUBEND statement and the next SUB statement.

SUB, SUBEXIT

Reference Section

The SUBEXIT statement transfers execution out of a subprogram.

Jeross Reference

SUBEXIT

The SUBEXIT statement terminates execution of a
subprogram and transfers control te the line following the
statement that called the subprogram.

The SUBEXIT statement may appear as many times as
needed in a subprogram.

5UB, SUBEND

Reference Section 2-125

s ‘:“‘é"

TAB
The TAB function Is used in a PRINT or DISPLAY statement to
select a specific position for a print itern.

Format TAB(numeric-expression)

Dascription The TAB function, in conjunction with a PRINT or

DISPLAY statement, selects a specific position for a print
item. ’

» If numeric-expression is greater than the current
position, the TAB function advances to the specified
position.

» I numeric-expression is less than the current position,
the TAB function proceeds to the next record and
advances to the specified position.

» If numeric-expression is greater than the length of a
record for the device being used, then rnumeric-
expression is repeatedly reduced by the record length
until it is less than the record length.

» If numeric-expression is less than or equal to zero, the
position is set to 1.

The TAB function is treated as a print item and must be
separated from other print items by a print separator. The
print separator before TAB is evaluated before the TAB
function, and the print separator following TAB is '
evaluated after the TAB function. Normally, semicolons are
used before and after TAB.

Ina DISPLAY statement, the TAB function is relative to the
heginning of the display field. If ATis used, the TAB

* function is relative to the specified column position. If

displayed information exceeds 80 characters, the TAB
function is performed relative to column 1.

If SIZF. is used in a DISPLAY staterment, the value specified
in SIZE is the absolute lirit of the number of characters
displayed. This limit is the record length used in evaluating
any TAB functions.

2-126 Reference Section

1 Examples

Cross Reference

100 PRINT TAB(12);35:PAUSE
Prints the number 35 starting at column 13.

190 PRINT 356;TAB(18); "NAME" : PAUSE
Prints 356 at the beginning of the line and NAME starting at
column 18.

710 DISPLAY AT(10) SIZE(20),"MGB” ;TAB(10);
" ADDR” : PAUSE

Prints MGB starting at column 10 and ADDR starting at
column 19.

DISPLAY, PRINT (with display), PRINT (with files)

Reference Section 2-127

TAN

B ANH

The TAN function computes the trigonometric tangent of an
expression.

The TANH function computes the hyperbolic tangent of an
expression.

Format

Description

Example

Cross Reference

2-128 Reference Section

TAN(numeric-expresséom)

The TAN (tangent) function returns the trigonometric gPescription
tangent of numeric-expression. The expression is
interpreted as radians, degrees, or grads according to the
current angle setting.

250 RAD:PRINT TAN(20) :PAUSE
Sets angle units to radians and prints 2. 237160944

ACOS, ASIN, ATN, COS, DEG, RAD, GRAD, SIN

jCross Reference

TANH{(numeric-expression)

The TANH function returns the hyperbolic tangent of
numeric-expression. The definition of hyperbolic tangent is
shown below.

TANH(X) = (EXP(X) - EXP{ - X\)(EXP(X)+ EXP({ - X)}

100 PRINT TANH(O):PAUSE
Prints 0.

230 T=TANH{0.75%)
Sets T equal to .6351480524,

ACOSH, ASINH, ATANH, COSH, SINH

Reference Section 2.129

UNBREAK
The UNBREAK statement removes any breakpoints previously
set.

Format UNBREAK [line-list]

Description The UNBREAK statement removes all breakpoints. If line-
list is specified, only the breakpoints for those lines are
removed.

Examples UNBREAK
Removes all breakpoints.

" Cross Reference

2:130

400 UNBREAK 100,130
Removes the breakpoints set for lines 100 and 130.

BREAK

Reference Section

USING enables you to define an image that formats output with
DISPLAY and PRINT.

prmats

Pescription

 Cross Reference

DISPLAY USING line-number
DISPLAY USING string-expression
PRINT USING line-rumber

PRINT USING string-expression

USING is used in a DISPLAY or PRINT statement to format
the output.

If line-number is included, the format is specified by an
IMAGE statement in the referenced line. Line-number must
refer to a line in the current program or subprogram.

If string-expression is included, the format is defined by the
string expression.

When USING is present, the following changes cccur in the
evaluation of the prent-list of PRINT or DISPLAY.

» Comma print separators are treated as setnicolons.
» The TAB function causes an error.

» The print items are formatted according to fields
specified in the format definition. If the number of print
items in print-list exceeds the nurnber of fields in the
format, the current formatted record is written. The
remaining values are written in the next record, using
the format definition again, from the beginning. The
format is used as many times as is necessary to complete
the print-list. A new record is generated each time the
format is used. When the number of print items is less
than the number of fields in the definition, output stops
when the first field is encountered for which there is no
print item.

» If a formatted item is too long for the remainder of the
cutrrent record, it is divided into segments. The first
segment fills the remainder of the current record and
any remaining segments are written on the next record.

DISPLAY, IMAGE, PRINT

Reference Section 2131

s

The VAL function converts a string into a number, provided the
string can be read as a number.

.

Format

Description

‘Examples

Cross Reference

2-132

VAL(string-expression)

The VAL function returns the numeric value of string-
expresstom if it is a valid representation of a number.
Leading and trailing spaces are ignored.

If string-expression is not a valid representation of a
number, an error occurs. To avoid this error, the string-
expression may be verified first with the NUMERIC
function. :

The VAL function is the inverse of the STR$ function.

170 NUMB=VAL{"78.6")
Sets NUMB equal to 78.6.

190 LL=VAL{"3El15")
Sets LL equal to 3.E + 15 (scientific notation).

300 PRINT VAL(”$%3.50"):PAUSE
Causes an error because the string contains a non-numeric

character ($).

NUMERIC, STR$

Reference Section

The VERIFY command checks that a copy of a program saved on
an extemal storage device or loaded into memory is the same as
the original program.

! 'Cross Reference

VERIFY “device. file-name’’ [, PROTECTED]

The VERIFY comumand compares a file stored externally
with the same file in memory. The comparison can be made
after a SAVE or OLD command to check the file on the
external storage device,

Device. file-name identifies the device and the file in which
the program is stored. Device is the number associated with
the physical device and can be from 1 through 255. File-
nrame identifies the file.

If the two files are identical, the program has been stored or
retrieved successfully. If a difference is found in the
comparison, ejither I'O error 12 or 24 is displayed.

Like SAVE, VERIFY removes any variable names that are
not used in the program. If the program was saved with the
PROTECTED option, then PROTECTED must also be
specified in the VERIFY command.

SAVE “1.PROGRAM1”

Saves the file named PROGRAMI to device 1.
VERIFY 1. PROGRAM1"

Verifies whether the file was stored correctly.

OLD "1 STAT*

Reads the file named STAT into memory from device 1.
VERIFY “1.STAT”

Verifies whether the file was read correctly.

OLD, SAVE

Reference Section 2-133

hapter 3: Using Optional Accessories

This chapter provides information to help you use the optional
Cl-7 cassette interface cable, PC-324 printer, and 8K Constant
Memory carlridge accessories. With optional equipment, you can
save programs and data by recording them on cassetie tape, you
can get printed results, or you can expand the memory.

jrable of

ontents

Guidelines for Selecting Equipment 3.2
Caring for Your Equipment 3.3
Connecting Your RecordertotheTI-74 3.4
Prompts for Using the Cassette Recorder 35
Determining the Recorder Settings 3:6
Guidelines for GoodRecording 3-10
Procedure for Saving Programs 3412
Verifying Program Storage and Retrieval 313
Procedure for Retrieving Programs 3-14
Seiting Up a Sample Program and Data File 3-16
If You Have Recording Difficulties 3-18
Controlling the Printer From BASIC 3-19
Accessing Cartridge Memory 3-23

Using Optional Accessories 341

Guidelines for Selecting Equipment

aring for Your Equipment

-~

The CI-7 cassette interface cable, a cassette recorder, and a
cassette tape become a complete information storage system for
the T|-74. The performance of the storage system depends on the
type of recorder and cassette tape you select. You may want to
consider the following guidelines when you choose a cassette
recorder and supplies.

Selecting
a Recorder

Selecting
Cassette Tapes

The TI-74 is compatible with most standard cassette
recorders. However, for the best results, choose a cassette
recorder with these features:

» Volume control

» Tone Control

» Microphone jack

» Remote jack

» Earphone or external speaker jack

» Digital tape counter (This enables you to quickly locate a
specific tape position when you store more than one
program or set of data on the same tape.)

» Optional AC adapter (This avoids problems that weak
batteries may cause, such as interfering with the transfer

of information.)

For maximum storage capability, follow these guidelines
when you select cassette tapes.

» (Choose tapes with low-noise characteristics. Tapes with
extended frequency response, such as digital tape, are
unnecessary and cost more than common audio
cassettes.

» Choose quality cassette tapes. Low-quality tapes are
prone to tangling and breakage.

» Use the type and length of tape recommended by the
manufacturer of your recorder.

3.2 Using Optional Accessories

The following suggestions can help you care for your cassette
interface cable, cassette recorder, and cassette tapes.

Several things should be taken into consideration in caring
for the cassette interface cable.

» Handle the cable carefully.

» Store the cable in a clean, dry place, protected from high
temperatures.

You should follow several simple guidelines in caring for
your cassette recorder and cassette tapes. These suggestions
include:

» Clean and demagnetize the tape head periodically
because tapes tend to deposit magnetic particles on the
tape head that hinder clear information transfer.

» Store your cassette tapes away from magnetic sources,
* such as a television set, an electric motor, magnetic
cabinet latches, magnets in children’s toys, and magnetic
note holders.

Using Optional Accessories 3.3

Connecting Your Recorder to the TI-74

rompts for Using the Cassette Recorder

The CI-7 cassette interface cable enables the TI-74 to exchange
information with the cassette recorder. Only a few simple steps
are required to propery connect the interface cable to the Tl-74

P

While saving and retrieving programs or data, you must manually
operate the cassette recorder. Prompts appear in the display to
help you operate the recorder and to tell you what is happening in
the recording process.

