Agsembly Instructions MP-N Calculator Interface Kit

The Southwest Techmical Products MP-N Calculator Interface interfaces the
SWTPC 6800 Computer System thru a peripheral interface Adaptor (PIA) to the
National Semiconductor MM57109 Number Oriented Processor. This "processor' is
8 Reverse Polish Notation (RPN) calculator chip without the internal keypad inter-
facing circuitry which has msde interfacing to calculator chips so difficult in the
past. This chip allows data and instruction entry in conventional binary form and
speeds entry with the elimination of the debounce circuitry built into conventional
calculator chips. It is called a processor because it has instructions and control
lines which allow it to operate in conjunction with ROM and RAM as a stand alone
numerical processor. It may however be operated as a computer peripheral for nu-
merical calculation and this is the configuration in which the chip has been imple~
mented.

All interfacing from the 6800 Computer System to the calculator chip has been
done thru a 6820 PIA. Both the PIA and calculator chip reside on a 3 %" X 5 &
double sided, plated thru hole circult board plugged onto one of the seven avail-
able interface card positions on the mother board of the 6800 Computer. All data
and imstructions fed to and all results received from the calculator chip are
handled by your own assembler or machine language program. The calculator features
reverse Polish notation, floating point or scientific notatiom, up to an eight
digit mantissa and two digit expoment, trig functions, base 10 and natural logarithms,
and overflow indicator,

PC Board Assembly

NOTE: Since all of the holes on the PC board have been plated thru, it is
only necessary to solder the components from the bottom side of the board. The
plating provides the electrical connection from the "BOTTOM" to the "TOP" foil of
each hole. Unless otherwise noted it is important that none of the connections be
soldered until all of the components of each group have been installed on the board.
This makes it much easier to interchange components if a mistake is made during
assembly. Be sure to use a low wattage iron (not a gun) with a small tip. Do not
use acid core solder or any type of paste flux. We will not guarantee or repair any
kit on which either product has been used. Use only the solder supplied with the kit
or a 60/40 alloy resin core equivalent. Remember all of the connections are soldered
on the bottom side of the board only. The plated~thru holes provide the electrical
connection to the top foil.

() Before installing any parts on the circuit board, check both sides of the board
over carefully for incomplete etching and foil "bridges'" or "breaks". It is un-
likely that you will find any, but should there be one, especially on the "TOP"
side of the board, it will be very hard to locate and correct after all of the
components have been installed on the board.

() Starting from one end of the circuit board install each of the three, 10 pin
Molex female edge comnectors along the lower edge of board. These connectors
must be inserted from the "TOP" side of the board and must be pressed down
firmly against the circuit board, so that each pin extends completely into the
holes on the circuit board. Not being careful here will cause the board to
either wobble and/or be crooked when plugging it onto the mother board. It is

either wobble and/or be crooked when plugging it onto the mother board. It 1is
suggested that you solder only the two end pins of each of the three connectors
until all have been installed at which time if everything looks straight and
rigid you should solder the as yet unsoldered pins.

() Insert the small nylon indexing plug into ‘the lower edge connector pin
indicated by the small triangular arrow on the "BOTTOM" side of the circuit
board. This prevents the board from being accidently plugged on incorrectly.

() Attach all of the resistors to the board. As with all other components unless
noted, use the parts list and component layout drawing to locate each part
and install from the "TOP" side of the board bending the leads along the
"BOTTOM" side of the board and trimming so that 1/16" to 1/8"™ of wire
remains. Solder.

() Install the capacitors on the circuit board. Be sure to orient electrolytic
capacitor C4 so its polarity matches with that shown on the component layout
drawing. Solder.

() Install the transistor and diode. These components must be oriented to match
the component layout drawing. Solder.

() Install integrated circuit IC2 on the circuit board. This component must
be oriented so its metal face is facing the circuit board and is secured
to the circuit board with a #4 - 40 X 1/4" screw, lockwasher and nut. A
heatsink is not used. The three leads of the integrated circuit must be
bent down into each of their respective holds. Solder.

NOTE:@QS_integrated circuits are susceptible to damage by static electricity.

Although some degree of protection is provided internally within the in-egrated
circuits, their cost demands the utmost in care . Before opening and/or

installing any MOS integrated circuits you should ground your body and all metallic
tools coming into contact with the leads, thru a 1 M ohm 1/4 watt resistor (supplied
with the kit). The ground must be an "earth" ground such as a water pipe, and not

the circuit board ground. As for the connection to your body, attach a clip lead

to your watch or metal ID bracelet. Make absolutely sure you have the 1 Meg ohm
resistor connected between you and the "earth” ground, otherwise you will be creating
a dangerous shock hazard. Avoid touching the leads of the integrated circuits

any more than necessary when installing them, even if you are grounded. On those

MOS IC's being soldered in place, the tip of the soldering iron should be grounded

as well(separately from your body ground) either with or without a 1 Meg ohm resistor.
Most soldering irons having a three prong line cord plug already have a grounded

tip. Static electricity should be an important consideration in cold, dry environments.
It is less of a problem when it is warm and humid.

() Install MOS integrated circuits IC1l, IC3, 1c4 and 105 following the precautions
given in the preceding section. As they are installed, make sure they are
down firmly against the board before soldering all of their leads. Do not
bend the leads on the back side of the board. Doing so makes it very difficult
to remove the integrated circuit should replacement ever be necessary. The
"dot" or "motch" on the end of the package is used for orientation purposes
and must match with that shown on the component layout drawing for the IC.
Solder.

() Working from the "TOP" side of the circuit board, fill in all of the feed-
thru's with molten solder. The feed-thru's are those unused holes on the

board whose internal plating connects the "TOP" and "BOTTOM" circuit connections.
Filling these feed-thru's with molten solder guarantees the integrity of the
connections and increases the current handling capability.

{) Now that all of the components have been installed on the board, double check
to make sure all have been installed correctly in their proper locatiom.

() Check very carefully to make sure that all connections have been soldered.
It is very easy to miss some connections when soldering which can really cause
some hard to find problems later during checkout. Also look for solder o
"bridges'" and "cold" solder joints which are another common problem.

Since the MP-N circuit board now contains MOS devices, it is susceptible
to damage from severe static electrical sources. One should avoid handling the board
any more than necessary and when you must, avoid touching or allowing anything to
come into contact with any of the conductors on the board.

Using the Calculator Interface

Table I gives a complete list and descriotion of the calculator chip's
instruction set. Remember that some of the instructiocns
are for stand alone processing systems and are not used on this interface. All
numerical entry is in Reverse Polish Notation (RPN) and anyone familiar with Hewlett
Packard calculators should have no problem with the data entry sequence. For those
not familiar with RPN, the following should be helpful:

To add 7 + 8, enter the following

7 enter 8 + (4 entries)

The answer is now stored in the X accumulator within the calculator chip
The OUT instruction may be used to ocutput the answer

To find the inverse sine of 0.5, enter the following:

0.5 INV SIN (5 entries)

The answer is now stored in the X accumulator within the calculator chip.
The OUT instruction may be used to output the answer.

In order to simplify the interfacing between your program and the calculator
interface, you will probably want to incorporate the following subroutines into
your program.

INITAL SUBROUTINE

The INITAL or initialize subroutine configures the PIA interfacing to the
calculator chip. This subroutine need only be used once; and is best placed
somewhere at the beginning of your program. Tt is responsible for initializing the
data direction registers and control registers of the PIA. The subroutine requires
that the index register be loaded with the "lowest" address of the PIA interfacing
to the calculator chip prior to execution.

This "lowest" address depends upon which interface port position the MP-N
ealculator card is plugged. The table below give the "lowest' address of each
interface card position.

Address Assignments

PORT® 8009

PCRT1 8004

PORT2 8pp8

PORT3 809C

PORT4 3019

PORTS 8014

PORT6 8p18

PORT7 801C
a4 TF INITAL LDA & #87F INIT & TILDE OF Fla
a7 Q0 STA A O X
e Db LOA A& #3Za FIEH AoLhi=Fos REARDY
A7 01 T A& 1. X
A& 00 LOA & #3000 INIT [ZikE JOF FIA
67 OZ ZTA A& 2. X
A 34 LA A& #3534 NEDS R
A7 aF STA A D¢
A OF LOA & . X CUESAR S W Rl
Y RTS

OUTINS SUBROUTINE

The OUTINS or out instruction subroutine is used to get program data and
instructions into the calculator. To send a digit or instruction to the calculator
chip, use Table II to find the OP code of the instruction you wish to send. Load
this OP code into the A accumulator and jump or branch to the QUTINS subroutine.

