6809 FLEH"
Operating
Syrstem

technical rystemys
consultanty, INC.

of.

The FLEX"™ Disk Operating System

Technical Systems Consultants, Inc.

COPYRIGHT INFORMATION

This entire manual is provided for the personal use and enjoyment of the purchaser. Its
contents are copyrighted by Technical Systems Consultants, Inc., and reproduction, in
whole or in part, by any means is prohibited. Use of this program, or any part thereof,
for any purpose other than single end use by the purchaser is prohibited.

DISCLAIMER

The supplied software is intended for use only as described in this manual. Use of
undocumented features of parameters may cause unpredictable results for which Technical
Systems Consuitants, Inc. cannot assume responsibility. Although every effort has been
made to make the supplied software and its documentation as accurate and functional as
possible, Technical Systems Consultants, Inc. will not assume responsibility for any
damages incurred or generated by such material. Technical Systems Consultants, Inc.
reserves the right to make changes in such material at any time without notices

FLEX User’'s Manual

COPYRIGHT © 1979 by
Technical Systems Consultants, Inc.
P.0. Box 2570
West Lafayetts, Indiana 47906
All Rights Reserved

™ FLEX Is 2 trademark of Technical Systems Consultants, Inc.

COPYRIGHT INFORMATION

This entire manual is provided for the personal use and enjoyment of the purchaser. Its
contents are copyrighted by Technical Systems Consultants, Inc., and reproduction, in
whole or in part, by any means is prohibited. Use of this program, or any part thereof,
for any purpose other than single end use by the purchaser is prohibited.

DISCLAIMER

The supplied software is intended for use only as described in this manual. Use of
undocumented features or parameters may cause unpredictable results for which Technical
Systems Consultants, Inc. cannot assume responsibility. Although every effort has been
made to make the supplied software and its documentation as accurate and functional as
possible, Technical Systems Consultants, Inc. will nat assume responsibility for any
damages incurred or generated by such material. Technical Systems Consuitants, Inc.
reserves the right to make changes in such material at any time without notice.

PREFACE

The purpose of this User's Guide is to provide the user of the FLEX
Operating System with the information required to make effective use of
the available system commands and utilities. This manual applies to
FLEX 9.0 for full size and mini floppy disks. The user should keep this
manual close at hand while becoming familiar with the system. It is
organized to make it convenient as a quick reference guide, as well as a
thorough reference manual.

-iii-

FLEX USER'S MANUAL

I. INTRODUCTION

The FLEX™ Operating System is a very versatile and flexible operating
system. It provides the user with a powerful set of system commands to
control all disk operations directly from the user's terminal. The
systems programmer will be delighted with the wide variety of disk
access and file management routines available for personal use.
Overall, FLEX is one of the most powerful operating systems available

today.

The FLEX Operating System is comprised of three parts, the File
Management System (FMS;' the Disk Operating System (D0S), and the
Utility Command Set (UCS). Part of the power of the overall system lies
in the fact that the system can be greatly expanded by simply adding
additional utility commands. The user should expect to see many more
utilities available for FLEX in the future. Some of the other important
features include: fully dynamic file space allocation, the automatic
“removal" of defective sectors from the disk, automatic space
compression and expansion on all text files, complete user environment
control using the TTYSET utility command, and uniform disk wear due to

the high performance dynamic space allocator.

The UCS currently contains many very useful commands. These programs
reside on the system disk and are only loaded into memory when needed.
This means that the set of commands can be easily extended at any time,
without the necessity of replacing the entire operating system. The
utilities provided with FLEX perform such tasks as the saving, loading,
copying, renaming, deleting, appending, and 1listing of disk files.
There is an extensive CATalog command for examining the disk's file
directory. Several environment control commands are also provided.
Overall, FLEX provides all of the necessary tools for the user's
interaction with the disk.

O WS G e e G A

* FLEX 1is a registered trademark of Technical Systems
Consultants, Inc.

-1.1“"

FLEX User's Manual

IT. SYSTEM REQUIREMENTS

FLEX requires random access memory from location 0000 through location
2FFF hex {12K). Memory is also required from COO0 (48K) through DFFF
hex (56K), where the actual operating system resides. The system also
assumes at least 2 disk drives are connected to the controller and that
they are configured as drives #0 and #1. You should consult the disk
drive instructions for this information. FLEX interfaces with the disk
controller through a section of driver routines and with the operator
console or terminal through a section of terminal I1/0 routines.

I[I1. GETTING THE SYSTEM STARTED

Fach FLEX system diskette contains a binary 1loader for 1loading the
operating system into RAM. There needs to be some way of getting the
loader off of the disk so it can do its work. This can be done by
either hand entering the bootstrap loader provided with the disk system,
or by using the boot provided in ROM if appropriate to FLEX.

As a specific example, suppose the system we are using has SWTPc's S-BUG
installed and we wish to run FLEX. The first step is to power on all
equipment and make sure the S-BUG prompt is present (>). Next insert
the system diskette into drive O (the boot must be performed with the
disk in drive 0) and close the door on the drive. Type "D" on the
terminal if using a full size floppy system or "U" if a minifloppy
system. The disk motors should start, and after about 2 seconds, the
following should be displayed on the terminal:

FLEX X.X
DATE (MM,DD,YY)?

4+

The name FLEX identifies the operating system and the X.X will be the
version number of the operating system. At this time the current date
should be entered, such as 7,3,79. The FLEX prompt is the three plus
signs (+++), and will always be present when the system is ready to
accept an operator command. The '+++' should become a familiar sight

and signifies that FLEX is ready to work for you!

-1-2"

FLEX User's Manual

IV. DISK FILES AND THEIR NAMES

A1l disk files are stored in the form of 'sectors’ on the disk and in
this version, each sector contains 256 'bytes' of information. Each
byte can contain one character of text or one hyte of binary machine
information. A maximum of 340 user-accessible sectors will fit on a
single-sided mini disk or 1140 sectors on a single-sided full size
floppy. Double-sided disks would hold exactly twice that number of
sectors. Double-density systems will hold more still. The user,
however, need not keep count, for the system does this automatically. A
file will always be at least one sector long and can have as many as the
maximum number of sectors on the disk. The user should not be concerned
with the actual placement of the files on the disk since this is done by
the operating system. File deletion 1is also supported and all
previously used sectors become immediately available again after a file
has been deleted.

A1l files on the disk have a name. Names such as the following are
typical:

PAYROLL

INVNTORY
TEST1234
APRIL-78
WKL Y-PAY

Anytime a file 1is created, referenced, or deleted, its name must bhe
used. Names can be most anything but must begin with a letter (not
numbers or symbols) and be followed by at most 7 additicnal characters,
called 'name characters'. These 'name characters' can be any
combination of the letters 'A' through 'Z' or 'a' through 'z', any digit
'0' through '9', or one of the two special characters, the hyphen {-) or
the underscore ' ', (a left arrow on some terminals).

File names must also contain an 'extension'. The file extension further
defines the file and usually indicates the type of information contained
therein. Fxamples of extensions are: TXT for text type files, BIN for
machine readable binary encoded files, CMD for utility command files,
and BAS for BASIC source programs. FExtensions may centain up to 3 'name
characters' with the first character being a Tetter. Most of the FLEX
commands assume a default extension on the file name and the user need
not be concerned with the actual extension on the file. The user may at
anytime assign new extensions, overiding the default value, and treat
the extension as just part of the file name. Some examples of file
names with their extensions follow:

APPEND.CMD
LEDGER.BAS
TEST.BIN

Note that the extension is always separated from the name by a period
'.'. The period is the name 'field separator'. It tells FLEX to treat

the following characters as a new field in the name specification.

-1.3""

FLEX User's Manual

A file name can be further refined. The name and extension uniquely
define a file on a particular drive, but the same name may exist on
several drives simultaneously. To designate a particular drive a 'drive
number' is added to the file specification. It consists of a single
digit (0-3) and is separated from the name by the field separator '.'.
The drive number may appear either before the name or after it (after
the extension if it is given). If the drive is not specified, the
system will default to either the 'system' drive or the 'working' drive.

These terms will be described a Tittle Tater.
Some examples of file specifications with drive numbers follow:

0.BASIC
MONDAY.?2
1, TEST.BIN
LIST.CMD.1

In summary, a file specification may contain up to three fields
separated by the field separator. These fields are; ‘'drive', ‘name’,
and 'extension'. The rules for the file specification can be stated

quite concisely using the following notation:

[<drive>.]J<name>[.<extension>]
or
<name>[.<extension>][.<drive>]

The '<¢>' enclose a field and do not actually appear in the
specification, and the '[]' surround optional items of the
specification. The following are all syntactically correct:

0.NAME.EXT
NAME.EXT.O
NAME.EXT
0. NAME
NAME. O
NAME

Note that the only required field is the actual 'name' itself and the
other values will usually default to predetermined values. Studying the
above examples will clarify the notation used. The same notation will

occur regularly throughout the manual.

"1.4-

FLEX User's Manual

V. ENTERING COMMANDS

When FLEX is displaying '+++', the system is ready to accept a command
line. A command 1line is usually a name followed by certain parameters
depending on the command being executed. There is no 'RUN' command in
FLEX. The first file name on a command Tine js always loaded into memory
and execution is attempted. If no extension 1is given with the file
name, 'CMD' 1is the default. If an extension js specified, the one
entered is the one used. Some examples of commands and how they would
look on the terminal follow:

+HHTTYSET
+++TTYSET.CMD
+++L00KUP.BIN

The first two lines are identical to FLEX since the first would default
to an extension of CMD. The third 1ine would 1load the binary file
'LOOKUP.BIN' into memory and, assuming the file contained a transfer
address, the program would be executed. A transfer address tells the
program loader where to start the program executing after it has been
loaded. If you try to load and execute a program in the above manner and
no transfer address is present, the message, 'NO LINK' will be output to
the terminal, where 'link' refers to the transfer address. Some other
error messages which can occur are 'WHAT?' if an 1illegal file
specification has been typed as the first part of a command 1line, and
'NOT THERE' if the file typed does not exist on the disk.

During the typing of a command 1line, the system simply accepts all
characters until a 'RETURN' key is typed. Any time before typing the
RETURN key, the user may use one of two special characters to correct
any mistyped characters. One of these characters is the 'back space'
and allows deletion of the previously typed character. Typing two back
spaces will delete the previous two characters. The back space is
initially defined to be a 'control H' but may be redefined by the user
using the TTYSET utitity command. The second special character is the
line 'delete' character. Typing this character will effectively delete
all of the characters which have been typed on the current line. A new
prompt will be output to the terminal, but instead of the usual '+++'
prompt, to show the action of the delete character, the prompt will be
'?22?', Any time the delete character is used, the new prompt will be
'?2??', and signifies that the last line typed did not get entered into
the computer. The delete character is initially a 'control X' but may
also be redefined using TTYSET.

-1-5-

FLEX Yser's Manual

As mentioned earlier, the first name on a command Tine 1is always
interpreted as a command. Following the command is an optional 1list of
names and parameters, depending on the particular command being entered.
The fields of a command line must be separated by either a space or a
comma. The general format of a command Tine is:

<command>[,<1ist of names and parameters>]

A comma is shown, but a space may be used. FLEX also allows several
commands to be entered on one command line by use of the 'end of line'
character. This character is initially a colon (':'), but may be user
defined with the TTYSET utility. By ending a command with the end of
line character, it is possible to follow it immediately with another
command. FLEX will execute all commands on the line before returning
with the '+++' prompt. An error in any of the command entries will
cause the system to terminate operation of that command line and return
with the prompt. Some examples of valid command lines follow:

+++CAT 1
+++CAT 1:ASN S=1
+4++ IST LIBRARY:CAT 1:CAT O

As many commands may be typed in one command line as desired, but the
total number of characters typed must not exceed 128. Any excess
characters will be ignored by FLEX.