*and your cassette recorder.
Connecting Be sure the TI-74 is off before you connect or disconnect tomatic
the Recorder the cable. To connect your recorder to the TI-74: EEDisplay Prompis

1. Insert the plug on the red wire into the microphone jack
of the cassette recorder (usually marked MIC).

Black wire to remote

Red wire to microphone jack accessories jack

White wire to earphone jack —

2. Insert the plug on the white wire into the jack for the
earphone, monitor, or external speaker on the cassette
recorder (usually marked EAR or MONITOR).

3. TInsert the plug on the black wire into the remote control
jack of your cassette recorder (usually marked REM).

4. Plug the other end of the cassette interface cable into the
peripheral port on the back of the TI-74.

3-4 Using Optional Accessories

In the recording process, two types of prompts appear in the
display.

» Instructional prompts—Tell you what to do to manually
operate the recorder and the TI-74. For example, the
prompt Position tape; then press ENTERtells
you what to do at this point in the operation.

*» Informational prompts—Tell you what is currently taking
place in the recording process. For example, the prompt
Reading. . . indicates that the TI-74 is retrieving
information from a cassette file.

After you become familiar with recording operations, you
may want to speed up the process by eliminating the
automatic display prompts. To disable the automatic
prompts, type the suffix ** NM"' (for no messages) at the end
of the filename. If you disable the prompts before you begin
an input or output operation, be sure that the tape is
positioned correctly.

For example, if you type RUN "1.TEST.NM~, press [ENTER],
and then press the PLAY button of your recorder, the TI-74
searches the tape for the file named TEST. When the file is
found, you can load and execute the program without
receiving any prompts.

Using Optional Accessories 3.5

Determining the Recorder Settings

Before you begin recording your programs and data files, you
need to complete the following test program. Making a test
recording establishes the right volume and tone setting for your

v "

recorder, checks the compatibility of your recorder and tape, and
helps you become familiar with recording a program file.

Procedure

Comments

1.

Adjust the volume to a medium
setting and, if your recorder has a
tone control, adjust the tone to a

These settings for volume and tone
control work for most recorders. You
may need to vary the settings slightly

i 7. WhenPress RECORD;

8. WhenPress STOP;

medium-high setting (7 onascale onyour recorder. (Refer to page 39
of 10). for additional information.)

2. Insert a cassette tape into the To record information, the tape must
recorder. Rewind the tape and set be'advanced past any leader. The
the tape counter to zero. Then leader is the non-magnetic segment at

. advance the tape past any leader each end of a cassette tape.
{004 or higher).

3. Make sure that none of the
recorder buttons are depressed.
Then turn on the T1-74.

4. Be sure the TI-74 is in the BASIC
mode, Enter the test program:

100 A$ = "TEST"

110 FORB=1T03

120FORC=1TO4

130 DISPLAY SEG$(A$,1,CkPAUSE .3

140 NEXT C:NEXT B:END

5. Type SAVE ".TESTPROG" and Addresses device 1 (the recorder) and

press {ENTER]. assigns a name to this test recording.
The | /0 indicator appears in the
display.

36 Using Optional Accessories

f 11. WhenPress PLAY:

b Procedure

Comments

f 6. When Position tape; then

press ENTER appears, make
sure the tape is past any leader.
Note the tape counter setting and
press [ENTER].

The tape counter setting helps you
locate the beginning of the file when
you are ready to retrieve it,

then
ENTER appears, press the record
button(s) on the recorder and
press [ENTERI.

After a few seconds, the recorder
begins to record the file and the
promptWriting. . . appears.

then
ENTER, appears, press the STOP
button on the recorder. Note the
tape counter setting and press
[ENTERI.

Your file is saved. The TI-74 is ready
to store another file or play back what
you recorded. You now know the tape
counter setting for the beginning and
ending of the file.

9. Type VERIFY "1.TESTPROG” and

press [ENTER).

_:' 10. WhenPosition tape; then

press ENTER appears, use the
buttons on the recorder to locate
the beginning of the file. Then
press [ENTER.

The file is ready to be read.

then
ENTER appears, press the play
button on the recorder and press
[ENTERLI.

After a few seconds, the recorder
plays back the file and the prompt
Reading. .. appears.

Using Optional Accessories 3-7

Determining the Recorder Settings (Continued)

Procedure Comments

12. View the prompt and follow the
instruction that applies to you.

» IfPress STOP: then ENTER Your test programis verified. Note the
volume and tone settings that were
button on the recorder. The successtul for the test recording.

appears, press the STOP
file is saved to cassette tape.

. » IfEQ 1/0 error 3 "1"

appears, refer to ' Adjusting program. You may have tried to record
the Tone and Volume'’ on the on the leader, the volume setting may
next page. be incorrect, or you may not have

started at the beginning of the file.

» IfEO 1/0 error 23 "1"

» If no error message appears Low batteries may be interfering with
after a considerable length of the transfer of information. Replace
time and the TI-74 continues batteries as needed, or use an AC
ta search for the file, check for adapter with the recorder.

low batteries. Then go to step
5.

The TI-74 could not find the test

The file is there, but the TI-74 cannot
appears, refer to *' Adjusting read it because of a technical problem.
the Tone and Volume'’ onthe The volume setting may be incorrect,
next page. or the recorder may be incompatible.

3.8 Using Optional Accessories

Adjusting the
Tone and Volume

Comments on
Volume and Tone

If an eITor message appears, rewind the tape to the
beginning of the file, and increase the volume
approximately 20 percent. Return to step 9 of the recording
procedure, and repeat the VERIFY command.

If an erTor message appears again, adjust the volume to
approximately 20 percent below the medium setting and
repeat the VERIFY command again.

A volume setting between medium-low and medium-high
(3-8) works well for most recorders.

If you have tried to verify the recording on several volume
settipgs without success, return the volume control to a
medium setting, raise the tone setting approximately 20
percent, and repeat the procedure,

A tone setting between medium and high (5-10) works well
for most recorders.

Notice that the volume setting necessary for saving a file
may be higher than for normal listening. If you use the
recorder for audio purposes, be sure to readjust the volume
and tone settings before you record data from the T1-74,

If you use a tape that has different magnetic characteristics
from the tape you were previously using, you may need to
repeat the procedure for determining the proper volume
and tone settings.

Using Optional Accessories 3.9

Guidelines for Good Recording

Saving files by recording them on cassette tape provides a
permanent record of your programs and data. However, several
factors can influence the quality of your recordings. The
‘suggestions below can help you record your programs and data
efficiently and avoid some potential problems.

Using the
Tepe Counter

Tips for
Recording

The tape counter enables you to quickly locate a specific
point on the tape where a file may be located. To use the
tape counter, follow these steps before you begin recording:

1. Rewind the tape to the beginning.

2. Set the tape counter to zero by pressing the tape counter
button on your recorder.

3. Advance the tape to the area the file is to occupy and
note the number on the counter.

To avoid false counter readings, do not reset the tape
counter unless the tape is rewound to the beginning.

4. Assign each file its own name. Make a note of the file
name and the counter positions where the file begins and
ends.

To avoid problems when recording progras or data, follow
these guidelines:

» Do not record on the leader (the non-magnetic segment
at the beginning and at the end of a cassette tape).

» Do not record too close to the end of the tape. If the tape
runs out before recording is complete, the whole file is
unusable because the end-of-file record is needed for the
TI-74 to access the file.

» Leave a few seconds of space after a file before you
“begin recording a new file. If you record in the middie of
an existing file, the old file is no longer usable.

» Record and play back files on the same cassette recorder.
Because of calibration differences between recorders,
data recorded by one recorder may not read reliably on
another recorder.

310 Using Opticnal Accessories

Backing Up
Your Tapes

Preventing
Erasure

You may want to make a backup tape of your files. A
backup tape provides another recording of your file in case
one is accidentally lost or damaged. Because duplicating a
tape may affect the accuracy of the recording, be sure to
make two original recordings on two different tapes.

Each time you make a recording, any material that you
previously recorded on that portion of the tape is
automatically erased. If you have a recording that you wish
to keep permanently, break the rear left tab of the side you
wartt to save. This prevents you from depressing the
RECORD button on the recorder.

Tab broken out

Tape to allow
re-recording

on side two

Write-protects
side one

Write-protects
side two

Side One

Note: If you need to record on a tape that has a tab missing,
place a piece of cellophane tape over the tab opening before
you record a file,

Using Optional Accessories 31

Procedure for Saving Programs

_oading the information back inte the TI-74’s memory. Be sure to
‘make the test recording given in “Determining the Recorder

. Veritying Program Storage and Retrieval

You can use a cassetie recorder to record any programs you
develop with the T1-74. Later, you can retrieve the programs by

Settings” to find the correct tone and volume settings betore you
begin saving files.

Using the
SAVE
Command

312 Using Optional Accessories

The VERIFY command compares the program file to the program
in memory. Using the VERIFY command is a good practice after
saving or loading a program.

You can use the SAVE command to copy (or save) a
program in the TI-74’s memory to a cassette tape.

Using the
VERIFY

Command
To save the program currently in memory:

1. Type SAVE "1.file-name” and press [ENTER].

The 1 is the device number of the cassette recorder and
file-name is the name of your file.

2. When the prompt Position tape; then press ENTER
appears, advance the tape to a blank area with sufficient
space to record the program.

Be sure to leave some space between the last file and the
beginning of the new file,

If your recorder is equipped with a digital counter,
rewind the tape to the beginning and reset the tape
counter to zero before positioning the tape.

3. Press the [ENTER] key.

4, When the prompt Press RECORD; then ENTER
appears, press the RECORD button on your recorder,
and then press the [ENTER] key.

After a few seconds, the promptWriting. .. appears.
The TI-74 is transferring information to the cassette file.

. Note: If you need to cancel the output operation, press
the [RESET] key on the TI-74.

5. When the prompt Press STOP; then ENTERappears,
press the STOP button on your recorder and then press
[ENTERL

The program is now saved on cassette tape. You may want
to verify that the recording is accurate by using the VERIFY
command.