If you have a string of data you wish to send, just recycle thru this subroutine

as many times as necessary. The subroutine takes care of all of the READY and HOLD
signals to the calculator chip so there is no worry of sending data faster than

the calculator chip can accept it, The subroutine destroys the contents of the B

accumulator during execution while the contents of the A accumulator and index register
are not destroyed.

E& Ol COUTINS DA Lk 1. X WAIT FiaR REALDY

ZA FC EFL GITING

A7 00 ZThA A O, X EORWARD INSTRUCTION TO Cal
£& OO0 Lha B O, X CLEAR FLAG EBIT

& 3C LOa & #3500 LW HOLD-NEGS REALY

E7 O1 2T B 1. X ERING HOLD LINE LW
E& O WaITiO LM B 1, X

Zh FC oFL WaITico ook FOoR READY LW

E& OO LoD B G. X CLEAR FLAG BIT

C& 36 LA B #%345 HIGH HOLD-FOZ READY
E7 0O1 2T B i X RETURN HOLD LINE HIGH
=9 RTS

SETMEM SUBROUTINE

The SETMEM or set memory subroutine initializes the memory locations to which
the calculator's output data will be stored. This subroutine must be executed
immediately before the OUTANS subroutine is used. Although it can be changed,
memory locations PP2P thru PP2B have been designated the temporary storage locatioms
for the calculator's output data. The subroutine sets memroy location #9029 to a PP
while locations 21 thru 2B are set to 20 (ASCII spaces). This subroutine destroys
the contents of the index register and B accumulator. The contents of the A
accumulator are not destroyed.

7F 00Z0 SETMEM CLR FEG CLEAR O F0O0Z0

CE Q0zZ0 LIX #HEIO BOTToM OF BUFFER

Ca 20 LA B #sZd

815 LOOF1T INX

g7 00 STA B O, X STORE A SFPALCE

SC QOZE CPX -1 THECH FOR TOF OF RUFFER
26 Fg ENE LOOF

A - RT=

OUTANS SUBROUTINE

The OUTANS or output answer subroutine outputs the contents of the X
register within the calculator chip in BCD to memory locations 0020 thru Q02B.
Since the mantissa digit count of the calculator is variable, the previous SETMEM
subroutine blanks out any digit location not filled by the OUTANS subroutine.
It is very important that the SETMEM subroutine be used each time before executing
the OUTANS subroutine. The OUTANS subroutine outputs data in two different formats
depending upon whether the calculator chip is in the floating point or scientific
mode. The calculator initially starts out in the floating point mode where it will
remain until changed by the TOGM (2216) instruction. This calculator does not
automatically convert to gcientific notation if the numbers become too big to handle
in floating point as many do. An MCLR (2F{g) instruction will always reset the
calculator chip to the floating point mode regardless of what mode it was in
originally. Since the calculator chip does not tell vyou what mode it is in when
it 1is outputting data, your program must know so you can process the data accordingly.
Table IV shows the format in which the data is stored. At the end of the OUTANS !
subroutine, the N bit of the condition code register is set if an error has trans-
pired since the last execution of the OUTANS subroutine. You may use a BMI instruction
to catch and branch to an error routine to note the error. You should then send
an ECLR (2B 6) instruction to the calculator chip to reset the calculator
chip's error flag. Disregarding the error flag on the calculator chip will
cause no problems. The chip will continue to function regardless of the state
of the flag. The subroutine requires that the index register be loaded with
the '"lowest" address of the PIA interfacing to the calculator chip prior
to execution. Since the SETMEM subroutine usually run prior to this destroys
the contents of the index register, don't forget to reload the index register before
branching to the OUTANS subroutine. The OUTANS subroutine destroys the
contents of both the A and B accumulators during execution while the contents of
the index register is not changed.

- s

Ee 01 CUTANS LDA B 1. X
A FC EFL ST AR

A& OO LDA
SE 16 LT
A7 QO STh
Ta ZE LDk
E7 01 STA 'y
Es 01 WAITZO LDOA 4

ZA FC EFL WAL T
E& OO0 LA X

26 OF LOA
A7 OO =TA O,X SEND A NOF

E4 O3 WAITZ LEA IR Lok FOR R/ STROEBE

ZE Odb EMI QUTOIG TEANSFER AL DATA TO MEMIRY
E& 01 _ LOd i, X LioCie FioiR READY STRIOEE

B o1& EmMI CONFLD ERINT MEMORY CONTENTE

Z0 Fé& ERA WAITE

Ab OF oUTDIG LDOA X Loal cidT DATA INTO A

1& TAE

iy X CLEAR FLAs BIT
#sis SEND ap THIT

I L HOLD-FOE READY
i, % ERING HOLD LINE LiH
. WRIT FOR SECIND REALDY

mmm D I I
<

CLERR FLAS [

-
i

-

m D I
#
o
'_'n

m

i

=4 OF AN BeOF CLIMINATE WRFER 4 RBITS
£a 20 ORA HEZO CONVERT Tio ASCIT DRTA

54 LER
54 LSR
=4 LER
oS4 LSR
CA Z0 ZIRA #E 20 INCREMENT ADDRE
F7 0iCé STA FOINTZ-1 STORE T DATA
37 00 POINTZ STA B
Z0 EZ ERA WAITE

TPREmmEN DD

& 6 CONFLG LDA A HE3C HIGH Aolb-Fds READS
A7 01 STA A 1L X L NG ALl LINE HIGH
Ak 00 Loa A O X cLEAR Fuas BIT

=Y RTE

Number Entry Rules

When a digit, decimal point, or 1T is entered with an 0-9, DP, or PI
instruction, the stack is first pushed and the X register cleared: Z—T,
Y=Z, X-*Y, 0-4X. This process is referred to as "initiation of number
entry." TFollowing this, the digit and future digits are entered into the
X mantissa. Subsequent entry of digits or DP, EE, or CS instructions do
not cause initiation of number entry. Digits following the eighth mantissa
digit are ignored. This number entry mode is terminated by any instruciton
except 0-9, DP, EE, CS, PI, or HALT. Termination of number entry means
two things. First, the number is normalized by adjusting the exponent and
decimal point position so that the decimal point is to the right of the first
mantissa digit. Second, the next digit, decimal point, or TT entered will
cause initiation of number entry, as already described. There is one exception
to the number entry initiation rule. The stack is not pushed if the instruction
prior to the entered digit was an ENTER. However, the X register is still
cleared and the entered digit put in X.

The ENTER key itself terminates number entry and pushes the stack.
The OUT instruction terminates number entry and prepares the stack for pushing
upon the next entry of data. This means that if you use the ENTER and OUT
instrucitons consecutively, the stack gets pushed twice which is not what you
want. Tf you wish to ENTER data and immediately OUT the result, use only the
OUT instruction., The OUT performs the entry. If you do not wish to OUT
the ENTER'ed data, just use the ENTER instruction by itself.

The AIN and IN instructions should not be used for number entry. Provisions
have not been made for their use on this interface.

How It Works

Peripheral Interface Adaptor (PIA) ICl interfaces the MM57109 calculator chip,
IC3, to the SWTPC 6800 buss. The first six bits of the A side of the PIA are used
to feed instructions to the calculator chip while the eighth is used as an input
to monitor the ERROR output of the calculator. Control line CAl outputs HOLD
signals to, while control line CA2 inputs READY signals from the calculator chip.
The first four bits of the B side of the PIA are used to input BCD digit data while
the last four bits input digit addresses. The CBl line inputs READ/WRITE signals
while the CB2 control line is not used. Hex inverter/buffer, IC4, is used primarily
as the 320 to 400 Khz single phase oscillator required by the calculator chip.
One section is used to invert the HOLD signal going to the calculator. Shift
register IC5 generates the POR signal required for proper startup and initialization.
+5 VDC power required by the board is supplied by voltage regulator IC2 while
=4 VDC voltage is _supplied by transistor Ql and its associated components. Figure I

shows a block diagram for the internal construction of the calculator chip.