One last system feature to be described is the idea of 'system' and
'working' drives. As stated earlier, if a file specification does not
specifically designate a drive number, it will assume a default value.
This default value will either be the current 'system' drive assignment
or the current ‘'working' drive assignment. The system drive is the
default for all command names, or in other words, all file names which
are typed first on a command line. Any other file name on the command
line will default to the working drive. This version of FLEX also
supports automatic drive searching. When in the auto search mode 1f no
drive numbers are specified, the operating system will first search
drive 0 for the file. If the file 1is not found, drive 1 will be
searched and so on. When the system is first initialized the auto drive
searching mode will be selected. At this time, all drive defaults will
be to drive 0. It is sometimes convenient to assign drive 1 as the
working drive 1in which case all file references, except commands, will
automatically Took on drive 1. It is then convenient to have a diskette
in drive 0 with all the system utility commands on it (the 'system
drive'), and a disk with the files being worked on in drive 1 ({the
'working drive'). If the system drive is O and the working drive is 1,
and the command line was:

+++L IST TEXTFILE

FLEX would go to drive O for the command LIST and to drive 1 for the
file TEXTFILE. The actual assignment of drives is performed by the ASN
utility. See its description for details.

"1.6"

FLEX User's Manual

VI. COMMAND DESCRIPTIONS

There are two types of commands in FLEX, memory resident (those which
actually are part of the operating system) and disk utility commands
(those commands which reside on the disk and are part of the UCS).
There are only two resident commands, GET and MON. They will be
described here while the UCS is described in the following sections.

GET

The GET command is used to load a binary file into memory. It is a
special purpose command and is not often used. [t has the following
syntax:

GET[,<file name list>]
where <file name list> is: <file spec>[,<file spec>] etc.

Again the '[]' surround optional items. 'File spec' denotes a file name
as described earlier. The action of the GET command is to lToad the file
or files specified in the 1ist into memory for later use. If no
extension 1is provided in the file spec, BIN is assumed, in other words,
BIN is the default extension. Examples:

GET,TEST
GET,1.TEST,TEST2.0

where the first example will load the file named 'TEST.BIN' from the
assigned working drive, and the second example will load TEST.BIN from
drive 1 and TEST2.BIN from drive 0.

MON

MON is used to exit FLEX and return to the hardware monitor system such
as S-BUG. The syntax for this command is simply MON followed by the
'RETURN' key.

NOTE: to re-enter FLEX after using the MON command, you should enter the
program at location CD03 hex.

-1-7-

UTILITY COMMAND SET

The following pages describe all of the utility commands currently
included in the UCS. You should note that the page numbers denote the
first letter of the command name, as well as the number of the page for
a2 particular command. For example, 'B.1.2' is the 2nd page of the
description for the lst utility name starting with the letter 'B’,

COMMON ERROR MESSAGES

Several error messages are common to many of the FLEX utility commands.
These error messages and their meanings include the following:

NO SUCH FILE. This message indicates that a file referenced in a
particular command was not found on the disk specified. Usually the
wrang drive was specified {or defaulted), or a misspelling of the name
was made.

ILLEGAL FILE NAME. This can happen if the name or extension did
not start with a letter, or the name or extension field was too 1long
(1limited to 8 and 3 respectively). This message may also mean that the
command being executed expected a file name to follow and one was not

provided.

FILE EXISTS. This message will be output if you try to create a
file with a name the same as one which currently exists on the same
disk. Two different files with the same name are not allowed to exist on

the same disk.

SYNTAX ERROR. This means that the command line just typed does not
follow the rules stated for the particular command used. Refer to the
individual command descriptions for syntax rules.

GENERAL SYSTEM FEATURES

Any time one of the utility commands is sending output to the terminal,
it may be temporarily halted by typing the 'escape' character {see
TTYSET for the definition of this character). Once the output is
stopped, the user has two choices: typing the 'escape' character again
or typing 'RETURN'. If the ‘escape' character is typed again, the
output will resume. If the 'RETURN' is typed, control will return to
FLEX and the command will be terminated. All other characters are
ignored while output is stopped.

"'20 1-

GIMIX FLEX USER NOTES #1

The following programs in the TSC 6809 DISK DIAGNOSTICS package

will not work with GIMIX FLEX.

PROGRAM NAME NOTES

TEST.CMD Will give errors for track zero on mini
floppy double density disk. GIMIX FLEX
versions 2.8 and 3.48.

VALIDATE.CMD Will abort with "INVALID SYSTEM INFO
SECTOR' message. This only applies to
mini floppies formatted for more than 480
tracks, mini's formatted double density
and eight inch disks formatted for more
than 77 tracks. GIMIX FLEX versions 1.0,
2.0 and 3.8.

COPYR.CMD Same as 'TEST.CMD' above.
EXAMINE.CMD Same as 'TEST.CMD' above.
FLAW.CMD Same as 'TEST.CMD' above.
REBUILD.CMD Same as 'TEST.CMD' above.

NOTE: This is because these programs were not written to handle
double density mini's, mini‘'s with greater than forty
tracks and eight inch's with greater than seventy-seven
tracks.

The following 6889 FLEX Utilities will not work with GIMIX
versions of FLEX:

DIR.CMD This program can cause the system to
hang and/or crash when used while
print spooling. This is because of
the way that the FLEX print spooler
handles the stack. This program will
function perfectly when the print
spooler is not active. GIMIX FLEX
versions 1.8, 2.8 and 3.60.

FLEX is' a trademark of Technical Systems Consultants, West
Lafayette, Indiana.

GIMIX is a registered trademark of GIMIX, Inc., Chicago,
Illinois.

-

Page

Page

Page

PAGE

GIMIX FLEX 1.8 ADDENDUM SHEET

1.2
Paragraph I1 (SYSTEM REQUIREMENTS)

GIMIX FLEX requires memory from location $¢660 through location
$3FFF. As well as memory from location $C@P@# through location
SDFFF. The system assumes that the user has four disk drives
connected to the controller. To set this differently see the

'*'SETUP' command.
Paragraph III (GETTING THE SYSTEM STARTED)

When using GMXBUG-09 with the Disk BOOT PROM or BOOT + VIDEO PROM
installed, type 'U', followed by a carriage return in response to
the GMXBUG-@9 '>' prompt to boot the system.

1.3
Paragraph IV (DISK FILES AND THEIR NAMES)

The actual number of sectors available to the user may vary
according to the number of tracks formatted, number of sides
formatted, size of the disk and whether the disk was formatted
single or double stepped. Please see the ‘FORMAT!' and 'SETUP'

commands for more information.

2.1

Paragraph 7 (GENERAL SYSTEM FEATURES)

In addition to the featues already mentioned GIMIX FLEX also gives
the user the following additional features: Selection of stepping
speed by drive, Selection of number of drives installed on the
system, software write protection by drive, selection of single or
double stepping (See the 'SETUP' and *REPORT' commands), and auto

selection of disk density.

3.1 *
Paragraph 1 (DISK CAPACITY)
See addendum for Paragraph IV,.Page 1.3

Paragraph V (ACCESSING DRIVES NOT CONTAINING A DISKETTE)

When attempting to access a mini floppy drive that has no disk in
it one of the following things can occur: The system will hang and
wait for the user to insert a disk into the drive or the system
will come back with the 'DRIVES NOT READY' message.

-a.i-

Page

Page

Page

Some disk drives generate a 'not ready' signal to the controller.
For the drives that do not generate this signal the 'pseudo ready'
should be enabled. Please see the hardware manual for a 1list of
which drives generate this signal and how to enable it and how to

enable the 'pseudo ready' feature.

NOTE: When using mini floppys with the 'Pseudo Ready' enabled, the
system will not always come back with the not ready message.

3.4
Paragraph VIII (FLEX OPERATING SYSTEM INPUT/OUTPUT SUBROUTINES)

GIMIX FLEX uses the GMXBUG-R9 (SBUG-E compatible) INPUT/OUTPUT
routines for total system compatibility.

3.6

Paragraph IX (BOOTING THE FLEX DISK OPERATING SYSTEM)
If neither the BOOT PROM or the VIDEO + BOOT PROM is installed in

the system the user must hand enter a bootstrap. A suitable boot
program is included in the manual for the disk controller.

3.7

Paragraph X (REQUIREMENTS FOR THE 'PRINT.SYS' DRIVER)
GIMIX FLEX, as supplied, includes two printer drivers and their

source codes. List the file 'READ-ME' on the system disk for more
information.

NOTE: GIMIX FLEX does not have a 'NEWDISK' command. This has been
replaced with the 'FORMAT!® command.

—a.ii-

—

CHAPTER 1
I.
II.
ITI.
iv.
V.
VI.

CHAPTER 2
I.

*

Introduction

TABLE OF CONTENTS

System Requirements
Getting the System Started
Disk Files and Their Names
Entering Commands

Command Descriptions

APPEND
ASN
BUILD
CAT
COPY
*C LEAN
*CHECKSUM
DATE
DELETE -
EXEC
*EXTEND
*FORMAT
I

JUMP
LINK
LIST
*NAME
*N

o

P

PRINT
PROT
QCHECK
RENAME
*REPORT
SAVE
STARTUP
*SETTIME
*SETUP
TTYSET
*TIME
*USEMPT
*JPDATE
VERIFY
VERSION
XOouT
*YEAR

*Y

Utility Command Set

Programs supplied by GIMIX

—v-—

Page

[
-
UMW N

QOW P> PN
1] - L] L] L] » [] . . [] L] []
N s W R R

¢ ??J?SD?:Zr*ﬁCAH'ﬂblmtjUfﬁn

[] L] L} L] . - [] . . L] L[] L[]
N R U R B W R N - R W R R H RN

KKXSdooEdnnnhn Do

CHAPTER 3
I.
II.
III.
Iv.
V.
VI.
VII.
VIiI.
IX.
X.
XIi.
X1I.

CHAPTER 4
I.

Disk Capacity

Write Protect

The 'RESET' Button

Notes on the P Command

Accessing Drives Not Containing a Disk
System Error Numbers

System Memory Map

Flex Input/Output Subroutines

Booting the Flex Disk Operating System
Requirements for '"PRINT.SYS' driver
Hardware Configuration

Patching FLEX to use the Time-of-Day clock

Command Summary

- L] » [] *

M
e Ty

W W W W W wWwwww
L]
ot et wd O B W B e

.
+
[

6809
FLEX™

Utilities

COPYRIGHT ® 1979 by

Technical Systems Consuitants, Inc.
111 Providence Road

Chapel Hill, North Carolina 27514
All Rights Reserved

COPYRIGHT INFORMATION

This entire manual is provided for the personal use and enjoyment of the purchaser. |Its
contents are copyrighted by Technical Systems Consultants, Inc., and reproduction, in
whole or in part, by any means is prohibited. Use of this program, or any part thereof,

" for any purpose other than single end use by the purchaser is prohibited.

DISQAIMER

The supptied software is intended for use only as described in this manual, Use of
undocumented features or parameters may cause unpredictable results for which Technical
Systems Consultants, Inc. cannot assume responsibility. Although every effort has been
made to make the supplied software and its documentation as accurate and functional as
possible, Technical Systems Consultants, Inc. will not assume responsibility for any
damages incurred or generated by such material. Technical Systems Consultants, Inc.
reserves the right to make changes in such material at any time without notice.

INTRODUCTION

The utility programs documented herein are written to be position

independent. Each program will run correctly, without modification, from

any Tlocation in user memory. As a default, each program runs in the

FLEX™ 9.0 Utility Command Space at location $C100. The RUN utility may

ge used to load and execute the programs at other memory Tocations, if
esired.