To verify that a file was stored correctly or that it was
loaded into memory correctly, follow these steps.

1. Type VERIFY "1.file-name” and press [ENTER].

2. When the prompt Position tape:; then press ENTER
appears, perform one of the following.

» If you know where your file is located on the cassette
tape, press the FAST FORWARD and REWIND
buttons to locate the beginning of the file.

» If you are unsure where the file starts on the cassette
tape, rewind the tape to the beginning.

3. Press[ENTERI.

4. When the prompt Press PLAY; then ENTER appears,
press the PLAY button on your recorder, Then press
[ENTER].

When the file is found, the prompt Reading. . . appears.
The T1-74 is comparing the file on the cassette tape with
the information in memory.

5. If the prompt Press STOP; then ENTER appears, the
contents are the same. Press the STOP button on your
recorder and then press the [ENTER] key.

If an error message appears, the contents are not the
same. The action you take at this point depends on
whether you saved a program or retrieved a program.

» If yousaved a program, check the settings on the
recorder, and then save the program again, using the
procedure on the previous page.

» If you retrieved a program, check the settings on the

recorder, and then try retrieving the program again,
using the procedure on the following page.

Using Optional Accessories 3-13

Setting Up a Sample Program and Data File

The BASIC statements that can involve cassette operations are
SAVE, OLD, VERIFY, OPEN, CLOSE, INPUT, LINPUT, PRINT,
EOF, and CALL IO. A sample program using many of these
‘statements is given below. A description of each statement can
be found in Chapter 2.

The Sample
Program

Step 1:
Entering the
Program

316 Using Optional Accessories

With the following program, you can enter information g‘ept?: 3
about three different accounts and retrieve the information S"e? ihg an
as needed. D:\tr;ngi;

Enter the sample program listed below. Notice that line 210
includes commas to separate the data fields of the record.

100 REM Sample program

110 DISPLAY "1 — create; 2 —recall; 3 —quit”

120 PAUSE 2 :

130 DISPLAY "YOURCHOICE? ™;

140 ACCEPT AT(14) VALIDATE("123"),Z

1500N Z GOTO 160,250,340

160 FOR X=1 TO 3 l!keyindata

170INPUT "ACCT # ";AS(X),"ACCT NAME ";BS$(X),
"ACCT BALANCE ™A(X)

180NEXT X

190 OPEN #1,”1.DATA1",DISPLAY,OUTPUT !create data file

200FOR X=1TO 3 :

210 PRINT #1,A8(X);",";BS(X);",”;A(X)

220 NEXT X

230CLOSE #

240GOTO 100 !returnto menu

250 OPEN #1,"1.DATA1",DISPLAY,INPUT Iread data file

260 FOR X=1 TO 3

270 INPUT #1,AS$(X),BS$0O0,AX)

280 NEXT X

290 CLOSE #1

300 FOR X=1 TO 3 !display data read from file

310PRINT "ACCT# ~AS((;” ";B$(X);" "A(X:PAUSE

320 NEXT X

330GOTO 100 !return to menu

340 END

You may want to run the program before storing it on
cassette tape, or you may want to store the program at this
point. (Refer to “‘Procedure for Saving Programs’” for -
instructions.)

. Run the sample program.

The following prompt appears in the display.
l-create; 2-recall; 3—quit

After two seconds, the following prompt appears in the
display.

YOUR CHOICE?

. Enter 1 to create a data file. Display prompts instruct

you to type in the account number, name, and balance
for each account.

. Enter the following information into the program.

001
Lang Institute
30000

002
A.T. Optical
50000

003
Grantham Const.
75000

. Follow the prompts to record the data file on cassette

tape. (Refer to ‘Procedure for Saving Programs'’ for
instructions.) Then you can select

» Option 2 to start the prompts for retrieving the saved
data file. (Refer to ' ‘Procedure for Retrieving
Programs'’ for instructions.)

» Option 3 to exit from the program.,

Using Optional Accessories 3.17

If You Have Recording Difficulties

It you experience difficulty with your cassette recorder.
, You ma
be able to correct the problem by following these sugge!;tions. Y

1
1 H

If the Recorder
Is Not Operating

If You Cannot
Locate a File

3-18

If your cassette recorder does not respond to any functions
that move the tape, check the following.

» Ifthe recqrder is AC powered, check that it is connected
to a functional AC power source.

» If the recorderis battery powered, check that its
batteries are not depleted.

> If the interface is plugged into the remote control jack,
unplug the remote plug and try storing or retrieving a file
while operating the recorder rnanually. Be prepared to
press a recorder button and IENTER] at the same time
when the computer prompts you,

* If the interface is plugged into the peripheral port on the
_PC-324 pripter, discormect the printer and connect the
mte_rface directly to the TI-74. If you can then store and
retrieve a file, the printer may not be operating properly.

If you cannot locate a file at its ta countet setti
the following, pe setting, check

> Besure the volume is set correctly.

- Rewmd the tape, reset the counter, and advance the
'tape to just before the noted tape counter position.

g’he default record length for a cassette recorder is 256
ytes.

Using Optional Accessories

e g et AR5 T e, -1 s S5 < n ommEimamt, Ant nt m. 2e e e 31 e+ o

Controlling the Printer From BASIC

This section contains information that applies when the PC-324
printer is connected to the TI-74. You can select options for the
cariage retum and for the line spacing. You can also send the
printer instructions in the form of an 10 subprogram or as
character strings.

Device Code

Carriage
Retumn Options

Example

For BASIC to address the printer, it must use the printer’s
device code, 12. ’

After you use the OPEN statement to create a link to the
printer, you can use the PRINT staternent to print an item.
When the item has been printed, the carriage return options
cause either of two actions to occur.

» A carriage return can automatically follow the item. This
option is selected by including R=L in the open
statement or by not specifying R. -

» The next print item can begin on the same line. This
option is selected by including R=N in the OPEN
statement.

These options can be used with the OPEN statement or the
LIST command.

When the following program is run, the resulting printout is
as shown.

100 'R = N Option
110 OPEN #1,"12.R=N",OUTPUT
120 PRINT #1,”one ":PRINT #1,"twc ":PRINT #1,"three "~

one two ithree

When the following program is run, the resulting printout is
as shown.

100 'R =L Option
110 OPEN #1,"12.R=L",0UTPUT
120 PRINT #1,"one ":PRINT #1,"two "PRINT #1,"three "

one
two
three

Using Optional Accessories 319

3.20

Controlling the Printer From BASIC (Continued)

Line Spacing
Options

Example

Using Optional Accessories

The line spacing options cause either single spacing or

double spacing to oceur. . /O Commands

- Prmtmg can occur on every line of the paper. This option
is selected by including L= in the OPEN statement, or
by not specifying L.

- Pnntmg can occur on every other line of the paper. This
option is selected by including L=D in the OPEN
statement.

These options can be used with the OPEN statement or the
LIST cornmand,

When the following program is run, the resulting printout is
as shown.

100 !L = § Option
110 OPEN #1,"12.L= §",0UTPUT
120 PRINT #1,”one ":PRINT #1,"two ":PRINT #1,"three

one
two
three

When the following program is run, the resulting printout is
as shown.

100 'L = D Option
T1I00PEN #1,"12.L = D",0UTPUT
120 PRINT #1,"one ":PRINT #1,"two "PRINT #1,"three "

one & Example
two

three

The PC-324 supports certain peripheral commands
available with the I0 subprogram.

Code Command Result

Reports the version of code in the
printer’s ROM. When CALL
10(12,80,X) is executed, X becomes
100 for version 1, 101 for version 2,
ete.

80 Self Test #0

Performs a printing demonstration.
When CALL I(X12,81,X) is executed,
X becomes 6 if a device error oceurs
and zero if the demonstration runs to
normal completion.

81 Self Test #1

Performs the printer’s comparison
with expected values. This test is
similar to the calculator’s power-up
routine that checks for changes in
memory contents. However, the
values checked by this test are in
ROM. Therefore, this test fails only if
the printer is damaged. When CALL
10(12,82,X) is executed, X becomes 0
if the test is satisfactory and 80 if the
test fails.

82 Self Test #2

The following program tests the printer.

110X=0Y=0
120 CALL 10(12,80,%)

130 CALL 10(12,82,Y)

140 X=X - 89

150 PRINT USING"VERSION #IS IN THIS PRINTER”;X:PAUSE
160IF Y=0 THEN 170 ELSE 180

170 PRINT "PRINTER ROM IS SATISFACTORY ":PAUSE:STOP
180 PRINT "PRINTER IS DAMAGED ":PAUSE:STOP

Using Optional Accessories 3.21

Controlling the Printer From BASIC (continued)

JAccessing Cartridge Memory

You can use the 8K Constant Memory cartridge for either of two
purposes: to increase the memory available for BASIC
programming or to store the contents of memory for later
retrieval.

Printer Control You can signal the printer to perform any of the following
Codes actions by sending the corresponding ASCII code.
Code Action
13 Carriage return
17 Use single spacing
18 Use double spacing
Because the carriage return includes a line feed
automatically, the ASCII code for line feed (10) is ignored.
j.:.xample The following program allows you to type lines and send
them to the printer.
110 ACCEPT ERASE ALLA$
120 DISPLAY "Double spacing?(Y/N}"
130 B$=KEY$
140 IFB$="Y" OR B$="y"” THEN C=18 ELSE C=17
150 OPEN #1,712",OUTPUT:PRINT #1,CHRS{CLAS
160 CLOSE #1:GOTO 110
Other ASCII The PC-324 responds to ASCI as listed in Appendix B
Codes except for the codes 00 through 31, the codes past 127, and
four of the characters. The printer regards the codes 00
" through 31 as NOP except the three listed above. The
highest code to which the printer responds is decimal 127.
The list below shows the four codes whose characters differ
from those of the TI-74.
“ Code Character Code Character
J 92 \ 126 ~
: 124 H 127 Space
3
3.22 Using Optional Accessories

After the 8K Memory cartridge is installed in the cartridge
port, a CALL ADDMEM comumand must be executed if you
intend to use cartridge memory as part of available
memory.