ARRRRRRRERRNAANY

RRRRRRRA A

BERR

Rl

e
(g%]

R3
R4
RS
R6
R7
R8
R9
R10
R11
RlZ
R13
R14
R15
R16
R17

e

47K ohm % watt res

1X
10K
10K
10K
10K
10K
22K
22K
22K
22K
128
27
3.3K
10K
47K
10K

Parts List MP-N Calculator Interface

7 ~'0.1 mfd capacitor
100 pfd capacitor
0.1 mfd capacitor

10 mfd@ 15 VDC electrolytic

C")

Cak

e
D2%
D3*
D4*
D5*
D6*
p7*
Ql*

ICL*
IC2*
IC3*
IC4*
ICS5%

4.7 volt 400 mw zener diode 1N3230 or 1N4732

Resistors

istor
"

Capacitors

Diodes and Transistors

1N4148 silicon diode
n n (2}

2N5087 transistor

Integrated Circuits

6820 MOS peripheral interface adaptor
7805 voltage regulator

MM57109 FAN MOS calculator chip

4009 or 14009 MOS hex inverter

74C165 MOS shift register

*

GG B8 ﬂﬁﬁ

@n@mpﬂ@%@@gfwﬁw%&&a?ﬁ

.ﬁ.

— 1™

Fly el LNO DAaA ¥- ¥ ¥-
o 1
iy
Ly 1y =
= 1d
I : T
) rvd Gz 1] v v v+ v 1 14l L poL |IITG~=
A A gt b v b 9l 944 1921 pod
8g
¢vd L7 o0y S8d
¥- 1 [T
48] LVa = T 7l ¥ad 13534 - 1353
3| 4 ¥Od 0Z Loy v+ b gl £8d
LA €00 = 7ad 75D p———e #0/1
) p ¢ bzl £
ﬂwm Bl 1 Y H__M“ o 1 |
. ol 2L _ ol o [——= s+
¢l 7VO 4 150 INAS pe—r ' o e 44 _
8 il vi € : ¢ e i T NI @
vl ol Wt arl I_ I
£l _‘ i1 M — " _ /4
4OW [: g Bk Lals——*‘a
) o] eyl KN S -)
—- =l | 2 2t
G+ ¥z 1 1 z ¢a 82 | a
Zly ST i 7] ¥vd 3 A *¥a
e
M__ (2] 7| Evd oo mo
e 1 v | &¥d QI * 2
ﬂ 7 s £] Lvd Sz * 3
- - Sy _ /a 9a ca | dTee _ a
' 404 J10H |— OA —id +4¢ 12 L5y [15}
L AQY Y & o yD 0S¥ s 0S¥
o [ofetfa]u]o]ofr]e]s 297 et ol 200 7t
NI D 8 V IS H 4 3 GND —m_ —om
4
no G+ [
avO1/LdIHS S Dl
L 2012 £ e W.._\ — "
¢ 13
a 9 H
vi| s | =1 L 1no s+ Zl WN B+
za £a ¥d
o+
— e

JOV4UIINT YOLYINOTYI N-dW

CALC-1 Program

In order to see how the calculator chip is used and how to incorporate these
subroutines into a program, the CALC-1 program listing is given. CALC-1 allows
the operator to use the calculator chip just as you would a standard RPN desk
calculator with the same features. All communication to the chip is done thru the
terminal's keyboard with all results displayed on the terminal's display. Since
the terminal's keyboard just has standard ASCII characters rather than the labeling
found on calculator keys; selected ASCII characters have been substituted for normal
calculator function keys. It is the job of the CALC-1 program to accept all data
and instruction commands from the terminal's keyboard, send them to the calculator
chip and display all results on the terminal's display. The program resides from
memory locations 0020 thru 02C0 which is approximately 700 bytes of code. Since
most of the lower 256 bytes are used for the ASCII character lookup table and some
of the upper is used for terminal interfacing, vou should be able to incorporate
the package into your program using somewhat less memory than was used here.

The program starts at line 50 by storing the ASCII lookup table from
memory locations f@8g thru PPFF. This table covers the entire 128 character ASCII
set. Whenever an ASCII character is received from the keyboard it is OR'ed with
88, and the resulting address contains the selected command or instruction for the
calculator chip. Line 210 ORG's the program at memroy location #1fP where the terminal's
screen is cleared and titled. Line 250 loads the index register extended with the
contents of memory locations APP2 and APP3 with 8PAC, the starting address of Port 3.
If you wish to plug the calculator board onte an I/0 port other than PORT 3. Use
the table below to find the address to be loaded into memory locations APP2 and
APP3 prior to executing the program.

PORTO 80pe™ w

PORT1 80904 (Serial contrel interface only)
PORT2 8PP8~ ™

PORT3 .8ppc - calen

PORT4 8918

PORTS 8014 ~TH¥

PORT6 8p18 - V&

PORT7 8p1C - m%mwg et

Lines 280 thru 370 contain the INITAL subroutine described in detail earlier. lines

380 thru 410 accept entered keyboard commands, lookup the selected calculator instr-
uctions and deposit the data or imstruction in the A accumulator. Lines 440 thru 550
contain the OUTINS subroutine described in detail earlier. Lines 550 thru 740 check

to see what instruction or data has been entered so the result may be output if
appropiate. Line 710 looks for the TOGM instruction so the program knows which dis-
play mode to use when outputting data. Lines 770 thru 840 contain the SETMEM subroutine
described in detail earlier. Since the SETMEM subroutine destroys the contents of the
index register, line 850 reloads it before proceeding to the OUTANS subroutine con-
tained in lines 880 thru 1200. Line 1210 checks to see of the ERROR flag was set during
the last output sequence. If so, program control is transferred to lines 1220 thru 1350
where an error message is output and the error flag cleared by sending an ECLR instr-
uction to the calculator chip. Line 1380 tests to see if the calculator is in the
floating point or scientific mode. If floating point, control is transferred to lines
1400 thru 1670. If scientific, control is transferred to lines 1680 thru 1990. In

both modes the data is output to the display in the selected mode and program control
is transferred back to line 380 where new commands or data may be entered.

FAGE

00010
006020
00020
GOO40
00050

OO0LO

QOLTO

QoS0

QOO70

00100

Q0110

Go1

00g0
0080
00estl
0082
o083
o024
olel=it
OO8&
00E7
O02E
o0s7
DOLgA
QOLE
elak={m
QR0
002k
QOQEF
SOT0
00%1
OO92
T
GOT4
aOvs
O
Qo977
Qv
0097
GO A
QO%E
QO
oQ70
009k
QO9F
OOR0
QohAl
OOAZ
QOAz
0HOA4
CGOAS
GOAL
o0a7
OOAZ
QORY
QOAA
COAB
COARL
QOAD
QOAE
QOAF
COBO
O0B1

cALC~1

OF
oF

OoF
OF
OF
OF
OF
OF
OF
OF
OF
OF
QF
21
OF
OF
oF

-
I

OF
OF
OF
OF
OF
OF
2F
OF
OF
OF
OF
OF
OF
OF
z1
OF
F
OF
OF
OF
OF
OF
OF
OF
3E

39
A
3C

o1

NEaM
OFT
OFT
Qs
FLE

FCL

Fob

FLE

FCE

FOF, FOF,

FOF, $OF,

FF, F0OF,

21, §0F,

FOF, 2OF,

F0O0, £01,

FOF, $OF, $0F, $0F, $0F, $0F

FOF, 30F, $O0F, $21, 30F, $0F

$0OF, $0OF. £0F, $0OF, $0OF, $GF

$0F, 30F, $0F, 30F, $0F, $0OF

FOF, $0F . $0F, $0F, $0OF, $0F

£330, $37. $OF, $34, $0A, 30

g0Z, £03, $i-:_34; 05, $046, £07

FAGE

00120

00130

GQ140

00150

001460

00170

002

OOEBZ
QOES3
O0E4
Q0BS5S
O0E&
OOR7
OCEE
00B?
Q0OBA
OOER
QGRC
OOEBLD
OOBE
OOBF
GoCo
Q0C1
ooCz2
00C3
oGOC4
00CS
00C&
QOC7
oGCE
00CY
00CA
O0OCR
OOCC
ooch
OOCE
OOCF
oono

oob1
oooz2

e8] tic:
oopD4
oonsS
ele}arn
oocp?