This manual is designed to be taken apart and the pages added to the
"User's Manual" secticn of the "6809 FLEX™ Operating System" manual.

In addition to the command files, the source for these utilities is
supplied on the diskette. Users may customize these programs for their
own end use. However, the Tegal protection of the rights of Technical
Systems Consultants, Inc. over the software extends, by law, to include

such modified versi . N
u m e ersions nykb&jgg

™
N

~iii-

APPEND

The APPEND command is used to append or concatenate two or more files,
creating a new file as the result. Any type of file may be appended but
it only makes sense to append files of the same type in most cases. If
appending binary files which have transfer addresses associated with
them, the transfer address of the Tast file of the list will be the
effective transfer address of the resultant file. A1l of the original
files will be left intact.

DESCRIPTION

The general syntax for the APPEND command is as follows:
APPEND,<file spec>[,<file Tist>],<file spec>

where <file 1list> can be an optional 1ist of the specifications. The
last name specified should not exist on the disk since this will be the
name of the resultant file. If the last file name given does exist on
the disk, the question "MAY THE EXISTING FILE BE DELETED?" will be
displayed. A Y response will delete the current file and cause the
APPEND operation to be completed. A N response will terminate the
APPEND operation. All other files specified must exist since they are
the ones to be appended together. If only 2 file names are given, the
first file will be copied to the second file. The extension default is
TXT unless a different extension is used on the FIRST FILE SPECIFIED, in
which case that extension becomes the default for the rest of the
command 1ine. Some examples will show its use:

APPEND,CHAPTERY,CHAPTERZ,CHAPTER3,BOOK
APPEND,FILEY,1.FILE2.BAK,GOODFILE

The first 1ine would create a file on the working drive called
'BOOK.TXT' which would contain the files 'CHAPTER1.TXT', CHAPTER2.TXT',
and 'CHAPTER3.TXT' 1in that order. The second example would append
'FILE2.BAK' from drive 1 to FILE1.TXT from the working drive and put the
result in a file called 'GOODFILE.TXT' on the working drive. The file
GOODFILE defaults to the extension of TXT since it is the default
extension. Again, after the use of the APPEND command, all of the
original files will be intact, exactly as they were before the APPEND
operation.

-A.1.1-

ASN

The ASN command is wused for assigning the 'system' drive and the
'working' drive or to select automatic drive searching. The system
drive 1is used by FLEX as the default for command names or, in general,
the first name on a command line. The working drive is used by FLEX as
the default on all other file specifications within a command line.
Upon initialization, FLEX assigns drive #0 as both the system and
working drive. An example will show how the system defaults to these
values:

APPEND,FILE1,FILE2,FILE3

If the system drive is assigned to be #0 and the working drive is
assigned to drive #1, the above example will perform the following
operation: get the APPEND command from drive #0 {the system drive), then
append FILE2 from drive #1 (the working drive) to FILEl from drive #1
and put the result in FILE3 on drive #1. As can be seen, the system
drive was the default for APPEND where the working drive was the default
for all other file specs Tisted.

Automatic drive searching causes FLEX to automatically scan the ready
drives for the file specified. Hardware limitations prevent the mini
floppy versions from searching for "ready"” drives. For this reason,
FLLEX has been setup to ALWAYS assume drive 0 and 1 are ready. Thus if a
mini floppy version of FLEX attempts to search a drive which does not
have a disk loaded, it will hang up until a disk is inserted and the
door closed. Alternatively, the system reset could be hit and a warm
start executed (a jump to address $CD03). The full size floppy version
CAN detect a ready condition and will not check drives which are out of
the ready state during automatic drive searching.

Automatic drive searching causes FLEX to first check drive #0 for the
file specified. If not there (or if not ready in the full size
version), FLEX skips to drive #1. If the file is not found on drive #1
in the mini floppy version, FLEX gives up and a file not found error
results. In the full size version FLEX continues to search on drives #2

and #3 before reporting an error,

DESCRIPTION

The general syntax for the ASN command s as follows:
ASN[,W=<drive>][,S=<drive>]

where <drive> is a single digit drive number or the Tetter A. If Jjust
ASN is typed followed by a 'RETURN', no values will be changed, but the
system will output a message which tells the current assignments of the
system and working drives, for example:

+++ASN
THE SYSTEM DRIVE IS #0
THE WORKING DRIVE IS #0

"A.Zc 1-

FLEX User's Manual

Some examples of using the ASN command are:

ASN,W=1
ASN,S=1,W=0

where the first 1ine would set the working drive to 1 and leave the
system drive assigned to its previous value. The second example sets
the system drive to 1 and the working drive to 0. Careful use of drive
assignments can allow the operator to avoid the use of drive numbers on
file specifications most of the time!

If auto drive searching is desired, then the letter A for automatic,
should be used in place of the drive number.

Example:
ASN W=A
ASN S=A, W=1
ASN S=A, W=A

"A-2p2'

BUILD

The BUILD command is provided for those desiring to create small text
files quickly (such as STARTUP files, see STARTUP) or not wishing to use
the optionally available FLEX Text Editing System. The main purpose for
BUILD is to generate short text files for use by either the EXEC command
or the STARTUP facility provided in FLEX.

DESCRIPTION
The general syntax of the BUILD command is:
BUILD,<file spec>

where <{file spec> is the name of the file you wish to be created. The
default extension for the spec 1is TXT and the drive defaults to the
working drive. If the output file already exists the question "MAY THE
EXISTING FILE BE DELETED?" will be displayed. A Y response will delete
the existing file and build a new file while a N response will terminate
the BUILD command.

After you are in the ‘BUILD' mede, the terminal will respond with an
equals sign ('=') as the prompt character. This is similar to the Text
Editing System’s prompt for text input. To enter your text, simply type
on the terminal the desired characters, keeping in mind that once the
'RETURN' is typed, the Tine is in the file and can not be changed. Any
time before the 'RETURN' is typed, the backspace character may be used
as well as the line delete character. If the delete character is used,
the prompt will be '???' instead of the equals sign to show that the
last line was deleted and not entered into the file. It should be noted
that only printable characters (not control characters) may be entered
into text files using the BUILD command.

To exit the BUILD mode, it is necessary to type a pound sign ('#')
immediately following the prompt, then type 'RETURN'., The file will be
finished and control returned back to FLEX where the three plus signs
should again be output to the terminal. This exiting is similar to that
of the Text Editing System.

""Bo].ol-

CAT

The CATalog command is used to display the FLEX disk file names in the
directory on each disk. The user may display selected files on one or
multiple drives if desired.

DESCRIPTION
The general syntax of the CAT command is:
CAT[,<drive 1ist>][,<match Tist>]

where <{drive 1ist> can be one or more drive numbers seperated by commas,
and <match 1ist> is a set of name and extension characters to be matched
against names 1in the directory. For example, if only file names which
started with the characters 'VE' were to be cataloged, then VE would be
in the match Tist. If only files whose extensions were 'TXT' were to be
cataloged, then .TXT should appear in the match Tist. A few specific
examples will help clarify the syntax:

++HCAT
+++CAT,1,A.T,DR
+++CAT,PR

+++CAT,0,1
+++CAT,0,1,.CMD,.SYS

The first example will catalog all file names on the working drive or on
all drives if auto drive searching is selected. The second example will
catalog only those files on drive 1 whose names begin with 'A' and whose
extensions begin with 'T', and also all files on drive 1 whose names
start with 'DR'. The next example will catalog all files on the working
drive (or on all drive if auto drive searching is selected) whose names
start with 'PR'. The next line causes all files on both drive 0 and
drive 1 to be cataloged. Finally, the last example will catalog the
files on drive 0 and 1 whose extensions are CMD or SYS.

During the catalog operation, before each drive's files are displayed, a
header message stating the drive number is output to the terminal. The
name of the diskette as entered during the NEWDISK operation will also
be displayed. The actual directory entries are listed in the following

form:

NAME.EXTENSION SIZE PROTECTION CODE

where size is the number of sectors that file occupies on the disk. If
more than one set of matching characters was specified on the command
1ine, each set of names will be grouped according to the characters they
match. For example, if all .TXT and .CMD files were cataloged, the TXT
types would be Tisted together, followed by the CMD types.

In summary, 1if the CAT command is not parameterized, then all files on

the assigned working drive will be displayed. If a working drive is not
assigned (auto drive searching mode) the CAT command will display files

-Cllll_

FLEX User's Manual

on all on line drives. If it is parameterized by only a drive number,
then all files on that drive will be displayed. If the CAT command is
parameterized by only an extension, then only files with that extension
will be displayed. If only the name is used, then only files which
start with that name will be displayed. If the CAT command is
parameterized by only name and extension, then only files of that root
name and root extension {on the working drive) will be displayed. Learn
to wuse the CAT command and all of its features and your work with the
disk will become a little easier.

The current protection code options that can be displayed are as
follows:

D File is delete protected (delete or rename prohibited)
W File is write protected (delete, rename and write prohibited)
(blank) No special protection

"Col-Z"

The CHECK utility is used to compare two disk files. The result of the
comparison will be reported to the terminal.

DESCRIPTION
The general syntax of the CHECK command is:

CHECK,<file spec 1>,<file spec 2>
where the file specs default to a TXT extension and to the working
drive. File one will be read and compared against file two one character
at a time. The files may be text or binary files. The result of the
comparison will be reported to the terminal (files are identical or
not). An example follows:

+++CHECK ,REPORT1 ,REPORT2

This command line would cause the file named REPORT1.TXT on the working
drive to be compared to the file named REPORTZ.TXT.

~-C.3.1-

CHECKSUM

The CHECKSUM command performs a 32 bit checksum on an entire disk. The
program reads every sector on the disk and totals them together. This
can be used to verify disk copies, check disk validity, etc.

DESCRIPTION
The general synatax of the CHECKSUM command is:
CHECKSUM[,dn]
Where 'dn' is an optional drive number. If no drive is specified
CHECKSUM will use the work drive. If the work drive is set to 'ALL'" an

error message is printed. - Some examples follow:

+++CHECKSUM
+++CHECKSUM, 2

The first example will generate a CHECKSUM of the disk in the current
work drive, assuming the work drive in not set to 'ALL'. The second
example will generate a CHECKSUM of the disk in drive 2. The output of
CHECKSUM will look like:

CHECKSUM: (@@@2AB@2

CHECKSUM can generate the following error messages:
ILLEGAL DRIVE NUMBER

Legal drive numbers are @, 1, 2, or 3. A drive number must be specified
if the work drive is set to ALL.

INVALID DISK FORMAT

The disk uses a non-standard format or the SYSTEM INFORMATION RECORD
sector may be damaged. '

-C.4.1-

CMPMEM

The CMPMEM command compares the contents of a binary file on the disk to
the contents of memory where it should be loaded. This is useful for
program debugging and memory problem detection.

DESCRIPTION
The general syntax of the CMPMEM command is:
CMPMEM,<file spec>

where the file spec defaults to a BIN extension and to the working
drive. The file specified will be read just as if it were to be Tloaded
into memory, but 1instead, each byte will be compared to what already
exists in memory. If any differences are found, they will be printed
out as the address, followed by the data in memory at that location,
followed by the data from the disk file. All differences will be
printed on the output device. An example follows:

+++CMPMEM ,FENCE

This would cause the file named FENCE.BIN on the working drive to be
read and compared to the actual memory contents throughout the Tload
address range of the file. '

-Cl4. 1"

The CONTIN command 1is intended for use in repeating or complex EXEC
command files. It prompts the terminal for a YES or NO response for
continuing that file's execution,

DESCRIPTION

‘CONTIN

Executing CONTIN will cause the message "“CONTINUE (Y-N)? " to be
displayed on the terminal. A "Y" response will cause the EXEC program
to execute the next command in the command file. An "N" response will
cause FLEX to regain control and the EXEC program will be halted. This
utility is useful for incorporating into EXEC command files which repeat
themselves (by calling itself as the last line of the command file).
The CONTIN command provides a mechanism for escape from this ever
repeating type of command file.