Cantion: Executing a CALL ADDMEM command erases the
contents of cartridge memory before adding the cartridge
memory to BASIC. However, the computer’s memaory is
unaffected. ’

Refer to Chapter 2 for information about the ADDMEM
subprogram and the FRE function.

After CALL ADDMEM has been executed, the cartridge
memory remmains available to BASIC until one of the
following occurs.

= ANEW ALL command is executed.

» The [RESET] key is pressed.

» The cartridge is removed while the calculator is on.
» Battery power is lost.

When one of these conditions occurs, the cartridge memory
Is separated from the available BASIC memory and the
computer’s memory is cleared.

The 8K Memory cartridge can be used to store the entire
contents of the T1-74’s 8K memory, known as a memory
image. Refer to Chapter 2 for information about the GET
and PUT subprograms, which handle the transfer of
information to a cartridge.

The cartridge retains a memory image until:

* Another image is placed in the cartridge.

» CALL ADDMEM is executed.

» Battery power is lost.

Note: If the cartridge is in use as memory expansion, you

must cancel memory expansion before you can use the
cartridge for storage.

Using Optional Accessories 3.23

| Appendices

The appendices provide information you may need when
investigating the details for a program. Note that a ditficulty
section is included in the TI-74 User's Guide that can help
coarrect certain problems. That book also has information
about contacting Texas Instruments and contains the
warranty.

E Table of
- Contents

Appendix A: Reserved Word List A-2
Appendix B: ASCII CharacterCodes A4
Appendix C: Logical Operations A-ll
Appendix D; Error Messages A-16
Appendix E: Numeric Accuracy A-32
Appendix F: Differences Between TI-74 BASIC and Others . . A-4
AppendixG:Index L L AT

Appendices A1

Appendix A: Reserved Word List

The following is a list of all TI-74 BASIC reserved words. A
reserved word may not be used as a variable name, but may be a
portion of a variable name. A variablename can also be a portion
1 of a reserved word except for the abbreviations of reserved words,

Commands and
Statements

Most statements can be executed immediately as well as
used in a program line. The words you can include only in 3
program statement are noted with a ¥ and the commands
you can use only outside the program are noted with a ©,

ABS
ACCEPTP
ACOS
ACOSH

ALL

ALPHA
ALPHANUM

A2 Appendices

ERASE
ERROR

Ecommands and

- Subprograms

PAUSE

PI

POS

PRINT
PROTECTED
RAD
RANDOMIZE
READP

REC
RELATIVE
REM

REN*
RENUMBER®
RESTORE
RETURNP

SQR

STEP

sTOP

STR$

SUBFP
SUBEND?
SUBEXIT®
TAB

TAN

TANH
THEN

TO
UALPHA
UALPHANUM
UNBREAK
UPDATE
USING
VAL
VALIDATE
VARIABLE
VERIFY®
WARNING
XOR

You can use the names of system subprograms as variable

names. However, subprograms you write should not be
given system subprogram names.

CALL ADDMEM®
CALLERR

CALL GET*
CALLIO
CALLKEY

CALL PUT®

Appendices

A-3

Appendix B: ASCII Character Codes

——

The following table lists the ASCII character codes in decimal

and hexadecimal notation.

ASCH Table

titled Character.

System-reserved character codes (0-15) and the user-
assigned keys {codes 128-137) are shown as two asterisks

(* *)

The ASCII commands and/or character(s) displayed when
the key or key sequence is pressed are shown in the column

Displayed

Using CHR$ Key Sequence

ASCI Code

DEC HEX Character
o0) NULL
01 01 SOH
02 02 STX
03 03 ETX
04 04 EOT
05 05 ENQ
06 06 ACK
07 07 BEL
08 08 BS
09 09 HT
10 0A LF
11 0B VT
12 oC FF
13 0D CR
14 0E 80
15 OF &I

16 10 DLE
17 11 DCl1
18 12 Dpe2
19 13 DC3
20 14 DC4
21 15 NAK
22 16 SYN
23 17 ETB
24 18 CAN
25 19 EM
26 1A SUB
27 1B ESC
28 1C FS

*
* %
* %
*
* %
* %
* %
* A
* %
* ok
* %
* %
¥k
*
* %

* &

[cTUo

[cTU A
[cTUuB
fcTuc
[cTUD
[cTE
[CTUF
[cTUG
[cTUH
[cTul
[cTlJ

[CTL K
[cTUL
[CTLIM or [ENTER]
[CTUN
lcTdo
[cTLP
lcTUa
ICTUR
IcTUs
leTu T
cTLIY
cTUV
fcTuw
lcTL X
fcTu Yy
fcTUZ
[cTUICLR] or
[FNIISPACE]
[CTU 44~}

A-d Appendices

ASCIl Code Displayed

DEC HEX Character Using CHR$ Key Sequence

29 ID GS lcTu;

30 1E RS ICTLl.

31 1F US lcTu,

32 20' SPACE SPACE [SPACE]

33 21 ! ! [SHIFT] 1

34 22 " " {SHIFT] 2

35 23 # # [SHIFT] 3

36 24 $ $ [SHIFT] 4

37 25 % % [SHIFTI,

38 26 & & [SHIFT] 5

39 27 ' ' [SHIFT] [SPACE]

40 28 (([SHIFTI{t]

41 29)) [SHIFTI[+]

42 2A % i .

43 2B+ + +

44 2C ,

45 2D - - -

46 2E .) .

47 2F / / i

48 30 0 0 0

49 31 1 i 1

50 32 2 2 2

51 33 3 3 3

52 34 4 4 4

53 35 5 5 5

54 36 6 6 6

55 37 7 7 7

h6 38 8 8 8

57 39 9 9 9

58 3A : : [SHIFT];

59 3B ; ; ;

60 3¢ < < [SHIFT] O

61 3D = = [SHIFTI{ENTER]

62 3E > > [SHIFT].

63 J3F 1 ? [SHIFT)[+/-]

64 40 @ @ lcTLl 2

65 41 A A ISHIFTIA

66 42 B B {SHIFTI B
Appendices A-5

Appendix B: ASCIl Character Codes (Continued)

ASCIl Table ASCIl Code Displayed E ASCH Table ASCIl Code Displayed
(Continued) DEC HEX Character Using CHR$ Key Sequence E (Continued) DEC HEX Character Using CHR$ Key Sequence
67 43 C C ISHIFTIC : 105 69 i i 1
68 44 D D [SHIFTID 106 6A i J
69 45 E E ISHIFTIE 107 6B k k K
70 46 F F [SHIFTIF 108 6C | , (L
71 47 G G [SHIFTIG 109 6D m m M
72 48 H H [SHIFTIH 110 6E n n N
73 49 i | [SHIFTTI 111 6F o) o]
74 4A J [SHIFTIJ 112 70 »p p P
75 4B K K [SHIFTIK 113 71 q q Q
76 4C L L [SHIFTIL 114 72 r r R
77 4D M M [SHIFTIM 115 73 s s S
78 4E N N [SHIFTIN 116 74 1 t T
79 4F 0 0 [SHIFT]I O 117 7 u u U
80 50 P P [SHIFT]IP 118 76 v v v
81 51 Q Q ISHIFTIQ 119 77 w w w
82 H2 R R ISHIFTIR 120 78 X X X
33 53 S S ISHIFTIS 121 79 vy y Y
84 54 T T [SHIFTIT 122 T7A =z z 2
8 55 U u [SHIFTIU 123 7B { { [cTUs
86 56 v v [SHIFT]V 124 7C | | [cTu1
B7 57 W W [SHIFTI W 125 7D) } [cTu?
88 58 X X [SHIFT] X 126 7E -~ —- [CTU 4
89 50 Y Y [SHIFT] Y 127 TF - [SHIFTII-]
90 HA Z 7 [SHIFTIZ 128 80 ** [FNlO
91 5B [[[cruis 129 81 b [FN]1
92 5C ¥ ¥ [cTL/ 130 82 o [FN] 2
a3 5D] 1 [CTL 9 131 83 ** {FN] 3
94 5E - [SHIFT] 6 132 84 * IFNI 4
95. bHF _ - [cTus 133 85 * [FN] 5
96 60 N . [cTL] 2 134 86 *x IFNl 6
97 61 a a A 135 87 o [FNI7
98 62 b b B 136 88 ** [FNi8
99 63 ¢ c C 137 89 ** [FNlg
100 o4 d d D 138 8A
101 65 e e E 139 8B
102 66 f f F 140 8C
103 67 g g G 141 8D [SHIFT]/
104 68 h h H 142 8E ’ [SHIFT] *
A-B Appendices Appendices A-7

Appendix B: ASCIl Character Codes (continued)

Displayed
HEX Character Using CHRS Key Sequence

& ASCIll Table

T H 3

Ul &

s N R N A (T

 (Continued)

[SHIFT] -
[SHIFT] +
lcTu -
[cTH -
lcTul +
IFNI[<]
[FN1{—]
[FNI[t]
IFNIL 4]
[FN1 ¢
[FN] *
[FN] -
[FNI +
IFN].
IFNI,
[FNI;
[FN1L+/-]
[FNIICLRI
[FNI A
[FNI B
[FNIC
[FNID
[ENI E
IFNI F
[FN] G
[FNIH
[FN]I
[FNEJ
[FNI K
[FN] L
[FNIM
[FNIN
IFNi O
[FNI P
[FNl G
[FNIR
[FN]S
{FNIT

ASCIl Table ASCIl Code
{Continued) DEC.
143 8F
144 90
145 9]
146 92
147 93
148 94 NEW
149 95 NUMBER
150 96 RENUMBER
151 97 FRE(
152 98 VERIFY
153 9% SAVE
154 9A 0D
155 9B LIST
156 9C FORMAT
157 9D OPEN
i58 9E ERROR
158 9F SGN(¢
160 A0 DELETE
161 Al FOR
162 A2 READ
163 A3 PAUSE
164 A4 NEXT
165 A5 TAN(
166 A6 |IF
167 A7 THEN
168 A8 ELSE
169 A9 SOQR¢
170 AA GOTO
171 AB GOSUB
172 AC RETURN
173 AD RESTORE
174 AE DATA
175 AF CHRS(
176 B0 CALL
177 Bl SIEN(
178 B2 Pl
179 B3 TO
180 B4 LN¢
A8 Appendices