OOLDE =

oonYy
eleilal
OOLE
OO0C
ooDD
QODE
QODF
QOEQ
QOOE 1
00E2
QOEZ
00E4
Q0ES
O0ESL
QOE7

CALC-1

02
03
04
05
06
07
08
09
OF
OF
OF
OF
22
OF
OF
1B
36
25
2D
OF
2c
ic
i
20
OF
OF
OF
18
a5
2z
oD
oo
27
z4
2¢
32
24

-
-t

ZE
oC
OF
OF
OF
=
OF
oF
OF
3&
25
20
OB
2C

FCE

FCE

FCE

FCE

0, B0V, 0OF, $0F . 3OF, $0OF, 322, $0OF

SOF. #1L0, $34, 325, 220, 3O, $2C, $1C

Fi0, £20, $OF, $0F, 30F, 315, 835, $22

200, 253, 237, $24, £24, 327, $34, $31

$20, $ZE. 00, $30F, 20F, $0F, 335, 30F

$CJF1 $C7FJ 53'3!: $;5' 52[': 5‘:‘5‘1 5:’:1 $1i:

FAGE

00180

Q0190

00200

00210
00220
002320
00240
00250
002460
00270
00ZB0
00290
Q0300
00Z10
00320
0033

00340
00350
00340
003570
00380
003Z90
Q0400
00410
00412
00414
00420
00430
00440
00450
00440
Q0470
00430

00z

00ES
OOEY
OOEA
OOEE
OOEC
OOED

OOEE
QOEF

O0OFO
OOF 1

OOF2 =

QOFZ
OQF 4
QOFS
OOF &
OOF7
QOF e
OQF %
QOFA
QOFE
OOFC
QOFD
QOFE
QOFF
0100
0100
0103
01064
0109
010C
010E
0110
0112
0114
0114
o118
ol11A
Q1ic
O{1E
0120
0122
0123
0126
o128
0128
012D
O12F
0131
0132
0135
0137
0139
013B
013D

CcALC-1

pac

24
24
32
31
=0
2k
ocC
OF
OF
OF

OF

sE
CE
BD
FE
8D
20

A7
g4
A7
=2
A7

a7
AL
39
BD
8A
B7
24
g1
27
8D
20
Eé
2A
A7
Eé

AO47
0287
EO7E
AOOZ
02
13
7F
00
36
o1
00
02
34
03

0z

E1AC
20
oi12C
00
21
43
0z
17
0
FC
00
Q0
3C

START

INITAL .

COMAND

FOINT

OUTINS

FCE

FCE

ORiG
Los
LLIX
JER
LOX
BSR
ERA
LbA
STA
LDA
STA
LDA
STA
LOA
=TA
LDA
RTS
JER
ORA
=TA
LDA
CMF
EE&
ESR

ERA "

LDA
EFL
=TA
LDA
LDA

DD DDD

TPDHDIL

oD

$10, $20, $OF, $0F, 30F, $18, $25, $2=

$00, $33, $37, 824, $24, $32,.334, $31

$30, 32, $0C, $0OF, $0F, $0F, $OF, $0OF

$01060
#3$A8047
HOLRSCN
FOATAL
FARALR
INITAL
CCOMANL
#$7F
0, %
HEZH
1, X
#3000
Z: X
#$24
X
2 X

INEEE
#$20
POINT+1
00
#4221
ZERMEM
QUTINS
CHRCHK
1. X
OUTINS
a, X
0, X
#E32C

DECREMENT STACK

CLEAR AND TITLE TERM.

INIT. A SIDE OF FIA
HIGH HOLD-FOS READY
INIT. B SIDE OF FIA
NEG R/W

CLEAR R/7W FLAG

GET OFERATOR DATA
FOSITION TCQ THE TOF OF TABLE

WAIT FOR RERDY

FORWARD INSTRUCTION TO CALC.
CLEAR FLAG EIT
LOW HOLD-NEG READY

FAGE 004 CRLC=-1

OO490 O1ZF E7 01 =TAa B X ERING RHOLD L INE Ll

Q050G 0141 E& Of WRITIO Lok B . %

O0510 G143 2R FO EFi. WRITLO Liilit. FOR READY LOW

00SZ0 0145 E& OO0 LR B O, X CLERAR FLaiG EIT

QOS30 0147 L& =& chla B HsIs HIGH HOLD-FO% READY

00540 014Y E7 01 =TA B L, X RETURN HOLD LINE HIGH

OO350 014F 29 RT=

Q0560 0140 o1 2F CHRCHE, TMF A #EZF

00870 Q14E 26 Q2 ENE SEIFPTS

00575 0150 7F OZAE LR FORMAT

SODEO G152 70 OZAF SEIFTS T3 i) CHEDE FOR FREWIGLS SMOC INSTR

DO590 0158 26 10 ENE ZERMEM

OG&00 Q158 21 OF CONTSO CMFP & #30F

O0&6Z0 0158 Z7 07 EER CioManMn Sz T MORE DATA IF NOF

QOAZ0 0150 21 18 CMF A& #z1:Z

00640 0O1SE 246 05 ENE SHIFES

QOEI0 01460 732 QzZAF Tt ST

QOGE0 014% 20 EE ERA COMANT GET MORE DATA IF SMbo

OO&70 01465 21 20 SEIFZS CMF A HEX0

QO&E0 0147 27 BaA EED COManD GET MORE DATS IF INY

O0&%0 01aw 21 OF CMFE A KBOR

Qo700 Qlek 25 Ré ELE OMAND GET MORE DATE IF NJMEERS

QO710 o1&l 51 22 CMFE A #3272 LT FioR TioGM

Q0720 O1&F 26 QF ENE ZERMEM

GO7Z0 0171 73 OZAE oM FORMAT

00740 0174 7F QZAF ZERMEM CLA =L ZERT MO

GO750 Q177 &b 0z EZR SETHEM

Q0740 0179 20 11 BRA LOOALDR

00774 GI7E 7F GOZ0 SETMEM CLR 20 CLEAR FOOZ0

gO780 QO17E CE 00z0 Lox BEZ0 BOTTOM JF EUFFER

QG770 Q181 C& 20 LA B o d#sT0

00800 ¢l8l 0= LOOF1T INX

00810 Q184 E7 00 ST B O, X STORE A ZFRCE

Q0820 Glgé SC 00ZE CFX #5ZF CHECR FOR TOF OF BIIFFER

Qo830 018y 24 FE ENE LidiTF L

00840 OlaR =29 AT

QOS50 0150 FE AQOZ LODADR LDX FARADR

QOBLO O18F ELD OZ SER CILITANS

QOE70 0191 20 3D ERA OLITCHR

00230 0193 E& O1 CUTANS LDAa B 1, %

Q08?0 Q192 zZA FC EFL. DT anNs

QGOFCG0O 0197 A& OO0 Lo A G, X CLEAR FLAG EBIT

QOF10G 0199 24 16 LI A HE14 SEND AN SUT

00920 Q19E A7 Q0 STA A O, X

00930 0190 Cé& ZE Loy B #53E LOW HOLD-FOS REALDY

00730 Q19F E7 Ot ST& B 1. X BRING ~0LD L INE LW

00950 0iAl E& 01 WAITZO0 L0 B 1. X wWAIT FOR SECOND READY

00740 O1AZ 2ZA FC BFi WAITIZO

O0Y70 O1AS E& OO LA B O, X CLEAR FLAG EIT

00780 QO1A7 546 OF : LOA A #FOF *

00970 01AY A7 OO ZTAa A 0. X SEND A& NOF

01000 QIAE E6 03 WAITZ (DAL 3, X LOCE FOR RAW STRIOEE

Q1010 01AD ZEB 04 EMI OUTOIS TRANIFER ZALT DATA TO MEMORY

p ‘ 01020 O1AF E& O1 oA EOLLX 00K FOR READY STRGEE

E
B el e ‘

FAGE

01030
01040
01050
01040
C1070
01080
Q1090
01100
01110
Q1120
D11320
91140
01150
01140
01170
01120
o110
01200
01210
1220
01230
Q1240
01250
012460
01270
OlzE0¢
01270
C)l Hele!
01310
01320
01330
013240
Q1250
01360
01370
Q13320
01390
01400
01410
01420
01430
01440
0145G
01440
01470
01480
01470
01500
01510
« Q1520
01535
013540
f oiss0
) 01540