—C-5|1”

CoPY

The COPY command is used for making copies of files on a disk.
Individual files may be copied, groups of name-similar files may be
copied, or entire disks may be copied. The copy command is a very
versatile utility. The COPY command also re-groups the sectors of a
file in case they were spread all over the old disk. This regrouping
can make file access times much faster. It should be noted that before
copying files to a new disk, the disk must be formatted first. Refer to
NEWDISK for instructions on this procedure.

DESCRIPTICN
The general syntax of the COPY command has three forms:

a. COPY,<file spec>,<file spec>
b. COPY,<file spec>,<drive>
c. COPY,<drive>,<drive>[,<match 1ist>]

where <match 1ist> is the same as that described in the CAT command and
all rules apply to matching names and extensions. When copying files,
if the destination disk already contains a file with the same name as
the one being copied, the file name and the message, “"FILE EXISTS DELETE
QRIGINAL?" will be output to the terminal. Typing Y will cause the file
on the destination disk to be deleted and the file from the source disk
will be copied to the destination disk. Typing N will direct FLEX not
to copy the file in question.

The first type of COPY allows copying a single file into another. The
output file may be on a different drive but if on the same drive the
file names must be different. It is always necessary to specify the
extension of the input file but the output file's extension will default
to that of the input's if none is specified. An example of this form of
COPY 1is:

+++COPY, 0. TEST. TXT, 1. TEST25

This command Tine would cause the file TEST.TXT on drive 0 to be copied
into a file called TEST25.TXT on drive 1. Note how the second file's
extension defaulted to TXT, the extension of the input file.

The second type of COPY allows copying a file from one drive to another
drive with the file keeping its original name. An example of this is:

+++COPY,0,LIST.CMD, 1

Here the file named LIST.CMD on drive 0 would be copied to drive 1. It
is again necessary to specify the file's extension in the file
specification. This form of the command is more convenient than the
previous form if the file is to retain 1its original name after the

copying process.

-Cn2n 1-

FLEX User's Manua!l

The final form of COPY is the most versatile and the most powerful. It
is possible to copy all files from one drive to another, or to copy only
those files which match the match 1ist characters given. Some examples
will clarify its use:

+++C0PY,0,1
+++C0PY,1,0,.CMD, . SYS
+++C0PY,0,1,A,B,CA.T

The first example will copy all files from drive O to drive 1 keeping
the same names in the process. The second example will copy only those
files on drive 1 whose extensions are CMD and SYS to drive 0. No other
files will be copied. The last example will copy the files from drive 0
whose names start with 'A' or 'B' regardless of extension, and those
files whose names start with the letters 'CA' and whose extensions start
with 'T'.,to the output drive which is drive 1. The last form of copy
is the most versatile because it will allow putting just the command
(CMD) files on a new disk, or just the SYS files, etc., with a single
command entry. Ouring the COPY process, the name of the file which is
currently being copied will be output to the terminal, as well as the

drive to which it is being copied.

CLEAN

The CLEAN command has been provided to enable the user
to use the head cleaning diskettes. All it does is step
the head in and out to insure uniform cleaning.

DESCRIPTION
The general syntax of the CLEAN command is:
CLEAN

CLEAN takes no command line parameters. It will prompt
the user for the information that it needs.

To use the clean command merely type the following:
+++CLEAN

Clean will then prompt:
NUMBER OF TRACKS TO STEP?

Enter the maximum number of tracks for the drive to be
cleaned as found in the manufacturer's literature.
Though less than the maximum number of tracks may be
specified, it 1is recommended that only the maximum
number be used. This is to insure uniform head cleaning
and uniform wear on the head cleaning diskette.
Entering an illegal number or zero will cause a return
to FLEX. The next prompt is:

NUMBER OF DRIVE TO BE CLEANED?

Enter the drive number for the drive to be cleaned.
Entering an illegal number or an escape will cause a
return to FLEX. The last prompt is:

PUT CLEANING DISK IN DRIVE AN HIT 'CR!' TO CLEAN THE

At this point, follow the instructions that acompany the
cleaning diskette. Insert the cleaning diskette in the
specified drive and close the door. Then type a
carriage return on the keyboard to start the cleaning
process. Typing an escape will cause a return to FLEX.
Typing any other character will cause the prompt to be
re-printed. When finished CLEAN will print:

DONE.

And ring the terminal's bell.

NCTE: Failure to follow the manufacturer's instructions
can cause damage to the disk drive and/or the «c¢leaning
diskette.

'C-Bol"

HEAD(S) ?

DATE

The DATE command is used to display or change an internal FLEX date
register. This date register may be used by future programs and FLEX
utilities.

DESCRIPTION

The general syntax of the DATE command is:

DATE[,<month,day,year>]

where "month' is the numerical month, ‘day' is the numerical day and
'year' is the Tast two digits of the year.

+++tDATE 5,2,79 Sets the date register to May 2, 1979

Typing DATE followed by a carriage return will return the last entered
date.

Example:

++4+DATE
May 2, 1979

"D-].t].-

DELETE

The DELETE command 1is used to delete a file from the disk. Its name
will be removed from the directory and its sector space will be returned
to the free space on the disk.

DESCRIPTION
The generatl syntax of the DELETE command is:
DELETE,<file spec>[,<file 1ist>]

where <file 1ist> can be an optional list of file specifications. It is
necessary to include the extension on each file specified. As the
DELETE command is executing it will prompt you with:

DELETE "FILE NAME"?

The entire file specification will be displayed, including the drive
number. If you decide the file should be deleted, type 'Y'; otherwise,
any other response will cause that file to remain on the disk. If a 'Y'
was typed, the message 'ARE YOU SURE?' will be displayed on the
terminal. If you are absolutely sure you want the file deleted from the
disk, type another 'Y' and it will be gone. Any other character will
leave the file intact. ONCE A FILE HAS BEEN DELETED, THERE IS NO WAY TO
GET IT BACK! Be absolutely sure you have the right file before
answering the prompt questions with Y's. Once the file is deleted, the
space it had occupied on the disk is returned back to the 1ist of free
space for future use by other files. Few examples follow:

+++DELETE ,MATHPACK.BIN
+++DELETE, 1, TEST. TXT,0.AUGUST. TXT

The first example will DELETE the file named MATHPACK.BIN from the
working drive. If auto drive searching is selected, the file will be
deleted from the first drive it is found on. The second 1ine will
DELETE the file TEST.TXT from drive 1, and AUGUST.TXT from drive 0.

There are several restrictions on the DELETE command. First, a file
that is delete or write protected may not be deleted without first
removing the protection. Also a file which is currently in the print
queue d(see the PRINT command) can not be deleted using the DELETE
command.

-D.2.1~

The DIR utility is similar to the CAT command but displays all directory
information associated with the file. This command g¢gives a detailed
Took at the disk directory.

DESCRIPTION
The general syntax of the DIR command is:
DIR[,<drive list>][,<match Tist>]

where <drive Tist> and <match 1ist> are the same as described in the CAT
command. Each file name is listed with its file number, starting disk
address in hex (track-sector), ending disk address, and file size in
number of sectors. In addition, the file creation date and attributes
are also displayed. Following the file name is an indication as to
whether or not the file is a random file. At the end of the DIR 1ist, a
disk file use summary is printed, giving the total number of files, the
number of sectors used by those files, the remaining number of sectors
{free sectors), and the size of the largest file found on the disk. The
"file number" associated with a file represents that file's location in
the directory, so the file numbers may not be consecutive if a lot of
files have been deleted from the disk or a match 1ist was specified. A
few examples follow: ‘

+++DIR
++DIR,1,A.T,FR

The first example would 1ist all files on the working drive. The second
example would Tist only those files on drive 1 whose names begin with
"A" and extensions begin with "T", as well as those files whose names
start with "FR".

"D-3¢ 1"'

£

A B

EA

[

The DUMP utility is used for dumping the contents of a file, one sector
at a time, in both hex and ASCII characters. It can be used as a disk
debugging aid or to clarify the exact format of disk files.

DESCRIPTION
The general syntax of the DUMP command is:
DUMP,<file spec>

where <file spec> specifies the file to be dumped and defaults to a BIN
extension. As each sector js displayed it will be preceded by two, 2
digit numbers, the first being the hex value of the track number, the
second being the sector number of the sector being dumped. Each data
Tine will contain 16 hex digits representing the data followed by the
ASCII representations of the data. All non-printable characters are
displayed as underscores {). An example follows:

+++DUMP,FILESS

This would cause the contents of each one of the sectors contained in
the file named FILE55.BIN to be dumped to the ocutput device.

~D.4.1~

The ECHO command 1is a very useful utility for incorporation into EXEC
command files. It allows the echoing of ASCII strings to the terminal.

DESCRIPTION
The general syntax of the ECHO command is:
ECHO,<string>

where <string> is any string of printable characters terminated by a
carriage return or end of line character. A few examples of the ECHO
command follow:

+++ECHO, THE COPY PROCESS IS STARTING
+++ECHO, TERMINAL 12

The first example would print the string "THE COPY PROCESS IS STARTING"
on the terminal. The second example would print "TERMINAL 12". It s
often useful to use ECHO in long EXEC command files to send informative
messages to the terminal to tell the operator of the status of the EXEC
operation.

-E.2.1-

EXEC

The EXECute command is used to process a text file as a 1list of
commands, Jjust as if they had been typed from the keyboard. This is a
very powerful feature of FLEX for it allows very complex procedures to
be built up as a command file. When it is desirable to run this
procedure, it is only necessary to type EXEC followed by the name of the
command file. Essentially all EXEC does is to replace the FLEX keyboard
entry routine with a routine which reads a Tine from the command file
each time the keyboard routine would have been called. The FLEX
utilities have no idea that the line of input is coming from a file
instead of the terminal.

DESCRIPTION
The general syntax of the EX command is:
EXEC,<file spec>

where <file spec> 1is the name of the command file. The default
extension is TXT. An example will give some ideas on how EXEC can be
used. One set of commands which might be performed quite often is the
set to make a new system diskette on drive 1 (see NEWDISK). Normally it
is necessary to use NEWDISK and then copy all .CMD and all .SYS files to
the new disk. Finally the LINK must be performed. Rather than having
to type this set of commands each time it was desired to produce a new
system diskette, we could create a command file called MAKEDISK.TXT
which contained the necessary commands. The BUILD utility should be
gs?? to create this file. The creation of this file might go as
ollows:

+++BUILD,MAKEDISK
=NEWDISK,1
=COPY,0,1,.CMD, .0V, .LOW,.SYS
=L INK,1.FLEX
=#

+++

The first 1ine of the example tells FLEX we wish to BUILD a file called
MAKEDISK (with the default extension of .TXT). Next, the three
necessary command Tines are typed in just as they would be typed into
FLEX. The COPY command will copy all files with CMD, OV, LOW, and SYS
extensions from drive 0O to drive 1. Finally the LINK will be performed.
Now when we want to create a system disk we only need to type the
following:

+++EXEC ,MAKEDISK

We are assuming here that MAKEDISK resides on the same disk which
contains the system commands. EXEC can also be used to execute the
STARTUP file (see STARTUP).

"Eo 1. 1"

FLEX User's Manual

There are many applications for the EXEC command. The one shown is
certainly useful but experience and imagination will lead you to other
useful applications.