ASCIl Code Displayed

DEC HEX Character Using CHR$ Key Sequence
181 BS EXP(3 IFNIU

182 B6 INPUT i IFNIV

183 B7Y cCos¢ . # [FN] W

184 B8 USING m [FNI X

185 B9 LOG(5 [FNIY

186 BA PRINT 3 IFNlZz

187 BB BREAK * [FN]IBREAK]
i88 BC STOP [SHIFTI[RUN]
i8¢ BD =

190 BE CONTINUE IFNI[RUNI
191 BF RUN L [RUN]

192 CO i

193 Cl F

194 €2 gl

195 €3 7

196 C4 }-

197 Cbh +

198 €6 z [+1-}

199 C7 7

200 C8 T

201 CO 4

202 CA 1

203 CB (i

204 CC z

206 CD

206 CE s

207 CF 2

208 DO z [SHIFTI[FN] O
209 D1 £ [SHIFT]IFN] 1
210 D2 {SHIFTIIFN] 2
211 D3 E ISHIFTIIFN] 3
212 4 T ISHIFTIIFN] 4
213 D5 1 [SHIFTIIFN] 5
214 DB = [SHIFTI[FN] 6
215 D7 3 [SHIFTIIFN] 7
216 DS i {SHIFTIIFN] 8
217 D9 i [SHIFTIIFN] 9
218 DA L

Appendices

A-G

Appendix B: ASCII Character Codes (Continued)

B Appendix C: Logical Operations on Numbers

The logical operators AND, OR, NOT, and XOR can be used on
integer numbets in the range — 32768 to 32767. This appendix
briefly describes the binary number system, conversion of
decimal numbers to their binary equivalents, and the operation of
the logical operators.

ASCIH Table
(Continued)

ASCIi Code Displayed
DEC HEX Character Using CHR$ Key Sequence
219 DB 0
220 DC o
221 DD .
222 DE
223 DF =
224 EO v
225 Fi] [SHIFT][+]
226 E2 &
227 E3 =
228 E4 £
229 E5 PB o [SHIFTI 9
230 E6 OFF o [OFF]
231 E7 BREAK o {BREAK]
232 E§ UP r [t]
233 ES DOWN - [+]
234 EA i
235 EB
236 EC 4
237 ED 3
238 EE fi
239 EF
240 F0 MODE b [MODE]
241 F1 |
242 F2 "

243 F3
244 F4
245 F5 0 [CTUIRUN]
246 F6 DEL T ISHIFTI 7
247 F7 INS T [SHIFT] 8
248 F8 HOME = leTdlt)
249 F9 DELREST u [cTdly]
250 FA CLR ¥ [CLR]
251 FB BTAB R eTui-]
252 FC LEFT A i+l
253 FD FTAB s [cTul—+1
254 FE RIGHT [~)
255 FF | [CTL) [SPACE]

A-10 Appendices

Number

Systems

: Decimal

E Notation

8l Binary

Notation

Binary (base 2) notation is another way Lo express the value
of a number. Our usual system, decimal (base 10) notation,
uses combinations of the ten digits zero through nine.
Numbers written in binary notation use only the two digits
zero and one. Each position occupied by a binary digit (a ()
or 1) is called a bit.

In decimal notation, each digit in a number represents a
power of 10. For example, the number 2408 in decimal
notation can be written in expanded form as follows.

2= 10N+ (@ x 107+ (0x 101+ (8 x 107
This is equal to 2408 as shown below.

23 10P =2 x 1000 = 2000
4x HP=4x 100= 400
0x10'=0x 10=
Bx10°-8x 1= 8§

2408

In binary notation, each digit represents a power of two.
For example, the binary number 101101 can be written as

(127) 5 (0 X2 +{1 % 2%+ (12 22) + (0 % 2"} + {1 x 2")

For reference purposes, the powers of two and thejr
decimal values are as follows.

21-1 2123 213 L '2:! 23 21 Bl

16384 8192 4096 ... 8 4 2 i

For the 'i‘I—74, the 2 bit must be zero to interpret the bits as
stated here.

Appendices A1

Appendix C: Logical Operations on Numbers (Continued)

Binary Notation
(Continued)

Example

The decimal equivalent of 101101 can be calculated as
shown below,

1x25=1x32=32
Ox24=0x16= 0
1x2%=1x 8= 8
1x22-1x 4= 4
0x21=0x 2= 0
1x20=1x 1= 1

45

To convert a number from decimal notation to binary
notation, repeatedly reduce the decimal number by the
greatest power of 2 not larger than the number until there is
no remainder.

The decimal number 77 can be converted to binary notation
using the following technique.

The largest power of 2 contained in the number 77 is 64 (2%).
A lisplaced in that position of the binary number as shown
below.

128 64 32 16 8 4 2 1

0 1 0 0 0 0 0 0

Reducing 77 by 64 leaves a remainder of 13. The largest
power of 2 contained in 13 is 8 (2%) and a 1 is placed there.
Reducing 13 by 8 leaves a remainder of 5. The largest power
of 2 contained in 5 is 4 (2%} and a 1 is placed there. Reducing
5 by 4 leaves a remainder of 1. Place a 1 in the 2° position.

The decimal number 77 in binary notation is shown below.

128 64 32 16 8 4 - 2 1

)] 1 0 0 1 1

A2 Appendices

Example
(Continued)

Logical
Operations

You can check the accuracy of the conversion as follows.

1x26=1x64=64.
0x2'=0x32= 0
0x2t=0x16= 0
1x23-1x 8=
1x22=1x 4= 4
0x2'=0x 2= 0
Ix20=1x 1= 1
77

When logical operations are performed on numbers within
the valid range, the TI-74 first converts the values to their
16-bit binary equivalents. The logical operations are
performed on a bit-by-bit basis, and the resulting binary
number is converted back to decimal notation.

The left-most bit is reserved to indicate the sign (0 = positive;
1= negative). Therefore, the largest number that can be
represented by the remaining 15 bits is 32,767.

If a decimal number with a fractional part is used with a
logical operator, the number is rounded before any logical
operation is performed.

The following are the rules for the four logical operators.

Operator Rule

AND If both bits are 1s, the result is 1.
If either bit is 0, the result is 0.

OR If either bitis a 1, the result is 1.
If both bits are 0, the result is 0.

XOR If either bit, but not both, is 1, the result is 1.
If both bits are the same, the result is 0.

NOT If the bit is 0, the resultis 1.
If the bit is 1, the result is 0.

Appendices A-13

Appendix C: Logical Operations on Numbers (Continued)

Example

A-14

Appendices

When the logical operations are performed on tpe numbers Negative Binary
77 and 67, the numbers are first converted to b}nary Numbers
notation. The number 77 is represented in 16 bits as o
0000000001001101 and the number 67 is represeqted in 16
bits as 000000000100001 1. The results of performing an
AND, an OR, and an XOR on the two values are shown
below.

AND
(77) 0000000001001101
67 000000000 100001 1
(65) 0000000001000001

OR
TN 0000000001001101
(67} 000000000100001 1
(79 0000000001001111

XOR
(77) 0000000001001101
(67) 0000000001 00001 1
(14) 0000000000001110
The results of performing an AND, OR, and an?{OR on 77
and 67 can be cbtained on your TI-74 by entering the
following.
'PHINT 77 AND 67; 77 OR 67, 77 XOR 67

Hierarchy of
Operators

Using the operator NOT on 77 and 67 is shown below.
NOT 77 NOT 67

(77T) 0000000001001101 (67} (OOOOOCOD100001 1

(=78} 1111111110110010 (-68) 1111111110111100

To display the results of NOT 77 and NOT 67, enter:

PRINT NOT 77; NOT 67

Note that the results of NOT 77 and NOT 67 have a 1 in the
left-most bit that denotes that they represent negative
numbers. In the TI-74 a negative binary number is
represented as the two’s complement of the absolute value
of the number.

To obtain the two’s complement of a binary number,
change each 0 bit to 1 and each 1 bit to 0. Then add 1 to this
changed nurnber. For example, the two's complement of 77
is obtained as shown below,

77 in binary G000000001001101
Changeeachbit 1111111110110010
Add 1 1
—77 in binary 1111111110110011

A more detailed description of binary arithmetic is beyond
the scope of this appendix. Refer to a standard reference
book on this subject for more information.

The numeric operators on the TI-74 have a designated
priority of completion as follows. However, you can use

parentheses to group operations in any order regardless of
the hierarchy.

Unary operators {including NOT)
Arithmetic Operators

Retational Operators

Logical Operators (XOR, AND, OR)

Appendices A-1b

Appendix D: Error Me ssages

The follow ing lists describe each emor message generated by the
T1-74. The lirstlist, arranged alphabetically by message, provides
detajled ir formation about probable error causes. The second

list, arangged in ascending order by emor code, serves as a cross
referonce o locate the message associated with a particular error
code.

Coping With
Emors

Messages Listed
Alphabetically

A16

When an error message is displayed, the [-], [« [t],[}]
and [SHIFTI [PBI keys can be used to display additional
system error information and to edit an erroneous line.

is used when an error occurs after a line is
entered. [SHIFT]IPB] displays the erroneous
entry that can then be edited and entered

again.

[SHIFTI[PB]

used when an error occurs during program
execution to display the program line that
was executing when the error occurred.

1t],[4]

Errors can be handled in a program using ON ERROR and
CALL ERR. Refer to chapter 2 for more information.

Bad argument

» Invalid argument provided for one of the built-in
numeTic, string, or file functions such as LOG, CHRS$, or
EOQF.

» Invalid argument provided for one of the option clauses
in an &nput/output statement such as AT, SIZE,
VALIDATE, and TAB.

» Argurments in a CALL statement did not match the
requirements for the subprogram called.

Bad data

» Entered more than one value at a time in an INPUT or
ACCEPT statement.

» .Invalid data from a file in an INPUT or LINPUT

statermnent.

Appendices

5&#-‘«@* b

Messages Listed
Alphabetically
{Continued)

Bad dimension

» Specified array dimension was negative or was not a
numeric constant. .