Ao

QOS5

iRl
01B=
O1BS
O1E7
Q1EE
Q1EA
01iBC
O1B0O
O1BE
O1EF
G1o0
Q102
Ol1C5S
O1C7
Oicy
O1CE
31100
O1CF
S100
Q102
o104
oy Fur
oipe
Ol1DA
olpoc
O10E
C1lEO
QlEZ
OlE4
OlES
QlES
O1EA
ClED
01FO
ClF3
O1lF&
Q1F9
OIFE
Q1FE
0200
Qz02
0204
02046
Qz08
O0zZ0A
QzZon
QZ0E
0210
Q212
0zZ14
0Zté&
QZ18
QZ1A
0Z1E

CAaLC-1

ZE
20
At
16
&4
SA
54
S4
54
s4
A
F7
97
0

b=

A7
A&
=Y
ZA
E&
ZA
2&
A7
E&
Cé
E7
E&
2R
Es
Cé&
E7
CE

CE
ED
70
2B
CE
AL
£4
24
8&
20
B8é&
ELO
Qg
Eé
ca
E7
Cs
EQ
D7

A&

i&
Fé&
02

OF

-
—t

20
Q1C4
00
EZ

01
ols}

1E
01
FC
ZE
Qo
00

-y
-

G1
01
FC
00
zé
o1

EOQ7E

02A8

EG7E
GZAE
2F
00zZ2
00
og
04
20
6z
zn
E1l

00
OF
00
zF
21

00

QuThIG

FOINTZ

CONFLG

TUTOHR

WALT70

WAIT71

OZEO

CONT 1

FLOPNT

MINFNT
FRINT1
DR IND

DIGLOF

EMI
ERA
LA

>
=D
i)

aRA

o rrrr
| AL
I R e B 1 e R

6 s o

~ m
[oe I 0
DD

(1)1
—
ho

LA
RT=
EFL
LA
EFL
LDA
ZTA
LS
LDA
ZTA
LA
EFL
LLOA
LDA
ETA
LOX
JER
LOX
JdER
T=7
EMI
LIX
LA
ANI
ENE
LOA
ERA
LA
JSR
INX
L Os
AND
ZTA
LOA
SLIE
STA
INX
DA

I

DEmmmpom DD

m D1

Mmoo

mm

mEEEnmm

el

TR L
WRITE
X

BH0F
E 3]

#2270
FOINTZ+1
30
WAITE
#5244

i, X

O, X

CONT 1
}.l X
WAIT7G
#&Z0
O, X
O, X
#ETC
1, X
i X
WAITZ1
0. X

-2 3ET28
i, X
HERRMESIG
FOATAIL
#HioRLF
FOaTAl
FORMAT
SCINGT

E

#H3ZZ
0, X
#HSOE
MINEFNT
#3220
FRINT1
#4200
DiITEEE

O, X
$F0F
O, X
#EOF
Ge X
21

O, X

FRINT MEMORY CONTENTZ
LOAD ST DATA INTO A

ELIMINATE UJFPER 4 EITE
CONVERT 73 ASCII DATA

INCREMENT ADDORESSES EY $I0
STORE HJT DATA SEGMIENTIALLY

HIGH HOLD-FOS READY
BRING HOLD LINE HIGH
CLEAR FLAG EIT

SEIF IF NC ERRUGR
WaIT FOR READY

ERROR CLEAR INZTRULCTION

CLEAR FLAS EIT
LW HAOLD-NEG READY
BRING HOLLD LI0W

CLEAR FLAS EBIT
HIGH HOLD-FIOZ mEALNY
RETLRN ROLD HIGH

FLOATING POINT NOTEATION
INFUT MANTIZSA ZIGN DATA
Mask BIT 4

LAl & SFALCE

LOAah A MINLE
FRINT CTHARALTER

STORE DEC. FT POSITION INK

01570
Q1580
01570
014600
01610
014620
0146320
01&40
01450
O1&40
G1476
014680
014670
017060
01710
01720
01730
01740
017350
01760
01770
01720
~01790
01800
Giz10
01820
olazo
g1e40
01850
018460
01870

01880
01890
01900
01910
01920
01930
019340
01950
01960
01970
01980
01990
0Z000

02010

QG

GZ1h
0220
Q222
0zz4
0224
Q227
QzzC
QZ2E
0z31
QZ34
oz

QZ3A
ozZ=C
Oz

0Z40
0242
0z44
DZ44
QZ49
0Z4C
0zZ4Ln
QZ4F
02352
Q255
0z57
Q259
OZaC
OZSF
0261
OZ&Z
QZé&d
QzeE
0Z6A
0zal
OZ6E
0271
Q272
QzZ7&
0278
O2Z7E
QZ7E
0zs1
aza4q
0287

0zes

ozag
OzZB8A
ozep
ozZacC
ozah
Q2Z%E
OzZaF
QZv0
0271

CALC-1

EnD
Ji
Zé

BD
(=i
Z&
CE
ED
FE
7E
76
54
26
26
20
g&
En
CE
08
A&
BD
ec
26
56
ED
s
2&
86
ED
)
&4
27

ob
ED
b
ED
76
ED
CE
ED
FE
7E
on
GA
10
1&
00
853
=57
54
=0
43
20

E1Dd
20
as
Z2E
g1l
Q0OZE
EC
0ZAE
EQ7E
AQOZ
0123
22
o
04
20
o)
zD
EiD1
0023

als;
Eill
00z4
05
2K
EiD1
O0ZE
EE
45
E1D1
22
o1
05
20
E1D1
z20
Einl
z1
Eifi
At
EQ7E
AQQZ
012z

ENLIZH

NEGFNT
PRINTZ

NUMLGF

SKIFDFP

SKFSGN -

CLRSCN F

FCE

I In

I

JUTEEE CIUTFILY ASCI I NUMEER
FZ0 TiME FOR DECS =T &
ENMDITH I

HeE

DIUTEEE

#E0E CHECH FOR Lo
DIGLOF GET NEXT LIGI
RORLLF -
FOATAL FRINT CRALF

FARADRA

ZIMANE

FIZ SOIERTIFID NOTATION
REis LD, FOR NESATIVE MANTI
NEGFNT

HE 2O =
FRINTZ
#eh
ITEEE
HEZT

(NN

-
I

I

[]

7 L
-
H

- -

Ale IF MNOT

£
L
1

i
o
=
e
-
Ry
bd
[
-
2

i, X

HATEEE

#HE 74 ik FOR DEC. O FT. O DIGIT
SEIFLF

#E2E

OHITEEE FRINT LEC. T
#EZE CTHECE FOR LAST DIEIT
NLIML DF

#e45

OUTEEE FRINT AN E

;N LAl SIGN BYTE
HeO1

ZHFSGR

#3520

GIUTEEE FRINT A -

F2Z0

OUTEEE FRINT EXFONENT MSD
$21

OUTEEE FRINT EXFONENT LSO
#CRLF

FOATAL FRINT CRALF

FARADR

CoManND

SO0 $0A, 310, $14, 300

TEWTFD A200 CALZ-1 CALCULATOR

SE

FAGE QO7 CALC-1

Q292 24
0292 ==
02794 20

295 30
Q29é 20
Qz97 43
0z98 41
Ooz97 4cC
OZFA 4%
0z3E ZD
QzwC 21
QzI0 20
OZYE 43
QZ2YF 41