IMPORTANT NOTE: The EXEC utility is loaded into the very upper end of
user memory. This is done by first Toading EXEC into the utility file
space, then calculating the proper starting address so that it will
reside right up against the end of the user memory space. Next EXEC is
moved to that Tocation and a new end of memory 1is set to Jjust below
EXEC, When the EXEC file 1is finished, 1if the user has not further
changed the memory end Tocation, EXEC will reset it to the original
value.

-E.].-Z—

EXTEND

EXTEND enables the user to increase the amount of space allocated to the
directory on a newly formatted disk. This prevents the directory from
becoming fragmented when the number of directory entries exceeds the
space allocated by the disk format program. Fragmenting the directory
increases the amount of time require to access files on the disk.

.DESCRIPTION
The general synatax of the EXTEND command 1is:
EXTEND[,dn,sn]

Where “dn° 1is an optional drive number and ‘sn' is the number of
additional sectors to be allocated to the directory. If no drive number
is specified, EXTEND defaults to the work drive and adds 1@ sectors. If
the work drive is set to “ALL‘, EXTEND prints an error message and
reurns to FLEX. The maximum number of additional sectors that can be
allocated to the directory is 18. Each sector adds space for 10 entries
to the directory allocation. Some examples follow:

+++EXTEND
+++EXTEND, 2,5

The first example will EXTEND the directory of the disk in the work
drive by 10 sectors (100 entries). The second example will EXTEND the
directory of the disk in drive #2 by 5 sectors (50 entries).

The following table lists the number of sectors/directory entries
normally allocated by FORMAT:

5" 8 L]
SECTORS ENTRIES SECTORS ENTRIES
SINGLE SIDED 6 60 11 110
DOUBLE SIDED 16 169 : 26 260

NOTE: EXTEND can only be used on a freshly formatted disk.

EXTEND can generate the following error message:
DISK CANNOT BE EXTENDED

Either there are already files on the disk or the first sector on track
one was found bad when the disk was formatted.

""E- 2. 1"'

EXTRACT

The EXTRACT utility 1is used to create a file from other files or
segments of files. It is not necessary to copy the segments to scratch
files and concatenate them. A command file is used to tell EXTRACT
which lines are to be read from the files and concatenated to form the
new file. Raw text may also be copied from the command file to the file
being created.

DESCRIPTION
The general syntax of the EXTRACT command is:
EXTRACT,<new file>,<command file>

where <new file> is the specification of the file being created, and
{directive file> 1is the name of a text file containing the directives.
The <new file> must not already exist. The default extension for each
of these files is TXT. EXTRACT reads the directive file, processing the
directives in the order that they appear in the file, and c¢reates the
new file in accordance with the directives.

DIRECTIVES

A directive 1is a line in the directive file which starts with a right
parenthesis, ")", in column 1. A line in the directive file which does
not contain a ")" in column 1 is considered raw text and is immediately
copied to the file being created. A directive has the following general

form:
Y<file spec><optional line 1istd>

The <file spec> is a FLEX file specification. If no extension is
specified, TXT is assumed. The file must, of course, already exist.
The <optional 1line list> indicates which 1ines from the file are to be
extracted and copied to the file being created. If no <optional line
1ist> is specified, the entire file is copied. The <optional line list)>
consists of a series of single 1ine numbers or 1line number ranges
separated by commas. A Tline number range is a pair of line numbers
separated by a hyphen (starting line-ending 1line). If the "starting
Tine" 1is not specified, the beginning of the file is assumed. If the
"ending line" is not specified, the end of the file 1is assumed. The
line numbers and ranges in the line Tist do not have to be in ascending
order; the file will be rewound, if necessary, in order to reach the
line(s) being copied. If the Tast character on a directive Tine is a
comma, the directive is assumed to continue starting in column 1 of the
next line. Thus, directives may be continued across multiple Tines. An

"Eo 3- 1‘“‘

FLEX User's Manual

example follows:
EXTRACT NEW,INPUT

This command tells EXTRACT to create the file "NEW.TXT" from parts of
the files mentioned on directives contained on the directive file
"INPUT,TXT".

Assume that the directive file for the above example contains:

)FILEONE,5,7~10,2-3,50-
ADDITIONAL TEXT TO BE INSERTED
YFILETWO

)FILEONE,-10,15,20,

30, 40-80

The file NEW will then contain, in order, 1ines 5, 7 through 10, 2
through 3, and 50 through the end of the file from the file FILEONE.TXT;
the 1line ADDITIONAL TEXT TO BE INSERTED; all of FILETWO.TXT; and lines
from the beginning of the file through 1ine 10, lines 15, 20, 30, and
40 through 80 from the file FILEONE.TXT.

-E.3.2-

The FILES wutility is similar to the CAT command but displays only the
file names and extensions. This command is useful for getting a short
and quick report of the directory contents.

DESCRIPTION
The general syntax of the FILES command is:
FILES[,<drive 1ist>][,<match 1ist>]

where <drive 1ist> and <match 1ist> are the same as described in the CAT
command. The file names will be 1listed across the page and 1in a
columnar fashion. The number of names displayed per line is determined
by the TTYSET Width parameter. If the Width is zero, 80 columns are
assumed to be available and 5 names will be listed on each lire.
Smaller Width values will vresult in fewer names per 1line being
displayed. A few examples follow:

+++FILES
+++FILES,1,A.T,FR

The first example would list all files on the working drive. The second
example would Tist only those files on drive 1 whose names began with
'A' and extensions began with 'T', as well as those files whose names
started with 'FR'.

-F.1.1-

‘FIND !

The FIND command is used for finding all lines in a text file containing
a specified string. It is faster to use FIND than to enter the editor

to find strings.

DESCRIPTION
The general syntax of the FIND command is:
FIND,<file spec>,<string>

The file spec defaults to a TXT extension and to the working drive. The
string may contain any printable {non-control} characters and is
terminated by the carriage return or end of Tine character. Upon
execution, all lines containing the specified string are printed on the
terminal preceded by their Tine numbers. When finished, the total
number of Tines found containing the string is printed. Following are a

few examples.

+++F IND, TEXT, THIS IS A TEST
++4F IND,BOOK. TXT, OHIO

The first example would find and display all lines in the file TEXT.TXT
which contained the character string “THIS IS A TEST". The second
example would search the file BOOK.TXT for the string "DHID" and list
all lines found.

-F.2. 1"'

FORMAT

FORMAT is used to format a new diskette. Diskettes as

purchased will not work with FLEX until certain
formatting information has been put on them. The FORMAT
utility writes this information on the diskette and

then verifys that the information can he read back. If
FORMAT finds sectors that it cannot read it removes
them from the <chain of free sectors and prints their
location.

DESCRIPTION
The general syntax of the FORMAT command is:

FORMAT[,<drive>]

Where <drive> is the number of the drive in which the
disk to be formatted has been placed. If no drive
number is specified the 'WORK!' drive is used. If the
"WORK' drive 1is set te ‘'ALL' then the user is prompted
for the drive number.

After FORMAT has determined the drive number it will
ask: '

SCRATCH DISK IN DRIVE $X ('¥' OR 'N')7

Where X is the drive number specified by the user or the
'WORK' drive. If the user types an 'N' the program will
abort and return to FLEX. If a 'Y' 1is typed FORMAT
continues with the following prompt:

DISK SIZE ('5' OR '8')7

The user then types in the size of the disk to be
formatted. After this FORMAT prompts:

FORMAT SINGLE OR DOUBLE SIDED ('S’ OR 'D')?
1f the drive being used to format 1is a double sided
drive and the user wants to format both sides of the
disk type 'D', otherwise type 'SY, The next prompt 1is:
NUMBER OF TRACKS TO FCORMAT?
FORMAT is asking literally how many tracks the user

wishes to format. Standard sizes for 5.25" disks are:
35, 46, 76, 17, 80. Standard sizes for 8" disks are:

77, 154. The user can format less then the maximum
number of sectors for special purposes. Please consSult
the disk drive manufacturers data sheet for the

particular drive being used to find the maximum number
of tracks that the drive is capable of accessing. Even
though it is possible to attempt to format a disk for
more tracks then it is capable of, it is not recommended
as it might cause damage to the disk drive. "The next
prompt is:

FORMAT SINGLE OR DOUBLE STEPPING ('S' OR 'D')?

—"F-lol_

Some disk drives have double the normal rnumber of tracks
for that size drive. This is called a 'Double Tracking'
disk drive. The Double Tracking drives have twice as
many tracks per inch as regular disk drives. This makes
them incompatible with regular drives unless the double
stepping option is enabled (see the 'SETUP' command for
more information}. This option enables the user to
create a disk that will be wusable on a regular disk
drive, but was formatted on a Double Tracking disk
drive. This can be useful for program exchange, etc.
The next prompt is:

1MHz OR 2MHz CPU SPEED ('1' OR '2')7?

This tells FORMAT what speed the CPU is running at.
This changes the 'interleave pattern' on the disk. The
'interleave ©pattern' 1is the order in which the sectors
are put on the disk during formatting. The sectors are
not placed in sequential order to enable the computer
some processing time before having the next sector pass
under the disk head. At faster speeds the computer has
finished its processing and is waiting for the next
sector to pass under the head. Changing the 'interleave
pattern' to the 2MHz setting puts the sectors closer
together on the disk so that the sector is there when
the computer is ready for it. Disks formatted at the
2MHz setting can be used at 1MHz CPU speed, but they
will take longer to read. The same goes for disks
formatted at the 1MHz setting but being used at 2MHz CPU
speed. When running at 1.5MHz select the 2MHz setting
for mini-floppy disks and select the 1MHz setting for
full size disks.

DISK NAME?

The user enters the name of the disk that is to appear
in catalog listings. If the user just enters a carriage
return a disk name of 'GIMIX .CHI'" is put on the disk.

The next prompt 1s:
VOLUME NUMBER?

The user enters the volume number that is to appear in
catalog listings. If carriage return is entered then
the disk number will be zero {8). If the user entered a
carriage return for the name prompt, this prompt will be
skipped and a volume number of '68689' will be put on
the disk.

After entering the volume number FORMAT then prints all
the data just entered and prompts:

IS THE ABOVE CORRECT ('¥Y' CR 'N'")?
If the data typed in is correct then type 'Y' and FORMAT
will go on. If an 'N' is typed then the prompts start
over again. The final prompt is:

ABORT FORMAT ('Y' OR 'N'}?

-F.1l.2-

This is the users LAST chance to stop the formatting and
save the disk in the specified drive. Typing an 'N'
will start the format WITHOUT any further user
interaction. Typing a 'Y' will abort the format and
return teo FLEX.

FORMAT will now print:
FORMATTING TRACK: XX

Where XX is the track currently being formatted. The
track number will be updated as each track is formatted.
After all tracks have been formatted 'FORMAT' will
print:

VERIFYING TRACK: XX

Where XX is the track currently being verified. FORMAT
reads every sector on the disk after formatting. If it
finds a sector that it can not read it removes the bad
sector from the chain of available sectors. A disk with
a few bad sectors can still be used. Once a FORMAT has
removed a sector it is unavailable to FLEX wunless the
disk is reformatted and does not error again. If a disk
continually gives alot of errors or gives errors in
different areas each time it is formatted the disk might
be defective.

Upon successiul completion FORMAT will print the
following message and then return to FLEX:

FORMATTING COMPLETED
TOTAL SECTORSB: XXXX

Where XXXX 1is the number of sectors available to the
user. This number will vary depending on the number of
tracks formatted, the size of the disk, whether the disk
was formatted single or double sided and whether the
disk was formatted single or double stepped.

The following is an explination of the possible error
messages that can be generated by the FORMAT command:

NOT EOQUGH MEMORY INSTALLED IN SYSTEM

This means that according to the FLEX 'MEMEND' pointer
there is not enough memory installed in the system to
format a disk. The user must have at least sixteen (16)
k' of memory starting at $¢@@8 in addition to the RAM
occupied by FLEX.