» Too many elements specified for an array.

More than three dimensions specified for an array.

» Missing comma between dimensions or missing
parentheses around dimensions of an array.

» Subscript value too large.

» Missing comma between subscripts or missing
parentheses around subscripts.

» Incorrect number of subscripts.

v

Bad program type

» Entered a BASIC program line with a Pascal or other
non-BASIC program in memory.

» Entered a SAVE, VERIFY, BREAK line-list, UNBREAK
line-list, NUMBER, RENUMBER, LIST, CONTINUE #ine-
number, RUN line-number, or DELETE line-group
command with a Pascal or other non-BASIC program in
memory.

» Attempted to CALL a main program or RUN a
subprogram.

Bad value

» Index value in ON GOTO or ON GOSUB statement was
zero or greater than the number of line number entries.

» Raised a negative value to a non-integer power.

* Invalid value provided for one of the option clauses in an
input/output statement such as AT, SIZE, REC, and
VARIABLE.

» Attempted a logical operation (AND, OR, XOR, or NOT)
with a value less than - 32768 or greater than 32767,

Appendices AT

Appendix D: Error Messages (Continued)

Messages Listed Break

Alphabetically > A breakpoint occurred or the break key was pressed. Messages Listed Division by zero

(Continued) Alphabetically » Evaluation of a numeric expression includes division by
Can't do that {Continued) zero; result is replaced by 9.9909999999999E + 127 with
» Attempted to perform a string operation as an immediate the appropriate algebraic sign.
calculation. Extens ion

» Entered CONTINUE command when not stopped at a
breakpoint.

» A SUBEXIT or SUBEND statement was encountered
when no subprogram was called. For example,
CONTINUE line-number specified a line in a subprogram
after the main program stopped at a breakpoint.

Complex

» Too many functions, operators, or levels of parentheses
pending evaluation; expression must be simplified or
performed in two or more steps in separate statements.

contents may be lost

» When the power was turned on, the computer
determined that the contents of memory are not the
same as when the power was turned off. However, some
system data was correct, so the loss may or may not be
serjous. This message often appears when the [RESET]
key is pressed while the power is on.

DATA error

» Out of data in the current program or subprogram.

» Improper data list in a DATA statement. For example,
items not separated by commas.

» During an attempt to read a numeric item, the data read
was not a valid representation of a numeric constant.

A-18 Appendices

» Attempted to execute an extended BASIC statement or
function without the extension in the system.

» May also occur when the contents of memory have been
improperly modified (see System error).

File error

» File-number specified in an OPEN statement refersto a
file already opened.

» File-number in an input/output statement, other than
OPEN, did not refer to an open file.

» File-number or device-number in an input/output
statement was greater than 255.

» Attemnpted to INPUT or LINPUT from a file opened in
OUTPUT or APPEND mode.

» Attempted to LINPUT from an internal-type file.

» Attempted to PRINT to a file opened in INPUT mode.

» Used REC clause in an input/output statement that
accessed a sequential file.

» Missing period or comma after device number in detice
or filename specification.

Appendices A-19

Appendix D: Error Messages (Continued)

Messages Listed
Alphabetically
{Continued)

FOR/NEXT error

» More FOR statements than NEXT statementsin a
program or subprogram. Note: The line number reported
is the last line of the current program or subprogram, not
the line containing the unmatched FOR statement.

» More NEXT statements than FOR statementsin a
program or subprogram.

» Control-variable in NEXT staterment did not match
control-variable in corresponding FOR statement.

» Executed 2 NEXT statement without previously
executing the corresponding FOR statement.

» Too many levels of nested FOR NEXT loops.

» Same control variable used in nested FOR NEXT loops.

IMAGE error

» Null string provided as image string.

» Numeric format field specified more than 14 significant

» Print-list included a print-item but image string had only
literal characters.

in use
» Called an active subprogram; subprograms may not call
therselves, directly or indirectly.

initialized

» Displayed when circumstances force the complete
initialization of the system. The system is initialized
when the power is turned on and the computer
determines that:
- the contents of memory have been destroyed (may

" occur after changing the batteries),
- expansion RAM previcusly appended through the
ADDMEM subprogram is no longer in the system.
» May also appear when the [RESET] key is pressed (much

of the same memory checking is performed).

A 20 Appendices

Messages Listed
Alphabetically
{Continued)

1 /0 error

» An error was returned by a peripheral device during an
input/output (1/0) statement or command, or while using
the EOF function. A special I'O code is returned by the
device and is displayed after the message. Common /O
error codes are described in the 170 ERROR CODES
section of this appendix. I/O error codes for the cassette
recorder are listed later in this appendix.

The error code is followed by the file-rumber or the
device-number, whichever is appropriate to the
statement or command being executed. A number sign
indicates a file-number and quotation marks indicate a
device-number. Both the common codes and other
device-dependent I/O error codes are described in the
peripheral manuals.

Line number error

» Could not find a line number specified in BREAK,
CONTINUE, DELETE, GOSUB, GOTO, ON ERROR,
USING, RESTORE, RUN, or BREAK.

» RENUMBER could not find a referenced line. The

command replaced the reference by 32767, which is not

a valid line number.

BASIC statement referred to a line number that was

lower than the first (or higher than the last) line number

of the current program or subprogram.

Line number specified in a statement or comumand was

less than 1 or greater than 32766.

» RENUMBER command generated a line number greater
than 32766.

L

L

Appendices A21

Appendix D: Error Messages (Continued)

Messages Listed
Alphabetically
{Continued)

A.22

Memory full

[J

>

Insufficient space to add, insert, or edit a program line.

Insufficient space to allocate variables for a program or
subprogram.

Insufficient memory to allocate space for a string value.
Insufficient space to load a program or subprogram into
memory.

Insufficient space to OPEN a file or device.

Insufficient space to assign a user-assigned string.

smatch

Used a string argument where a numeric argument was
expected or a numeric argument where a string
argument was expected.

Assigned a string value to a numeric variable or a
numeric value to string variable.

A numeric variable or expression was provided as a
prompt in an INPUT or LINPUT statement.

issing statement

An error-processing subroutine terminated with a
SUBEXIT or SUBEND statement instead of a RETURN
statement.

SUBEND missing in a subprogram.

Encountered a SUB statement within a subprogram; a
subprogram cannot contain another subprogram.
Executed a RETURN statement without, previously
executing the corresponding GOSUB statement.

Appendices

Messages Listed
Alphabetically
(Continued)

Name table fult
» Defined more than 95 variable names.

No RAM

» Called ADDMEM subprogram with no cartridge installed
or with a cartridge that had no available RAM.

» Called PUT or GET with no cartridge installed or with a
cartridge that has no RAM.

Not defined

» Atterapted to perform a calculation with a variable that
has not been defined.

»= Encountered an undefined variable in a program or
subprogram. This error can occur when CONTINUE lire-
number specifies a line that is not in the same program
or subprogram where the breakpoint occurred.

Not found
» RUN statement did not find the specified program.
» CALL statement did not find the specified subprogram.

Overflow

» A numeric value was entered or a numeric expression
was evaluated that resulted in 2 number whose absolute
value was greater than 9.9999999995999E + 127, the
value is replaced by 9.9999999999999E + 127 with the
appropriate algebraic sign.

Parenthesis

» A statement or expression did not contain the same
number of left and right parentheses.

» Left and right parentheses in a statement or expression
did not match up. For example, SIN(1 + JPL/2X where
SIN(1 +(PE/2)) was intended.

Appendices A-23

B L

Appendix D: Error Messages (Continued)

Messages Listed
Alphabetically
{Continued)

A24 Appendices

Previously defined

» Variable in a2 DIM statement appeared previously in the
current program or subprograrm.

» Variable referenced using the wrong number of
dirensions. For example, a variable was first used as a
simple variable and later used as an array in the same
program or subprogram.

Protection error

» Attempted to insert, delete, or edit a line with a
protected program in memory.

» Aitempted to LIST, SAVE, NUMBER, or RENUMBER a
protected program.

Stack underflow

» Attempted to remove a value from the execution control
stack when it was empty. This error only occurs when
the contents of memory have been improperly modified
(see System error).

Syntax

» Missing parentheses or quotation mark(s).

» Missing statement separator (:} or tail remark symbol {!).

» Missing or extra comuna(s). For example:

— between arguments in argumeni-list

- between line numbers in lire-number-list

— between variables in variable-tist

— after file-number in input/output statements

» Missing hyphen in line sequence.

» Invalid character in statement. For example %", *?7"",
U] ete., are valid only within quoted strings or
in an IMAGE or REM statement.

» Invalid character within a numeric constant.

Messages Listed
Alphabetically
{Continued}

syntax (Continued)
» Improperly placed keyword. For example:
_ DIM or SUBEND is used after a DIM statement in a
multiple statement line
— a statement begins with a non-statement keyword
such as TO, ERROR, VARIABLE, SIZE
_ amisspelled variable results in a keyword ora
misspelled keyword in a variable
— akeyword is used as a variable, such as ON VAL
GOTO or IF STOP =1 THEN
» Missing keyword. For example:
~ no TO after FOR
— no THEN after IF
_ 1o GOTO or GOSUB after ON numeric-expression
_ 1o STOP, NEXT, or ERROR after ON BREAK
- no PRINT, NEXT, or ERROR after ON WARNING
» SUB statement used after the first statement in a
multiple statement line.
» Statement other than REM, !, END, or SUB used aftera
SUBEND statement.
» Missing or invalid filename In OLD, SAVE, VERIFY. or
DELETE file command.
» Duplicated option in input/output statement. For
example:]
— more than one AT, SIZE, ERASE ALLis in ACCEPT
or DISPLAY
_ more than one string expression is in VALIDATE
- more than one open-mode, file-type, file-organization
isin OPEN
» Missing argument or clause. For example:
_ 1o limit value after TO or increment value after STEP
_ 1o line number or statement after THEN or ELSE
_ o string-constant following IMAGE
. no line-number or string-expression after USING
_ no value before or no value after a binary operator
suchas*,/,~,or&
— no input variable following INPUT, LINPUT,
ACCEPT, or READ

Appendices A

Appendix D: Error Messages (Gontinued)

Messages Listed Syntax (Continued)
Alphabeticaliy - Invahd argument or clause. For example:
(Continued) a string variable is used as control-variable in FOR

A26

— anumeric variable is used as input variable in
LINPUT
— VALIDATE or NULL is used in a DISPLAY statement
— USING or TAB is used with an internal-type file
- the size of print item exceeds record size for an
internal-type file
* ACCEPT, CALL with BASIC-language subprograms,
GOSUB, GOTO, INPUT, LINPUT, ON ERROR line-
number, ON GOSUB ON GOTO, READ RESTORE line-
number, SUB, SUBEX[T, and SUBEND statements can
be executed only in a program.
» SUBEXIT or SUBEND statement encountered in a main
program.
» Used CALL ADDMEM, CONTINUE, DELETE line-

group, LIST, NEW, NUMBER OLD, RENUMBER, SAVE,
or VERIFYmaprogram

System error

> This error generally occurs when the contents of
memory have been lost or improperly modified. For
example, memory may be modified by a loss of power.