0zZAa0 4G

QzZAl 43

QZAZ 35

0ZAZ 4C

QZA4 41

02ZAS 54

0ZAL 4F

QZA7 52
02020 0ZAS OD CRLF FCE 200, 3040, BO0, 300, 00, 04

0zZA7 OA

OZAA 00

OZAE 00

OZAC Q0

O0zAD 04
QZ0Z0 QZAE 00 FORMAT FCE FO00
02040 QZAF 00 =MDC FiE FOO
02050 OZBO Oon ERRMSG FCOR o0, 3046, 00, FO0

OZEl1 OA

OzZBZ QO

0ZB3 Q0
Qz04&60 QZB4 45 Fioi ERFRIOA

QZB3 oSz

OzZB& 52

QZE7 4F

QZEBZ 52
02070 GZEY 04 FiE $£04
0z0s0 EQO7E FOATAL Efis SEOTE
OZ090 AQOZ FARADR EG FA00Z
0Z10Q E1AC INEEE EU sE1AD
0zZ110 Ei1Di OUTEEE Emild FEILL
OZ1Z0 AD4E CRG FAGIZ
OZ120 A04E 0100 FOL $O100
02140 ACGOZ QRG EA0O0T
02150 AQQZ S00C FOE FSOGIT
0OZ1&0 EMD

START 0100
INITAL 0110
COMAND 0122
FPOINT O12ZB
OUTINS 0135

PAGE OGE CALC-1

WAIT10 0141
CHRCHE 014C
SKIFP75 0153
CONTSO 0158
SKIFP25 0165
ZERMEM (174
SETMEM 017B
LOOF1 0183
LODADR 018C
QUTANS 0193
WAITZ0 O1At
WAITS O1AB
QUTDIG O1BS
FOINTZ 01CS
CONFLG 01C9
OUTCHR ©01DO
WAIT70 01D2
WAIT71 O1EOQ
CONT1 O1F0O
FLOPNT OIFR
MINFNT 0208
PRINT1 020A
DFIND 0zZOD
DIGLOF 021A
ENDCH1 0229
SCINOT 023A
NEGPNT 0244
FRINTZ 024é
NUMLOF 024C
SKIPDFP 02Z5C
SKPSGN 0271
CLRSCN o287
CRLF OZAB
FORMAT OZAE
SMDC 0§gg
ERRMSG O
PDATAL EQ7E
PARADR AOOZ
INEEE EI1AC
OQUTEEE E1D1

TOTAL ERRORS 00000

Table I

MMS57108 Instruction Description Table (* Indicates 2-word instruction)

cLAss | suscLass | MNEmonict | O€TAL 9P 1 FuLL Name DESCRIPTION
Digit 0 00 0 Mantissa or exponent digits. On first digit (d)
Entry 1 01 1 the following occurs: 2 =+ T

2 02 2 Y - 2

3 03 3 X—-Y

4 04 4 d -+ X

5 05 5 See description of number entry on page 11.

6 06 6

7 07 7

8 10 8

9 1M 9

DP 12 Decimal Point Digits that follow wiil be mantissa fraction.

EE 13 Enter Exponent Digits that follow will be exponent.

Cs 14 Change Sign Change sign of exponent or mantissa.

Xm = X mantissa
Xe = X exponent
CS causes —Xm — Xm or —Xe — Xe depending
on whether or not an EE instruction was
executed after last number entry initiation.

Pt 15 Constant m 3.1418927 — X, stack not pushed.

EN 41 Enter Terminates digit entry and pushes the stack.
The argument entered will be in X and Y.

2T
Y—-2
B XY

NOP 77 No Operation Do nothing instruction that will terminate digit
entry.

HALT 17 Halt External hardware detects HALT op code and
generates HOLD = 1. Processor waits for HOLD
= 0 before continuing. HALT acts as a NOP and
may be inserted between digit entry instructions
since it does not terminate digit entry.

Move ROLL 43 Roll Roil Stack. x
N
T Y
N,
POP 56 Pop Pop Stack.
Y— X
Z—=Y
T2
0-T
XEY 60 X exchange Y Exchange X and Y.
X«—=Y
XEM 33 X exchange M Exchange X with memory.
X-—M
MS 34 Memory Store Store X in Memory.
X—=M
MR 35 Memory Recall Recatl Memaory into X.
M- X

LSH 36 Left Shift Xm X mantissa is left shifted while leaving decimal
point in same position. Former most significant
digit is saved in link digit, Least significant digit
is zero.

RSH 37 Right Shift Xm X mantissa is right shifted while leaving decimat

peint in same position. Link digit, which is
normally zero except after a left shift, is shifted
into the most significant digit. Least significant
digit is lost.

Table 1

MMB57109 Instruction Description Table (Continued}

(* Indicates 2.word instruction}

CLASS

SUBCLASS

MNEMONiIC*

OCTAL OP

CODE FULL NAME

DESCRIPTION

Branch

170

1/Q

/0

Mode
Control

Count

Muiti-digit

Single-digit

Flags

IBNZ

DBNZ

'

ouT”

AlIN

SF1
PF1

SF2
PF2

PRWA

PRW?2

TOGM

SMDC*

INV

31 Increment memory
and branch if
M+#0

Decrement
memory and
branch if M# 0
Muitidigit

input to X

32

27

26 Multidigit output

from X

16 Asynchronous

Input

47
50

Set Flag 1
Pulse Fiag 1

5%
52

Set Flag 2
Puise Flag 2

75 Pulse R/W 1

76 Pulse R/W 2

42 Toggle Mode

30 Set Mantissa
Digit Count

40 Inverse Made

M+ 1= M If M=20, skip second instruction
word. Otherwise, branch to address specified
by second instruction word.

M~— 1= M HM=0,skip second instruction
word. Otherwise, branch to address specified
by second instruction word.

The processor supplies a 4-bit digit address
(DA4-DA1) accompanied by a digit address
strobe (DAS) for each digit to be input. The
high order address for the number to be input
would typically come from the second instruc-
tion word. The digit is input an D4—D1, using
ISEL = 0 to sefect digit data instead of in-
structions. The number of digits to be input
depends on the calculation mode [scientific
notation or floating point}) and the mantissa
digit count {See Data Formats and Instruction
Timing}. Data to be input is stored in X and the
stack is pushed (X — Y — Z — T). At the con-
ciusion of the input, DA4—DA1 = 0.
Addressing and number of digits is identical to
IN instruction. Each time a new digit address is
supplied, the processor places the digit to be
output on DC4—DO1 and pulses the R/W line
active low. At the conclusion of output, DO4—
DO1 = 0and DA4--DAT = 0.

A single digit is read into the processar on D4—
D1. ISEL = 0 is used by external hardware to
select the digit instead of instruction. It will not
reac the digit until ADR = 0 (ISEL = C selects
ADR instead of Ig), indicating data valid. F2 is
pulsed active low to acknowiedyge data just read.
Set F1 high, i.e. F1=1.

F1 is pulsed active high. If F1 is already high,
this results in it being set low.

Set F2 high, i.e. F2=1.

F2 is pulsed active high. If F2 is aiready high,
this resuits in it being set low.

Generates R/W active low puise which may be
used as a strobe or to cloeck extra instruction
bits into a flip-flop or register.

Identical to PRW1 instruction. Advantage may
he taken of the fact that the last 2 bits of the
PRW1 op code are 10 and the last 2 bits of the
PRW?2 op code are 01, Either of these bits can be
clocked into a flip-flop using the R/W pulse.
Change mode from floating point to scientific
notation or vice-versa, depending on present
mode. The mode affects only the IN and OUT
instructions. Internal calculations are always in
8-digit scientific notation.

Mantissa digit count is set ta the contents of the
second instruction word (=1 to 8).

Set inverse mode for trig or memory function
instruction that will immediately foilow. Inverse
mode is for next instruction anly.

Table I

MME7? 108 instruction Description Table (Continued] (* Indicates 2-word instruction)

CLASS | SUBCLASS | MNEMONIC® OCJ(;‘[‘;EOP FULL NAME DESCRIPTION

Math F({X.Y} + FAl Plus Add X to Y. X +¥Y = X On+, - x,./and YX
instructions. stack is popped as follows:

Z—Y

T-2

o—+T .
Former X, Y are lost.