FORMATTING ABORTED
This error message is printed to inform the user that
FORMAT returned to FLEX prematurely and that formatting

was unsuccessful.

-F.1l.3-

TOO MANY TRACKS FOR DOUBLE STEPPING

This error message means that the user tried to format
more tracks than any drive is capable of handling when
double stepped. When formatting double stepped the
number of tracks on the drive is HALVED. The user in
then prompted for the number of tracks to format again.

ERROR WRITING BOOT SECTOR

This is a fatal error which causes the formatting to be
aborted. This means that FORMAT c¢ould not put the
necessary loading information on track 8, sector 1.

SECTOR WAS NOT WRITTEN TO ZEROS

This is a secondary error and is only printed after a
bad sector message has been printed. It tells the user
that the sector did not clear when initially written to
disk. This can alsc indicate a memory failure. Before
re-formatting the disk «check the memory for proper
operation. The memory range will be from 518f to S$2FFF.

ERROR IN SECTOR LINKAGES

This is a secondary error and is only printed after a
bad sector message has been printed. It tells the wuser
that the ©pointers to the next sector were not written
correctly. As mentioned above this can also indicate a
memory error.

ERROR VERIFYING SECTOR

This is a secondary error and is only printed after a
bad sector message has been printed. It tells the wuser
that the specified sector cannot be read.

FATAL ERRCR

This tells the wuser that FORMAT found an error in a
vital area of the disk and that the disk 1is unusable.

BAD SECTOR AT: TT-S8S

This is the header message for the three secondary error
messages. TT is the track number of the error and SS is
the sector number of the error. This message is printed
if FORMAT finds a sector with an error in it during the
verify operation.

NO GOOD SECTORS ON DISK
This is a fatal error and tells the wuser that FORMAT
could not find a single usable sector on the disk. This
usually means that the disk is defective. Try
formatting the disk again before rejecting it.

DRIVE NOT READY

-F.l.4-

This tells the user that the drive to be formatted in
either does not have a disk in it or that the drive door

is open.
DISK IS WRITE PROTECTED

This is a fatal error that tells the user that the disk
in the specified drive is write protected and cannot be
formatted until it is un-write protected.

WRITE FAULT IN WRITING TRACK

This indicates a hardware failure in the disk drive
itself. 1f this message is received, re-try the FORMAT
and if it appears again the chances are that the disk
drive is not functioning properly.

LOST DATA IN WRITING TRACK

This error should not normally occur. Since FORMAT
inhibits the 'IRQ' and 'FIRQ' interrupts the only way to
get this error message 1is if the system is getting 'NMI'
interrupts or if running eight inch disks at 1MHz cpu
speed and '*slow 1/0° is enabled (see 'Hardware
Configuration®' for more information). Eliminate the
source of the interrupts and try again. If this error
persists or there are definately no interrupts being
generated in your system then there might be a hardware
failure. If using the GIMIX 6899 PLUS CPU BOARD with
the 58167 Time-of-Day clock option installed, make sure
that it is not enabled for 'NMI' interrupts. See the
Hardware Manual for information on how to do this.

ERROR IN ACCESSING SYSTEM INFORMATION RECORD

This means that the format and verify went properly but
after verifying the disk when FORMAT went to write the
disk information on track @, sector 3 it encountered an
error. This is a fatal error.

NOTE: When formatting disk in double tracking drives

for double
stepping use only fresh, i.e. never used, disks.
Also when using double stepped disk in single
tracking drives or single tracking disks in double
stepped drives do not write to the disk. Writing to
these disks can cause them to be unreadable on
single tracking drives. This only applies to
writing. The user can always read single tracked or
double stepped disks.

-F.1.5-

CREATING SYSTEM DISKETTES

A system disk is the one from which the operating
system can be loaded. Normally the system disk will
also contain the Utility Command Set (UCS). The
following procedure should be used when preparing
system disks.

1. 1Initialize the diskette using FORMAT as described
on the preceding pages.

5. COPY all .CMD files desired to the new disk

3, Copy all .SYS files to the new disk. It should be
noted that steps 2 and 3 can be done with one commang;
'"COPY,®,1,.CMD, .0V, .LOW, .5Y5", assuming you are
copying from drive @ to drive 1 and all commmand
files and their overlays are desired. (the .0V
copies overlay files and .LOW copies the utility
"SAVE.LOW'). -

4. Last it is necessary to LINK the file FLEX.SYS
to the system using the LINK command.

A very convenient way to get the above Pprocess
performed without having to type all of the comands
each time is to create a command file and use the
EXEC command. Consult the EXEC documentation for

details.

It 1is not necessary to make every disk a system
diskette. It is also possible to create 'working’
diskettes, disks which do not have operating system
on them, for use with text files or BASIC files.
Remember that a diskette can not be used for
boothing the system unless the operating system 1is
contained on it and it has been linked. To create a
working disk, simply run FORMAT on a diskette. It
will now have all of the required information to
enable FLEX to make use of it. This disk, however,
does not contain the disk operating system and is
not capable of booting the system.

~-F.1.6-

The FREE command is used to report the total number of free (available)
sectors on a diskette. The approximate number of kilobytes remaining is

also reported.

DESCRIPTION
The general syntax of the FREE command is:

FREE[,<drive number>]

If the drive number is not specified it will default to the working
drive. An example follows:

+++FREE, 1

This command 1ine will report the number of avaijlable sectors and
approximate number of kilobytes remaining on the disk in drive 1.

-F.3.1~

IHECHOZ i

The HECHO command is used for sending special character strings to the
terminal. It is similar to the ECHO command, but HECHO allows control
characters as well.

DESCRIPTION
The general syntax of the HECHO command is:

HECHO,<hex string>

where <hex string> is a 1ist of hex digits representing ASCII
characters. A few examples will demeonstrate the use of HECHO.

+++HECHO, C
+++HECHO,D,A,0,0,0,0
+++HECHO, 7,54,45,53,54,7

The first example will output a form feed (hex C) to the terminal. The
next example will output a carriage return (hex D), a line feed (hex A),
and then 4 null characters {(hex 0). The last example will output an
ASCIT bell character (hex 7), then the string 'TEST', followed by
another bell character.

'Ho].-l"

The T command allows a utility to obtain input characters from a disk
file rather than the terminal.

DESCRIPTION
The general syntax of the I command is:

1,<file spec>,<command>

where <file spec> is the name of the file containing the characters to
be wused as input and <command> is the FLEX utility command that will be
executed and that will receive that input from <file spec>. The default
extension on <file spec> is .TXT.

For example, say that on a startup you always wanted the file DATA.DAT
deleted from the disk without having to answer the "ARE YOU SURE?"
questions. This could be done in the following manner:

+++BUILD, YES
=YY
=#

The first Y will answer the "DELETE O0.DATA.DAT?" gquestion while the
second Y will answer the "ARE YOU SURE?" question.

++4BUTLD, STARTUP
=I,YES,DELETE,DATA.DAT

Upon booting the disk, FLEX will execute the STARTUP file and perform
the following operation: delete the file DATA.DAT receiving all answers
to any questions from the input file YES.TXT rather than from the
terminal.

See the description of the STARTUP command for more information on
STARTUP.

-Iclul-

JUMP

The JUMP command is provided for convenience. It 1is used to start
execution of a program already stored in computer RAM memory.

DESCRIPTION
The general syntax of the JUMP command is:
JUMP,<hex address>

where <hex addressd> is a 1 to 4 digit hex number representing the
address where program execution should begin. The primary reason for
using JUMP is if there is a long program in memory already and you do
not wish to Toad it off of the disk again. Some time can be saved but
you must be sure the program really exists before JUMPing to it!

As an example, suppose we had a BASIC interpreter in memory and it had a
'warm start' address of 103 hex. To start its execution from FLEX we

type the following:
+++JUMP, 103
The BASIC interpreter would then be executed. Again, remember that you

must be absolutely sure the program you are JUMPing to is actually
present in memory.

"L]c].-l"

| TNK

The LINK command is used to tell the bootstrap loader where the FLEX
operating system file resides on the disk. This is necessary each time
a system disk is created using NEWDISK. The NEWDISK utility should be
consulted for complete details on the use of LINK.

DESCRIPTION
The general syntax of the LINK command is:
LINK,<file spec>

where <file spec> is usually FLEX. The default extension is SYS. Some
examples of the use of LINK follow:

+++L INK,FLEX
+++LINK, 1. FLEX

The first line will LINK FLEX.SYS on the working drive, while the second

example will LINK FLEX.SYS on drive 1. For more advanced details of the
LINK utility, consult the "Advanced Programmers Guide".

-L.1.1-

LIST

The LIST command is used to LIST the contents of text or BASIC files on
the terminal, It is often desirable to examine a files without having
to use an editor or other such program. The LIST utility allows
examining entire files, or selected lines of the file. Line numbers may
also be optionally printed with each Tine.

DESCRIPTION
The general syntax of the LIST command is:
LIST,<file spec>[,<1line range>][,+(options)]

where the <file spec> designates the file to be LISTed {with a default
extension of TXT),and <line range> is the first and Tast line number of
the file which you wish to be displayed. ATl lines are output if no
range specification is given. The LIST command supports two additional
options. If a +N option is given, Tine numbers will be displayed with
the listed file. If a +P option is given, the output will be formatted
in pages and LIST will prompt for "TITLE" at which time a title for the
output may be entered. The TITLE may be up to 40 characters long. This
feature 1is useful for obtaining output on a printer for documentation
purposes {see P command). Each page will consist of the title, date,
page number, 54 1lines of output and a hex 0C formfeed character.
Entering a +NP will select both options. A few examples will clarify
the syntax used:

+++L IST,RECEIPTS
+++L IST,CHAPTER1,30-200,+NP
+++LIST,LETTER, 100

The first example will list the file named 'RECEIPTS.TXT' without line
numbers. A1l Tines will be output unless the 'escape character' is used
as described 1in the Utility Command Set introduction. The second
example will LIST the 30th line through the 200th line of the file named
'CHAPTER1.TXT' on the terminal. The hyphen {'~') is required as the
range number separator. Line numbering and page formatting will be
output because of the '+NP' option. The last example shows a special
feature of the range specification. If only one number 1is stated, it
will be interpretted as the first 1line to be displayed. All lines
following that Tine will also be LISTed. The last example will LIST the
lines from Tine 100 to the end of the file. No line numbers will be
output since the 'N' was omitted.

-LOZII-

The MAP utility is used for determining the load addresses and transfer
address of a binary file. This command is useful in conjunction with
the SAVE command.

DESCRIPTION
The general syntax of the MAP command is:

MAP,<file specd>

where the file spec defaults to a BIN extension and to the working
drive. The beginning and ending addresses of each block of object code
will be printed on the terminal. If a transfer address is contained in
the file, it will be printed at the end of the Tist of addresses. If
more than one transfer address is found in a file, only the effective
one (the Tast one encountered) will be displayed. An example will
demonstrate the use of MAP,

+++MAP JMONITOR

This command Tine would cause the Toad addresses and transfer address
(if one exists) of the file named MONITOR.BIN to be displayed at the
terminal.

-M- 1.1"

The MEMEND command 1is used to interrogate or set the FLEX Memory End
value. This value is used by many FLEX programs to determine the Tlast
memory location that they may use.