Too long
*» The internal representation of a program line or
immediate statement(s) was too long.

*» The LIST representation of a program line exceeded 80
characters.

* More than 15 characters in a variable or subprogram
name.

Truncation
*» String operation (concatenation or RPT$) resulted in a

string with more than 255 characters; the extra
characters are discarded.

Appendices

Error Codes
Listed in
Ascending Order

Code Message

E0or WO | /0 error

El or Wl Syntax

E2 Comp | ex

E3or W3 Mismatch

Ed4or W4 Bad value

E5 Stack underflow
E6 FOR/NEXT errar
E7or W7 Bad data

E8 Bad dimension

E9 Previously defined
E10 Can't do that
Ell Line number error
E12 Missing statement
E13 Not found

El4 Bad program type
El5 Protection error
El6 In use

E17 or W17 Not defined

E18 Image error

E19 File error

E20 Name table full
E21 or W21 Parenthesis

E22 Too long

E23 or W23 Bad argument

E24 Extension missing
W2b Overflow

W26 Division by zero
wa7 contents may be lost
Ww2s Truncation

w20 Break

W30 Initialized

E31 No RAM

E32 DATA error

Ei26 System error
E127 Memory full

Appendices A-27

Appendix D: Error Messages (Continued)

/O Error Codes The following list details the standard input/output (L0}
error codes. Some peripherals may have additional error
codes; if so, they are explained in the peripheral manual.
I/0 errors are displayed in one of the following forms.

» |/0 error ccc Hfff
» 1/0 error ccc *ddd”
where ccc is the IO error code listed below or in the
peripheral manuai, fff is the file number assigned in an
OPEN statement, and ddd is the device number associated
with the peripheral device.
: Code Definition
1 DEVICE/FILE OPTIONS ERROR
* Incorrect or invalid option specified in
» Filename too long or missing in
2 ERROR N ATTRIBUTES
» Inan OPEN statement, incorrect attributes (file-
type, file-organization, open-mode, record-
length) were specified for an existing file.
3 FILE NOT FOUND
* The file specified in one of the following
operations does not exist.
— OPEN statement using the INPUT attribute
— OLD ““device. filename”
- RUN “'device. filename”’
- DELETE “‘device. filename’
4 DEVICE/FILE NOT OPEN
» Attempted to access a closed file with a INPUT,
LINPUT, PRINT, or CLOSE operation,
» File specified in EOF function is closed.
A.28 Appendices

1O Error Codes
{Continued)

Code Definition

5

DEVICE/FILE ALREADY OPEN

» Attempted to OPEN or DELETE an open file.

= Attempted to FORMAT storage medium on a
device that has a file open.

DEVICE ERROR

» A failure has occurred in the peripheral. This
error can occur when directory information on a
medium was lost, the peripheral detected a
transmission error or a medium failure, ete.

END OF FilLE
» Attempted to read past the end of the file.

DATA/FILE TOO LONG

» Atterapted to output a record that was longer
than the capacity of the device.

» A file exceeded the maximum file length for a
device.

WRITE PROTECT ERROR
= Attempted to FORMAT a write-protected storage
medium.

- Attempted to OPEN a write-protected file in

OUTPUT or UPDATE mode.
» Attempted to DELETE a file from a write-
protected medium.

10

NOT REQUESTING SERVICE

» Response to a service request poll when the
specified device did hot request service. (This
code is used in special applications and should
not be encountered during normal execution of
BASIC programs.)

11

DIRECTORY FULL
= Attempted to OPEN a new file on a device whose
directory is full.

Appendices As29

30

Appendix D: Error Messages (Continued)

IO Error Codes
{Continued)

Appendices

Code Definition

12

BUFFER StZE ERROR

» When an existing file was opened for input or
update, the specified record length (VARIABLE
XXX) was less than the length of the largest
record in the existing file.

» The VERIFY command found the program in
memory was smaller than the program on the
storage medium.

13

UNSUPPORTED COMMAND
» Attempted an operation not supported by the
peripheral.

14

DEVICE/FILE NOT OPENED FOR OUTPUT
» Attempted to write to a file or device opened for
input.

15

DEVICE/FILE NOT OPENED FOR INPUT
» Attempted to read from a file or device opened
for output or append.

16

CHECKSUM ERROR
» The checksum calculated on the input record
was incoirect.

17

RELATIVE FILES NOT SUPPORTED
» Device specified in OPEN does not support
relative record file organization.

19

APPEND MODE NOT SUPPORTED
» Device specified in OPEN statement does not
support append mode.

20

OUTPUT MODE NOT SUPPORTED
» Device specified in OPEN statement does not
support output mode.

11O Emror Codes
(Continued)

Code

Definition

21

INPUT MODE NOT SUPPORTED
» Device specified in OPEN statement does not
support input mode.

22

UPDATE MODE NOT SUPPORTED
» Device specified in OPEN statement does not.
support update mode.

23

FILE TYPE ERROR

» File type specified in OPEN statement is not
supported by the specified device.

» File type specified in OPEN statement does not
match file type of existing file or device.

24

VERIFY ERROR
» Program or data in memory does not match

specified program or storage medium.

26

LOW BATTERIES IN PERIPHERAL
» Attempted an /O operation with a device whose
batteries are low.

26

UNINITIALIZED MEDIUM

» Attempted to open a file on uninitialized storage
medium.

» Attempted to open a file on storage medium that
has been accidentally erased or destroyed.

32

MEDIUM FULL
» No gvailable space on storage mediurn.

39

CONTROL LINES HELD LOW
» A device connected to the IO bus is interfering
with communication.

265

TIME-OUT ERROR
» Lost communication with the specified device.
» Specified device is not connected to the I/O bus.

Appendices A-31

Appendix E: Numeric Accuracy

The TI-74, like all computers, operates under a fixed set of rules
within preset limits. The mathematical tolerance of the computer
is controlled by the number of digits it uses for calculations.

L

Calculation
Accuracy

The TI-74 uses a minimum of 13 digits to perform
calculations. The results are rounded to 10 digits when
displayed in the default display format. The computer’s 5/4
rounding technique adds 1 to the least significant digit of
the display if the next nondisplayed digit is five or more. If

this digit is less than five, no rounding occurs. Without these

extra digits, inaccurate results such as the following would
frequently be displayed.

1/3 x 3= 9999009999

This result occurs because 1/3 is maintained as .33333333:33
in the finite internal representation of a number. However,
when 1/3 x 3 is rounded to 10 digits, the answer 1 . is
displayed.

The more complex mathematical functions are calculated
using iterative and polynomial methods. The cumulative
rounding error is usually kept beyond the tenth digit so that
displayed values are accurate. Normally there is no need to
consider the undisplayed digits. However, certain
calculations may cause the unexpected appearance of these
extra digits as shown below.

2/3= 66666666666667 and 1/3=.33333333333333
23 - 1/3~ 1/3=_00000000000001 (displayed 1.E-14)

Such possible discrepancies in the least significant digits of a
calculated result are important when testing if a calculated
result is equal to another value. In testing for equality,
preeautions should be taken to prevent improper
evaluation.

A-32 Appendices

Numeric
Compatrisons

Extremely Small
Values

Internal Numeric
Representation

A useful technique is to test whether two values are
sufficiently close together rather than absolutely equal as
shown below.

Instead of
IF X=Y THEN ...

use
IF ABS(X—Y) < 1E—11 THEN ...

When working with values very close to zero, you may get
unexpected results because any number whose absolute
value is less than 1 x 10 ¥ becomes zero.

Instead of
SQR(3E—T70~2+4E~-T70~2)

use
({E-70*SQR(3~2+4"2)

The TI-74 uses radix-100 format for internal calculations.
Radix-100 makes possible the extensive numeric range of
— 9 9009099099999F, + 127 through - 1.E - 128; zero; and
then + 1.E— 128 through +9.9999999999909E + 127.
Another benefit of this technique is 13, and sometimes 14,
digits of internal precision.

Appendices A-33

Appendix F: Differences Between T|-74 BASIC and Others

This section is for programmers who have leamed BASIC on
another computer before using a TI-74. The lists below highlight
features of TI-74 BASIC that may differ from the BASIC on an
carfier machine.

Commands and
Statements

You can use DISPLAY, as well as PRINT, to place
information in the display. You usually need to include a
PAUSE statement after a DISPLAY or PRINT statement so
you can view the displayed information.

If you want a prograrm to stop so you can check its progress
and then resume execution, you should set a breakpoint.
Refer to page 2-16.

Five instructions of TI-74 BASIC are available in
abbreviated form.

CONTINUE CON

DELETE DEL
NUMBER NUM
REM !

RENUMBER REN

The format string for a PRINT USING statement can be
placed on a separate line. Refer to page 2-47.

The TI-74 has extra functions that ehable you to calculate
hyperbolic functions and their inverses.

You can include a quotation mark within a string by typing
two consecutive quotation marks. Refer to page 1-9.

You can perform immediate calculations without using
PRINT. Examples are shown in the T1-74 User's Guide on
page 3-14.