- 72 Minus Subtract X fromY. Y- X - X

x 73 Times Muitiply X times Y. ¥ x X -~ X

/ 74 Divide Divide Xinto Y. ¥+ X — X

YX 70 Y to X Raise Y to X power YX — X

F {X.M} INV +*° 40, M Memory Plus Add X to memory, M+ X =M
On INV +, — x and ; instructions, X, Y, 2,
and T are unchanged.

INV ~* 40,72 Memory Minus Subtract X from memory. M- X - M

INV x* 40,73 Memory Times Multipiy X times memory. Mx X = M

INV /* 40, 74 Mermory Divide Divide X into memory. M+ X ~ M

F {X) Math 1/X 67 One Divided by X | 1+ X = X, On ail F {X} math instructions ¥, Z,
T and M are unchanged and previous X s lost.

SQRT 64 Square Root VXX

sQ 63 Square X2 - X

10X 62 Ten to X 10X - X

EX 61 Eto X eX ~ X

LN 65 Natural log of X n X = X

LOG 66 Base 10 log of X jog X = X

F {X) Trig SiN 44 Sine X SINIX) = X. On all F{X} 1rig functions, ¥, Z, T,
and M are unchanged and the previous X is lost.

Ccos 45 Cosine X COS(X) — X

TAN 46 Tangent X TAN(X} - X

INV SIN® 40, 44 Inverse sine X SIN“Hx) — X

INV COS* 40, 45 Inverse cosine X | €OS™1(X)— X

INV TAN® 40, 46 inverse tan X TAN"H(X) ~ X

DTR 55 Degrees toradians | Convert X from degrees to radians.

RTD 54 Radians to degrees{ Convert X from radians to degrees.

Clear MCLR 57 Master Clear Clear all internal registers and memory : initialize
1O control signals, MDC = 8, MODE = ficating
point. {See initialization.)

ECLR 53 Error flag clear C — Error flag

Branch Test JmpP* 25 Jump Unconditional branch to address specified by
second instruction word. On all branch instruc-
tions, second word contains branch address to
be loaded into external PC.

TJC* 20 Test jump Branch to address specified by second instruc-

condition tion word if JC {lg) is true (=1). Otherwise,
skip over second word.

TERR" 24 Test error Branch to address specified by second instruc-
uon word if error flag is true (=1} Otherwise,
skip over second word. May be used for
detecting specific errors as opposed 1o using the
automatic error recovery scheme dealt with in
the section on Error Control,

TX =0* 21 Test X =0 Branch to address specified by second instruc-
tion word if X = 0. Otherwise, skip over second
word,

TXF* 23 Test IXi<1 Branch to address specified by second instrue-
tion word if {X] < 1. Otherwise, skip over
second word. {i.e. branch if X is a fraction.)

TXLTO* 22 Test X <0 Branch to address specified by second instruc-

tion word if X < 0. Otherwise, skip over second
word.

Table II

MMS57 109 Instruction Summary Table {* = 2-word instruction)

lgls
lg~11

@ 1 2 3
¢ 0 TiC* INV XEY -
1] TX-0" EN EX
2 2 TXLTO® TOGM 10X
3 3 TXF* ROLL 5Q
4 4 TERR® SINISIN | SQRT
5 5 mer cosicos ™ LN
6 6 ouT" TAN(TAN! LOG
7 7 IN" SF1 1,X
8 8 SMDC*® PF1 Y X
9 9 IBNZ® SF2 - M-
A DP DBNZ® PF2 M-
B EE XEM ECLR x {Mx:
c CS MS RTD M
D PI MR DTR PRW
E AIN LSH POP PRW?
F HALT RSH MCLR NOP

Table III - CALC-1 Instruction to ASCII Character Lookup Table

FULL NAME

WO wWwN—O

Decimal Point
Enter Exponent
Change Sign
Constant PI
Asynchronous Input
Halt

Test Jump

Test X=@

Test X<p

Test 1 X 1<l

Test Error

Jump

Multidigit Out
Multidigit In

Set Mantissa Digit Count
Inc & Branch if M#9
Dec & Branch if M=f
X Exchange M
Memory Store

Memory Recall

Left shift Xm

Right shift Xm

Inverse Mode

Enter

Toggle Mode

Roll Stack

Sine X

Cosine X

Tangent X

Set Flag 1

Pulse Flag 1

Set Flag 2

Pulse Flag 2

Error Clear
Radians to Degrees
Degrees to Radians
Pop .
Master Clear

HEX OP CODE

00
01
02
03
04
05
06
07
08
09
0A
0B
ocC
0D
OE
OF

10
11
12
13
14
15
16
17
18
19
1A
1B
1c
1D
1E
IF

20
21
22
23
24
25
26
27
28
29
ZA
2B
2C
2D
2E
2F

MNEMONIC

o
Pl
02
03
D4
f5
B6
07
98
99
DP
EE
cs
PI
AIN
HALT

TJcC
TX=0
TXLTO
TXF
TERR
JMP
ouT
IN
SMDC
IBNZ
DBNZ
XEM
MS
MR
LSH
RSH

INV
EN
TOGM
ROLL
SIN
cos
TAN
SF1
PF1
SF2
PF2
ECLR
RTD
DTR
POP
MCLR

ASCII CHARACTER

OO~ —=TS

o]

o~

= == ep I

M OWnNow

=R

Cntrl X

Table ITI - CALC-1 Instruction to ASCII Character Lookup Table

NAME HEX OP CODE MNEMONIC ASCII CHARACTER

X exchange Y 39 XEY X
E to X 31 EX W
Ten to X 32 19X U
Square 33 5Q Q
Square Root 34 SQRT v
Natural Log of X 35 LN N
Base 10 Log of X 36 LOG B
One divided by X 37 1/X R
Y to X 38 YX ~
Plus 39 + +
Minus 3A - -
Times 3B X *
Divide 3¢ / /
Pulse R/W 1 3D PRW1

Pulse R/W 2 3E PRW2

No Operation 3F NOP

Table IV - Floating Point Mode OUT data storage

Memory Location DP POS b7 D6 D5 D4 D3 D2 DI DO
29 P g f o P @ g)]
21 0 g 1 o]) 4 1]
22]) 1 1 Sm @)])
23))] 1 1 Dp POS
24 fB 8 4] 1 1 BCD digit(left most)
z5 PA) P 1 1 BCD digit
26 B9 ()] [} 1 1 BCD digit
27 p8 '/ p 1 1 BCD digit
28 B7 [[} 1 1 BCD digit
29 p6 [¢ 1 1 BCD digit
2A f5 [[1 1 BCD digit
2B B4 /] (] 1 1 BCD digit(right most)

Table IV - Scientific Mode OUT data storage

Memory Location D7 D6 D5 D& D3 D2 Dl DO
20 86 # 1 1 Most signif. exp. digit
21 o 0 1 1 Least signif. exp. digit
22 s ¢ 1 1 Sm @ ¢ Se
23 NOT USED
24 g B 1 1 BCD digit (left most)
25 o # 1 1 BCD digit
26 C I 1 1 BCD digit
27 s 0 1 1 BCD digit
28 LI 1 1 BCD digit
29 g # 1 1 BCD digit
2A | 1 1 BCD digit
2B o 1 1 BCD digit (left most)
Notes:

1) If the Mantissa Digit Count (set by SMDC instruction, initially 8)
is less than 8, the unused digit memory locations will be filled
with ASCIT spaces (2016)

2) Sm is the sign of the mantigsa. # = positive i= negative
3) Se is the sign of the exponent P = positive 1= negative

4) DP POS is the decimal point position. The decimal point should
follow the digit whose address is stored in memory location 24 when in the
Scientific mode. 1In the Floating Point mode AND the data in memory location
23 with #F and subtract the result from 2F and OR this with 2@. The
decimal point should follow the digit whose address is given by the
result,