DESCRIPTION
The general syntax of the MEMEND command is:

MEMEND? or
MEME ND or
MEMEND <value>

The first form, that ending with a question mark, will cause the current
value of Memory End to be printed at the terminal. The second form will
cause MEMEND to perform a non-destructive test of memory to determine
the highest usable address. It is assumed that the computer's memory is
organized 1in 4K blocks starting at location zero. The Memory End value
is set to that value which was determined to be the last address of
contiguous wmemory by the wmemory test; it s also printed at the
terminal. The third form, with a parameter, will set the Memory End
value to that specified in the parameter. The parameter must be a hex
value, without a leading dollar sign. Some examples follow:

+++MEMEND?
+++MEMEND
+++MEMEND 7FFF

The first example will cause the current value of Memory End to be
printed at the terminal. The second example will cause a test to be
performed, and Memory End to be set to the value determined by the test
as the end of contiguous memory. The third example will cause the value
of Memory End to be set to hex 7FFF. '

The MEMEND utility should be used to reset Memory End whenever another
program has modified it. An example is the abnormal exit from an EXEC
procedure, EXEC changes Memory End to protect itself and, if aborted,
will not restore it to its previous value,

"Mnle"‘

NAME

The NAME utility enables the user to change the name, extension, volume
number and date in the system information sector of a disk.

DESCRIPTION
The general synatax of the NAME command is:

NAME [,dn]

Where 'dn' is an optional drive number. If no drive is specified NAME
will use the work drive. If the work drive is set to 'ALL' an error
message is printed. Some examples follow:

+++NAME
+++NAME, 2

The first example will change the information on the disk in the work
drive, assuming that the work drive is not set to all. The second
example will change the information on the disk in drive #2.

NAME prints the current disk name, extension, volume number and date and
then prompts for the new name. The new name and extension should be
entered, followed by a carriage return. Entering only a carriage return
will retain the old name. NAME then prompts for the new volume number.
The new volume number should be entered , followed by a carriage return.
Entering only a carriage return will retain the original volume number.
After the new name and volume number have been entered, NAME prompts:

CHANGE DATE ('¥Y' OR 'N")?

Entering ‘Y changes the date on the disk to the Tcurrent date",
Entering “N° retains the old date.

NAME can generate the following error message:
ILLEGAL DRIVE NUMBER

Legal drive numbers are &, 1, 2, and 3. A drive number must be
specified if the work drive is set to “ALLY.

NOTE: If NAME is used in a command line with multipe commands, it must
be the last command on the line.

_No 1. 1"'

The N utility enables the user to automatically answer "3“ (no) to
"y or N" prompts from other utilities. The N utility 1s especially

useful when writing EXEC files.

DESCRIPTION

The general synatax of the N conmmand is:

N,<command string>

string> is a valid command line to be executed. If N
of line

For

Where <command
is used in a line with multiple commands, using the end

character, it only affects the command immediately following it.
example:

++4N,COPY, 8,1
Will copy, from drive #8 to drive #1, only those files that do not

already exist on drive #1, automatically answering "N" (no) to any
"DELETE ORIGINAL?" and "ARE YOU SURE?" prompts that occur because of

duplicate files on the two disks.

_No 2- l"’

The 0 (not zero} command can be used to route all displayed output from
a utility to an output file instead of the terminal. The function of O
is similar to P (the printer command) except that output is stored in a
file rather than being printed on the terminal or printer. Other TSC
software may support this utility. Check the supplied software
instructions for more details.

DESCRIPTION
The general syntax of the 0 command is:
6,<file spec>,<command>

where <command> can be any standard utility command Tine and <file spec>
is the name of the desired output file. The default extension on <file

spec> is JOUT. If O is used with multiple commands per line (using the
'end of line' character ':') it will only have affect on the command it

immediately precedes. Some examples will clarify its use.

+++0,CAT,CAT
writes a listing of the current disk directory into

a File called CAT.OUT

+++0 ,BAS,ASMB,BASIC.TXT
writes the assembled source listing of the text
source file 'BASIC.TXT' into a file called 'BAS.OUT'
when using the assembler

-0.1.1-

PRI

EXEC do gt diceckry with Vuader

Exec, fPIRO
EXEC, TDIR
Lot utikhe et ot on sk 6

The P command is very special and unlike any others currently in the
UCS. P 1is the system print routine and will allow the output of any
command to be routed to the printer. This is very useful for getting
printed copies of the CATalog or used with the LIST command will allow
the printing of FLEX text files.

DESCRIPTION
The general syntax of the P command is:
P,<command>

where <command> can be any standard utility command Tine. If P is used
with multiple commands per line (using the 'end of line' character), it
will only have affect on the command it immediately preceeds. Some
examples will clarify its use:

++4P CAT
++4P L IST,MONDAY : CAT, 1

The first example would print a CATalog of the directory of the working
drive on the printer., The second example will print a LISTing of the
text file MONDAY.TXT and then display on the terminal a CATalog of drive
1 (this assumes the 'end of Tine' character is a ":'). Note how the P
did not cause the 'CAT,1' to go to the printer. Consult the ‘'Advanced
Programmer's Guide' for details concerning adaption of the P command to
various printers.

The P command tries to load a file named PRINT.SYS from the same disk
which P itself was retrieved. The PRINT.SYS file which is supplied with
the system diskette contains the necessary routines to operate a SWTPC
PR 40 printer connected through a parallel interface on PORT 7 of the
computer. If you wish to use a different printer configuration, consult
the 'Advanced Programmer's Guide' for details on writing your own
printer driver routines to replace the PRINT.SYS file. The PR 40
drivers, however, are compatible with many other parallel interfaced
printers presently on the market.

"Pnlo].-

PRINT

FLEX has the ability to output file stored data to a printer at the same
time that it is performing other tasks. This feature is especially
useful when it is necessary to print a long listing without tying up the
computer. This method of printing is called PRINTER SPOOLING. In order
for the printer spooling function to work, a SWTPC MP-T interrupt timer
board must be installed in 1/0 position #34 on the computer's mother
board.

DESCRIPTION
The general syntax of the PRINT command is as follows:
PRINT,<file spec>[,+<repeat #>]

where <file spec> 1s the name of the file to be printed. The default
extension on <file spec> s .0UT. <Repeat #> is the number of
additional copies of the file you wish to be printed.

For example, say that your disk had a very large number of files on it
and a printer catalog listing was desired. A file containing the output
information should first be created by using the 0 command such as:

+++0,CAT.OUT,CAT.CMD or +++0,CAT,CAT
{see the description of the 0 command)

when printer output is desired the command
+++PRINT,CAT.OUT or +++PRINT,CAT

should be entered.

At this time the file CAT.QUT is stored in a buffer called a print queue
(waiting 1ist). If another PRINT command is issued before the first is
finished, the second file will be in the next available location in the
print queue.

After the file name to be printed has been stored in the print gueue,
control will return to the FLEX operating system. At this time you may
perform any disk operation you want, such as deleting files, copying
disks, etc. While you are using FLEX, PRINT will be outputting the
desired file to the printer. PRINT will automatically wait for the
printer to become ready (power up) even after the file has been entered
into the print queue.

After printing the first file, the second file in the queue will be
printed (if there is one), etc. The print queue may be examined or
modified at any time by using the QCHECK utilty.

-P02- 1-

FLEX User's Manual

NOTE: There are several things that the user should be aware of when
. using the printer spooling:

1) Any file that is in the print queue may not be deleted,
renamed, or changed in any way until it has been printed
or removed by the QCHECK print queue manager utility.

2} Disks which contain the files in the print queue should
not be removed while the files are still in the queue.

3) The P command should not be used while files are waiting
in the print queue.

4) Any paper or cassette tape Toad or any other operation
which requires that the computer accept data at precise
time intervals should not be executed during a printer
spooling operation.

-P|2- 2-

PROT

The PROT command is used to change a protectior code associated with .
each file. When a file is first saved, it has no protection associated
with it thereby allowing the user to write to, rename, or delete the
file. Delete or write protection can be added to a file by using the

PROT command.

DESCRIPTION

The general syntax of the PROT command is:

PROT,<file spec>[,(option Tist)]

where the <file spec> designates the file to be protected and (option
Tist) is any combination of the following options.

D A 'D' will delete protect a file. A delete protected file cannot be
affected by using the DELETE or RENAME Commands, or by the delete
functions of SAVE, APPEND, etc.

W A 'W' will write protect a file. A write protected file cannot be
deleted, renamed or have any additional information written to it.
Therefore a write protected file is automatically delete protected
as well.,

C A 'C' will Catalog protect a file. Any files with a C protection
code will function as before but will not be displayed when a
CAT command is issued.

X An 'X' will remove all protection options on a specific file.

Examples:

+++PROT CAT.CMD,XW Remove any previous protection on the CAT.CMD
Utility and write protect it.

+++PROT CAT.CMD, X Remove all protection from the CAT.CMD utility.

+++PROT INFO,.SYS,C Prohibit INF0.SYS from being displayed in a
catalog listing.

”Pl3-1“

The PDEL command is a prompting delete utility. Either all files or
only files matching a specified match 1ist are displayed by name, one at
a time, giving the option of deleting the file or keeping it. This
command is very convenient for quickly removing a lot of no Tlonger
needed files from a disk.

DESCRIPTION
The general syntax of the PDEL command is:
PDEL{ ,<drive 1ist>1[,<match Tist>]

where drive 1list and match list are the same as described in the CAT
command. Upon execution of PDFL, each file name will be printed at the
terminal along with a delete request:

DELETE "FILE" ?

At this time three responses are valid. If a "N" is typed, the file
will be left intact and the next name will be displayed. If a "Y" is
typed, that file will be deleted. This utility DOES NOT ask if you are
sure you want the file deleted, so make sure the first time!l A carriage
return may also be typed in response to the prompt at which time control
will return back to FLEX. If a response other than one the three above
is given, the delete request will be posted again. An example follows:

+++PDEL,1,.TXT
This command line would cause each file on drive 1 which has a TXT

extension to be displayed and the delete option offered. Remember that
once "Y" has been typed to the prompt, that file is gone forever!

-P.4.1-

QCHECK

The QCHECK utility can be used to examine the contents of the print
queue and to modify it contents. QCHECK has no additional arguments

with it. Simply type QCHECK. QCHECK will stop any printing that is

Ea%;ng place and then display the current contents of the print queue as
ollows:

+++{)CHECK
POS NAME TYPE RPT
1 TEST. LOuT 2
2 CHPTR. LOUT 0
3 CHPTR2. JIXT 0
COMMAND?

This output says that TEST.OUT is the next file to be printed (or that
it is in the process of being printed) and that 3 copies (1 plus a
repeat of 2) of this file will be printed. After these three copies
have been printed, CHPTR.OUT will be printed and then CHPTR2.TXT. The
COMMAND? prompt means QCHECK is waiting for one of the following
commands :

COMMAND FUNCTION
(carriage return) Re-start printing, return to the FLEX command mode.
Q A Q command will print the queue contents again.

R,#N,X An R command repeats the file at position #N X times.
If X is omitted the repeat count will be cleared.
Example: R,#3,5

D,#N A D command removes the file at queue position #N.
If N=1, the current print job will be terminated.
Example: D,#3

T A T command will terminate the current print job.
This will cause the job currently printing to quit
and printing of the next job to start. If the
current files RPT count was not zero, it will
print again until the repeat count is 0. To
completely terminate the current job use use the
b,#1 command.

N, #N A N command will make the file at position #N the
next one to be printed after the current print job
is finished. Typing Q after this operation will
show the new gueue order.

Example: N,#3

S An S command will cause printing to stop. After

the current job is finished, printing will halt
until a G command is issued.

-Q.1.1-

FLEX User's Manual

A G command will re-start printing after an §
command has been used to stop it.

A K command will kill the current print process,

A1l printing and queued jobs will be removed from
the queue. The files are not deleted from disk.

"Q-].QZ"

RENAME

The RENAME command is used to give an existing file a new name in the
directory. It is useful for changing the actual name as well! as changing
the extension type.