A34 Appendices

Program Lines

Variables

R e - ‘/:A,A i ———

The TI-74 protects program lines from accidenta! erasure by
requiring the DELETE or NEW comumand. Entering only the
line number and pressing [ENTER] does not delete the line.

Extra spaces are automatically deleted when you entera
program line. This conserves prograim memory and prevents
the indentation of a program segment.

You can use the NUM command to automatically generate
line numbers as you type a program.

A shorteut to listing a specific program line is the line-
number 111 key sequence.

All characters in a variable name are significant. Refer to
page 1-4 for the rules of variable names.

A maximum of 95 variables can be assigned values
concurrently.

i the
The variables of a subprogram are separate from -
variables of the main program even though they may have
the same variable name. Refer to the page 2-121.

All numeric variables are full precision floating poi.n'_[. No
variables are designated for integer or double precision.

Appendices A-35

Appendix F: Differences Between T|-74 BASIC and Others (cont)

Arrays

A36

Appendices

The TI-74 automatically defines all arrays as beginning with
subscript 0.

_If Yyou enter a positive non-integer subscript, the subscript is
interpreted as the integer nearest its value.

In one DIM st.,atement, you can dimension several arrays.
However, a line can contain only one DIM statement.

_If you include a DIM statement in a multiple statement line,
it must be the last statement in the line.

The TI-74 automatically defines a default array if you use
an array variable without first dirnensioning the array. The
defaulF array has 11 elements (numbered 0 through 10) for
each dimension that you specified in the variable.

Appendix G: Index

Use this list of items to find a topic of reference. Also see the

Index of the T1-74 User’s Guide.

e ik,

A

Absolute value, 2:3

ABS function, 2-3

ACCEPT, 2-4

Accuracy, A-32

ACOS function, 2-8

ACOSH function, 2-9
ADDMEM, 2-10

Algebraic hierarchy, 1-6, A-15
Alphabetically arranged keywords, 23
AND, i-13; A-11
Antilogarithm, 2-36
APPEND, 2-83

Arceosine, 2-8

Arcsine, 2:12

Arctangent, 2-14
Argument, subprograms, 2-17, 2-121
Arithmetic calculations, 1-6
Arrays, 1-11

ASC function, 2-11

ASCII character codes, A-4
ASIN function, 2+12

ASINH function, 213
Assigning values, 1-4
Assignment statement, 2-63
Asterisks, 2-48

AT, 2+5,2-30

ATANH function, 2-14
ATN function, 2:15
Attributes, 2-83

Available memory, 240

B
BASIC,
differences of, A-34
functions, 1-7, 1-10
keywords, 2-3
Binary notation, A-11
BREAK, 2-16
Breakpoints, 2+ 16

C
Calculation accuracy, A+32
CALL,1-15,2-17

ADDMEM, 2-10

ERR, 2-35

GET, 2-41

10, 2.59

KEY, 2-60

PUT, 2-98
Cartridge memory, 3-23
Cassette prompts, 3-5
Cassette recorder

connections, 3-4

settings, 3:6, 3-9
Character set, A-4
Checking a recorder, 3+6
CHR$ function, 2-18
Clearing memory, 2-69
CLOSE, 2-19
Commands, A-2
Common logarithm, 2-68
Comparisons, 1+12
Concatenation, 1-9
Conditions, 1-12
Connecting a recorder, 3-4
Constants, 1-8
CONTINUE, 2-20
Copy program mermory, 2-98
COS function, 2+21
COSH function, 2-22
Cosine, 2:21

D

DATA, 2-23

Data files, 1+18,:3-16
Data format, 2-47
Data-type, 2-82
Debugging, 1+16
Decimal field, 2-48
DEG, 2-25

Degrees, 2:25

Appendices A37

Appendix G: Index

s

D (Continued)

DELETE, 2-26

Differences of BASIC, A-34
Difficulties, recorder, 3-18
DIM, 2:28

Dimensicns, 1-11
DISPLAY, 2:30
Display-type data, 2-82
Displaying information, 1-5
Duplicating & line, 1-2

E

END, 233

Entries, 1-4

EOF, 2-34

ERASE ALL, 2.5

Erase field, 2-4

ERR, 2:35

Error handling, 1-16

Error messages, A+ 16

Error subroutine, 235

Evaluation order, 1-6,A: 15

Exclamation point, 1-3

Execution sequence
control, 114

EXP function, 2-36

Expanding memory, 2-10

Exponentiation symbol, 1-6

Expressions, 1-6

External devices, 2-82

F
Fields, 2-48
File, 1-18
cassette, 3-16
names, 1+18
nurmber, 2-82
organization, 2-83
FOR TO STEP, 2-37
FORMAT, 2-39
Format Conventions, 2+2

A.38 Appendices

F {Continued)
Formatting, 1-5
FRE function, 2-40
Functions, 1-7,1-10

G

GET, 2-41
GOSUB, 2-42
GOTO, 2-43
GRAD, 2-44

H
Hierarchy, 1-6, A-15
Hyperbolic functions, 1-7

i

IFTHEN ELSE, 2-45

IMAGE, 2-47

Increment, 2-37

Initialization, A-20

INPUT (with files), 255
(with keyboard), 2-52

INT function, 2-58

INTERNAL, 2-83

/0 error code, A-28

10 subprogram, 259

Integer field, 2-48
function (INT), 2-58

Internal-type files, 2+83

K

KEY, 2:60

KEY$ function, 2-61

Key codes, A-4

Keywords, alphabetically, 2-3

L ;
LEN function, 2-62
LET, 2-63

Line number error, A-21
Line numbering, 1-2

L {(Continued)

LINPUT, 2-64

LIST, 2-66

Literal field, 2-49

LN, 2-67

LOG, 2-68

Logarithm, 2-67, 2-68
Logical operators, 1:13, A-}1
Loop, 1-14

M

Mathematical functions, 1-7
Memory management, 1-3
Multiple statements, 1-2

N
Natural logarithm, 2-67
Negative values, 1-6
Nested loop, 2-37
NEW, 2-69
NEXT, 2-70
NOT, 1-13, A-11
NULL, 2-6
Null string, 1-9
NUMBER, 2-71
Number sign, 2-47
NUMERIC, 2-72
Numeric
data-type, 2-6
operations, 1-6
variable, 1-4

0

OLD, 2-73,3-14

ON BREAK, 2-74
ON ERROR, 2-76
ON GOSUR, 2-78
ON GOTO, 2-79

ON WARNING, 2-80
OPEN, 2-82
Open-mode, 2-83

O (Continued) i
Cperators
numeric, 1-6
logical, 1413, A-11
relational, 1-12
string, 1-9
OR, A-11
Order of execution, 1-14
Order of operations, 1-6, A-15
Output, 1-5
OUTPUT mode, 2-83

P
Parentheses, 1+6
PAUSE, 285
Pending print, 2-80
Peripherals, 117, 3-1
Fi function, 2-87
Playback, A-16
POS function, 2-88
Positive values, 1-6
PRINT (with files}), 2-93
PRINT (with display), 2-89
Print separators, 2-90
Print-list, 2-89
Printer, 1-19,3-19
Program
execution, 2:111
lines, 1-2
storage, 1-17
termination, 2-33
Prompts, 1-5
PROTECTED, 2-113
PUT, 2-98

R

RAD, 2-89

Radians, 2-99

Radix-100, A-33

RAM, 210

Random access files, 2-83

Appendices A-39

Appendix G: Index
R (Continued) S (Continued)
Random number, 2-109 STOP, 2-118

RANDOMIZE, 2-100
READ, 2-11
REC, 2:55
Record length, 2-83
Recorder, cassette
connections, 3-4
settings, 3-6, 3-9
Reference, arguments, 2- 122
Relational operators, 1-12
RELATIVE file, 2.83
REM, 2-102
Remarks, 1-3
RENUMBER, 2-103
Reservéd word list, A-2
RESTORE, 2-104
Retrieving programs, 1-17, 3-14
RETURN with GOSUB, 2-106
RETURN with ON ERROR, 2:107
RND function, 2+ 108
RPT$ function, 2-110
RUN, 2-111, 315

s

SAVE, 2-113,3.12
Scientific notation, A-33
S5EGS,2:114

Separators, 2-90
Sequential access files, 283
SGN, 2-115

{SHIFT! [PBl key, A-16
Sign, 1-6

Signum function, 2-115
SIN function, 2-116
SINH function, 2-117
Sine, 2-116

SIZE, 2-5,2-31

SQR, 2-118

Square root, 2-118
STEP, 2-37

A4 Appendices

Storing programs, 1-17, 3-14

String constant, 1-9
field, 2-49
functions, 1-10
variable, 1-4

STR$ function, 2:120

SUR, 2-121

SUBEND, 2-124

SUBEXIT, 2-125

Subprograms, 1-15, A-3

Subroutines, 1-15

Subscript, 1:11

T
TAB function, 2126

Tail remark symbol (1), 1-3
TAN function, 2+ 128
TANH function, 2-129%
Tangent, 2-128

Tape position, 3-10
Transfer control, 1-14
Trig funetions, 1-7

u

UNBREAK, 2130

Up arrow key [1], A-16
UPDATE mode, 2-83
USING, 2- 131

v

VAL function, 2-132
VALIDATE, 2-6
VARIABLE, 2-83
Vartables, 1-4
VERIFY, 2-133, 3-13

Ww-X
Warning, 2-80
XOR, 1-13, A-11

L el e i et R A AN

Important
Notice

Texas Instruments makes no warranty, either expressed or
irplied, including but not limited to any implied warranties
of merchantability and fitness for a particular purpose,
regarding these programs or book materials or any programs
derived therefrom and makes such materials available
solely on an “*as-is” basis.

In no event shall Texas Instruments be liable to anyone for
special, collateral, incidental, or consequential damages in
connection with or arising out of the purchase or use of
these materials, and the sole and exclusive liability to Texas
Instruments, regardless of the form of action, shall not
exceed the purchase price of this calculator. Moreover,
Texas [nstruments shall not be liable for any claim of any
kind whatsoever against the user of these programs or book
materials by any other party.

T

[N