Table V - ASCII to CALCULATOR INSTRUCTION LOOKUP TABLE

s MSB 0 1 2 3 4 5 6 7
OF OF 21 00 OF OD OF O©D
OF OF OF 01 1B 33 OF 33
OF OF OF 02 36 37 36 37
OF OF OF 03 25 24 25 24
OF OF OF 04 2D 26 2D 26
CF OF OF 05 OB 32 o0B 32
OF OF OF 06 2C 34 2C 34
OF OF OF 07 1c 31 1c 31
OF OF OF 08 1D 30 1D 30
OF OF OF 09 20 2B 20 2B
OF OF 3B OF OF OC OF OC
OF OF 39 OF OF OF OF OF
OF OF OF OF OF OF OF OF
2F OF 3A OF 18 OF 18 oOr
OF OF OF 22 35 38 35 OF
OF OF 3¢ OF 23 OF 23 OF

MAOORPOWONOT P WN~O

Example: An ASCII P is a hex 50 which points in the table to a OD which is
the constant PI instruction for the calculator chip

TABLE VI~ ERROR CONDITIONS

The ERROR flag on the calculator chip is set when:

1)
2)
3)
4)
5)
6)
7)
8)

LN X when X € 0 LOG X when X € 0

Any result{ 1099 Any result > 10 99

TAN 90° , 2709, 450° , etc.
SIN X, Cos X, TAN X when [X|> 9000°

g when| X{>tor IXI{ 10~20

sin-l x, cos”
SQRT X when X£ 0

dividing by 0

Outputting a number in floating point mode if the number of mantissa

digits to the left of the decimal point is greater than the mantissa
digit count.

Figure 1

V55 = 5V
= HOLD
Vpp—¥ 4v — RDY
S iy R
- .1 —p| CONTROL
{JSC =i SIGNALS el |SEL
clock ¥ o2 ;
GEN . INTERNAL CLOCKS — AV
SYNC == Ly TAS
O‘ E,
p——yp F1
MICROPROGRAM
POR == INITIALIZATION [~ STORAGE ROM @ FLAGS el £ 2
1 = ERRQR
3 3
—p — X
Y
} STACK
8.0IGIT MANTISSA
rne—b z l REGISTER FILE
, CONTROL ! J
igIC -» LOGIC
Is/ADR ! M MEMORY)
(PR L . P
13/D3 - - p—p DAY {LEAST)
r— b il [o
1y/M COUNTER [DA3
L\ R, Jv — DA4 (MOST)
—p 00! (LEAST!
ARITHMETIC 4.81T DIGIT DATA
UNIT DD‘fT': —b D02
our el 003
plp- 04 {MDST)

ASCII to Hexadecimai Conversion Table

SP

| NUL | DLE

SOH | DC1

STX | DC2

DEL

Example: A =41

RPN-the only language that lets you “speak™with confidence
" and conslstency to a pocket-sized computer calculator.

In 1967, Hewlett-Packard embarked on a major new
development effort: to design a family of advanced com-
puter calculators powerful enough to solve complex en-
gineering/scientific problems yet simple enough to be
used by anyone who works with numbers.

As part of this effort, HP carefully evaluated the
strengths and weaknesses of the various languages which
an operator might use to communicate with an electronic
calculating device. Among those studied were:

computer languages such as BASIC and FORTRAN,
various forms of algebraic notation, and

RPN (Reverse Polish Notation), a parenthesis-free
but unambiguous language derived from that devel-
oped by the Polish mathematician, Jan Lukasiewicz.

As might be expected, each of these languages was
found to excel in a particular application. For its biggest
programmable desktop calculators, HP selected BASIC.
For its other powerful desktop calculators, with less ex-
tensive storage capacity, HP chose algebraic notation.

But, given the design constraints of a pocket-sized
scientific computer caiculator, RPN proved the simplest,
most efficient, most consistent way to solve complex
mathematical problems.

Oniy RPN offers these powerful advantages

Compared to alternative logic systems, Hewlett-Packard

believes that only RPN —in combination with a 4-register

operational memory stack —gives you these powerful
advantages.
1. You cae always enter your data the same way, i.c.,
from left to right—the same way you read an equa-
tion. Yet, there is no need for a parenthesis key; nor
for a complicated “operational hierarchy.”

. You can always proceed through your problem the
same way. Once you've entered a number, you ask:
“Can I perform an operation?” If yes, you do it. If
no, you press and key in the next number.

3. You always see all intermediate answers —as they
" are calculated —so that you can check the progress

of your calculation as you go. As important, you

can review all numbers stored in the calculator at
any time by pressing a few keys. There isno

“hidden” data.

You don't have to think your problem all the way

through beforehand unless the problem is so com-

plex that it may require simultancous storage of
three or more intermediate answers.

. You can easily recover from errors since all opera-
tions are performed sequentiaily, immediately after
pressing the appropriate key.

The RPN method consists of four, easy-to-remember
steps. Once learned, it can be applied to atmost any
mathematical expression.

6. You don’t have to write down and re-enter inter-
mediate answers, a real time-saver when working
with numbers of eight or nine digits each,

. You can communicate with your calculator con-
fidently, consistently because you can always pro-
ceed the same way.

If all this sounds too good to be true, bear with us—

you’'ll soon get the chance to see for yourself. But first,

we need to describe how RPN and the 4-register opera-
tional stack operate.

The RPN method — it takes a few minutes to
learn but can save years of frustration,
Yes, the RPN method does take some getting used to.
But, once you've learned it, you can use the RPN method
to solve almost any mathematical expression— con-
fidently, consistently.
There are only four easy-to-follow steps:

1. Starting at the left side of the problem, key in the
first or next number.
Determine if any operations can be performed. If
sa, do all operations possible.
3. If not, press to save the number for future
Use.
Repeat steps ! through 3 until your calculation is
completed.
A diagram of the RPN method is shown above.

2.

4.

Simple arithmetic,the RPN way,.

Just to show how it works, let’s try the RPN method on
two simple problems (we’ll use them again in the com-
parisons that begin on the next page).

Problem: 3 X 4 =12
RPN solution:

Step

1. Key in first number,

(3] 3
2. Since only ona number has been
keyed in, nb operations are

possible. Press . 3
3. Key in next number. (4] 4

4, Since both numbers are now in
calculator, multiplication can be
performed. E 12

See

Press Displayed

Problem: (3x4)+(5)(6):42

RPN solution:
See

Step ’ Press Displayed
1. Key In first number. El 3
2. No operations possible. Press

Ea=D) 3
3. Key in second number. 4] ~ 4
4. Since both numbers are in

calculator, first multiplication

is possibls. [X] 12
5. Key in next number. (First inter-

mediate answer will be auto-

matically stored for future uss.) 5
6. No operations possible. Prass

[ENTERS) 5
7. Key in next number. (6] 6
8. Second muitiplication is possible

since both numbers are in calcu-

lator. [x] 30
9. Addition is posaibie since both

intermediate answers have been

calculated and are stored in 4-

ragister operational stack. 42

]

If vou've followed us this far, you've noticed two im-
portant facts:
1. Both of these problems were solved in the same,
consistent manner, using the same simple set of rules.
2. All intermediate answers were displayed as they were
calculated, and stored and retrieved as needed to
complete the calculation. With RPN and a 4-register
operational memory stack, there is- almost never a
need to write down intermediate answers.

How the operational stack works.

The four registers of HP’s exclusive operational stack
can be represented by the following diagram.

)
: ‘Top

-

i
|

e

! Display

x < N -

When a number is keyed in, it goes into the X register
for display. Pressing the key duplicates the con-

tents of the X register into the Y register and moves all
other numbers in the stack up one position.

When an operation key ([+],[=], [x],[$],[x>]) is pressed
the operation is performed on the numbers in the X and
Y registers, and the answer appears in the X register for
display. Numbers in_the other registers automatically
drop one position.

To demonstrate these points, we’ll show what happens
to the stack as we solve the problem: (3 < 4) - (5 X 6)
= 42.

T e
z T 12 12

Y| /3| 3 [12 | 5 | 5 12
X 3 3|4]12]5 !5 6 30 42
T EEs @ M 5 Ewew ® " F

As you can see, all numbers are automatically posi-
tioned in the stack on a last-in-first-out basis, in the
proper order for subsequent use.

Now that we’ve described how RPN logic operates, we
can proceed with our problem-by-problem comparison of
this system versus two others used in today’s scientific
pocket calculators.

We think you will find it interesting.