DESCRIPTION
The general syntax of the RENAME command is:
RENAME,<file spec 1>,<file spec 2>

where <file spec 1> is the name of the file you wish to RENAME and <file
spec 2> is the new name you are assigning to it. The default extension
for file spec 1 is TXT and the default drive is the working drive. If
no extension is given on <file spec 2>, it defaults to that of <file
spec 1>. No drive 1is requird on the second file name, and if one is
given it is ignored. Some examples follow:

+++RENAME, TEST1.BIN,TESTZ
+++RENAME, 1. LETTER,,REPLY
+++RENAME, 0. FIND. BIN,FIND.CMD

The first example will RENAME TEST1.BIN to TEST2.BIN. The next example
RENAMEs the file LETTER.TXT on drive 1 to REPLY.TXT. The last line
would cause the file FIND.BIN on drive 0 to be renamed FIND.CMD. This
is wuseful for making binary files created by an assembler into command
files (changing the extension from BIN to CMD). If you try to give a
file a name which already exists in the directory, the message:

FILE EXISTS

will be displayed on the terminal. Keep 1in mind that RENAME only
changes the file's name and in no way changes the actual file's
contents.

One last note of interest. Since utility commands are Jjust Tlike any
other file, it is possible to rename them also. If you would prefer
some of the command names to be shorter, or different all together,
simply use RENAME and assign them the names you desire.

-R.1.1-

The REPORT commané enables the user check the current system
confiruration, as set by the 'SETUP' command. it reports the
value currently set for CPU speed, the current last drive and the
status of all drives on the system.

DESCRIPTION
The general syntax of the REPORT command is:
REPORT
REPORT takes no parameters and prints the system status as
defined by the defaults and the last SETUP command.
To use the REPORT command type the following:
+++REPORT

The output is self-explantory. For more information see the
SETUP command.

This command uses the FLEX output routines and may have 1its
output re-directed by any of the FLEX output re-direction

commands {(i.e. 'P', '0', etc.).

~-R.2.1~

RUN

The RUN command is used to load and optionally execute a position
independent program at an address different from that at which the
program normally executes.

DESCRIPTION
The general syntax of the RUN command 1is:

RUN,<Toad address>,<command> or
RUN/<load address>,<{command>

where <load address> is that location at which the command is to be
executed, and <command> is the command, with associated parameters, that
is to be executed. The second form 1indicated above (with the slash
following RUN) will cause <command> to be Toaded at <Toad address>, but
not executed. In this form, control will return to FLEX after the
program is loaded. Be aware that this program does not change any of
the instructions in the program being loaded. If the program 1is truly
position independent, it will execute correctly at the new load address.

Some examples follow.

+++RUN,1000,DEBUG
+++RUN/3500, TEST

The first example will load the program DEBUG.CMD at address 1000 hex

and start it executing. The second example will Toad the program
TEST.CMD at address 3500 but will not execute it. Control will be

returned to FLEX instead.

-RoZQI"

SAVE

The SAVE command is used for saving a section of memory on the disk.
Its primary use is for saving programs which have been loaded into
memory from tape or by hand.

DESCRIPTION
The general syntax of the SAVE command is:
SAVE,<file spec>,<begin adr>,<end adr>[,<transfer adr>]

where <file spec> is the name to be assigned to the file. The default
extension is BIN and the default drive 1is the working drive. The
address fields define the beginning and ending addresses of the section
of memory to be written on the disk. The addresses should be expressed
as hex numbers. The optional <transfer address> would be included if
the program is to be loaded and executed by FLEX. This address tells
FLEX where execution should begin. Some examples will clarify the use
of SAVE:

+++SAVE ,DATA, 100, 1FF
+++SAVE 1. GAME, 0, 1680, 100

The first 1line would SAVE the memory locations 100 to 1FF hex on the
disk in a file called DATA.BIN. The file would be put on the working
drive and no transfer address would be assigned. The second example
would cause the contents of memory locations O through 1680 to be SAVEd
on the disk in file GAME.BIN on drive 1. Since a transfer address of
100 was specified as a parameter, typing 'GAME.BIN' in response to the
FLEX prompt after saving would cause the file to be Toaded back into
memory and execution started at location 100.

If an attempt is made to save a program under a file name that already
exists, the prompt "MAY THE EXISTING FILE BE DELETED?" will be
displayed. A Y response will replace the file with the new data to be
saved while a N response will terminate the save operation.

Sometimes it is desirable to save noncontiquous segments of memory. To
do this it would be necessary to first SAVE each segment as a separate
file and then use the APPEND command to combine them into one file. If
the final file is to have a transfer address, you should assign it to
one of the segments as it is being saved. After the APPEND operation,
the final file will retain that transfer address.

-S-].-I"

FLEX User's Manual

SAVE. LOW

There is another form of the SAVE command resident in the UCS. It is
called SAVE.LOW and loads in a lower section of memory than the standard
SAVE command. Its use is for saving programs 1in the Utility Command
Space where SAVE.CMD is Toaded. Those interested in creating their own
utility commands should consult the 'Advanced Programmer's Guide' for
further details.

-5.1.2-

SSPLIT?

The SPLIT command is used to split a text file into two new files at a
specified Tine number. It is convenient to use when a file becomes too
large to easily manage or to break off an often-used section of text

into another file.

DESCRIPTION
The general syntax of the SPLIT command is:
SPLIT,<input file spec>,<out file specl>,<out file spec2>,<N>

The input file is the file to be split, output file spec 1 is the name
to be assigned to the first set of lines read from the input file,
output spec 2 is the name to be assigned to the rest of the file being
split, and N is the line number at which the file should be split. The
second output file will begin with Tine N of the input file. A1l files
default to TXT extensions and to the working drive. An example follows:

+++SPLIT, TEST, TEST1,TEST2,125
This command 1ine would cause lines 1 to 124 of the file named TEST.TXT

on the working drive to be written into a file named TESTL.TXT and lines
125 to the end of the file to be written into a file named TEST2.TXT.

The original file (TEST) remains unchanged.

"So 3.].-

STARTUP

STARTUP 1is not a utility command but is a feature of FLEX. It is often
desirable to have the operating system do some special action or actions
upon initialization of the system (during the bootstrap loading
process). As an example, the user may always want to wuse BASIC
immediately following the boot process. STARTUP will allow for this
without the necessity of calling the BASIC interpreter each time.

DESCRIPTION

FLEX always checks the disk's directory immediately following the system
initialization for a file called STARTUP.TXT. If none is found, the
three plus sign prompt is output and the system is ready to accept
user's commands. If a STARTUP file is present, it is read and
interpreted as a single command Tine and the appropriate actions are
performed. As an example, suppose we wanted FLEX to execute BASIC each
?iTe the system was booted. First it is necessary to create the STARTUP
ile:

+++BUILD,STARTUP
=BASIC
=#

+++

The above procedure using the BUILD command will create the desired
file. Note that the file consisted of one line (which is all FLEX reads
from the STARTUP file anyway). This line will tell FLEX to 1load and
execute BASIC. Now each time this disk is used to boot the operating
system, BASIC will also be loaded and run. Note that this example
assumes two things. First, the disk must contain FLEX.SYS and must have
been LINKed in order for the boot to work properly. Second, it is
assumed that a file called BASIC.CMD actually exists on the disk.

Another example of the use of STARTUP is to set system environment
paramters such as TTYSET parameters or the assigning of a system and
working drive. If the STARTUP command consisted of the following Tline:

TTYSET,DP=16,WD=60:ASN,W=1:ASN:CAT,0

each time the system was booted the following actions would occur.
First, TTYSET would set the 'depth' to 16 and the 'width' to 60. Next,
assuming the 'end of line' character is the ':', the ASN command would
assign the working drive to drive 1. Next ASN would display the
assigned system and working drives on the terminal, Finally, a CATalog
of the files on drive 0 would be displayed. For details of the actions
of the individual commands, refer to their descriptions elsewhere in

this manual.

As it stands, it looks as if the STARTUP feature is 1limited to the
execution of a single command line. This is true but there is a way
around the restriction, the EXEC command. If a longer Tist of
operations is desired than will fit on one line, simply create a command

-S.2.1-

FLEX User's Manual

file containing all of the commands desired. Then create the STARTUP
file placing the single line:

EXEC,<fiTe name>

where <file name> would be replaced by the name assigned to the command
file created. A little imagination and experience will show many uses
for the STARTUP feature.

By directing STARTUP to a file that does not have a return to DOS
command it 1is possible to lockout access to DOS. You can correct the
problem by hitting the RESET button and beginning execution at address
$CD03. The STARTUP file may then be deleted and if desired, modified.
Directing execution to CD03, the DOS warm start address, bypasses the
DOS STARTUP function.

-50 2. 2"

The SETTIME command is provided so that the user may set
the time on the Time-of-~Day clock on the GIMIX 6809 PLUS

CPU BOARD with the Time-of-Day clock option installed.

DESCRIPTION

The general format of the SETTIME command is:
SETTIME

SETTIME takes no parameters and prompts the user for all
pertinent information needed to set the clock.

To use the SETTIME command merely type the following:
+++SETTIME

The computer will then respond like this:
MINUTES (1 - 59)7

The user then types in the minutes to be set to. The
program then proceeds to prompt the user for hours, day
of the week, day of the month and month.

If the computer responds to any of the prompts with this
message:

INVALID INPUT, PLEASE RE-TRY.

It means that you did not enter a valid input for that
prompt.

This program uses the FLEX line buffer to enable the
user to delete or backspace his entry before carriage
return 1is typed. To correct an error after carrilage
return has been typed the |user must re-execute the
SETTIME command.

After the time has been entered and the following line
is showing:

TYPE ANY CHARACTER TO START THE CLOCK?

The time on the clock will stay where it has been set to
until a character is typed on the keyboard.

Since this command uses the FLEX line buffer it cannot

be use in multiple statement lines unless it is the last
statement on the line.

-5.3.1-

SETUP

The SETUP command 1is provided to enable the user teo
define certain characteristics of his operating
environment. Using this command the user may set the
disk drive stepping speed (by drive), select whether a
drive 1is single or double stepping, specify the last
drive available on the system and inform FLEX of the CPU
speed.

DESCRIFTION

The general systax of the SETUP command is:
SETUP([,<parameter 1list>]

Where <parameter 1list> is a series of three and two

letter parameters and drive number. If no parameters

are given the the user is prompted with a menu.

The first character of each set of parameters 1is the

drive number, 6 - 3. The next two letters and each

subsequent two letters define a drive characteristic.

The parameters are defined as follows:

S¢ = STEPPING SPEED OF 6ms FOR 8" (1l2ms FOR 5")

S1 = STEPPING SPEED OF 6ms FOR 8" (12ms FOR 5")

S2 = STEPPING SPEED OF 1¢ms FOR 8" (2Pms FOR 5")
S3 = STEPPING SPEED OF 2Pms FOR 8" (48ms FOR 5")
§8 = SINGLE STEPPING

DS = DOUBLE STEPPING

LD = LAST DRIVE ON SYSTEM

M1 = 1MHz CPU SPEED

M2 = 1.5MHz CPU SPEED

M3 = 2MHz CPU SPEED

The following describes these parameters in full detail.

sg, S1, S2 & S3

This tells the operating system what the stepping speed
for the specified drive is. The default setting is 2@ms
(40ms for 5"). All four drives are set to this on boot.

When setting the drive stepping speed it 1is advisable to
check the manufacturer specifications for each different
drive on your system. This will prevent many errors
from stepping a drive faster then it it is capable of.

Ss & DS

Some disk drives have double the normal nmber of tracks
for that size drive. This is called a 'Double Tracking'
disk drive. The Double Tracking drives have twice as
many tracks per inch as regular disk drives. This makes
rhem incompatible with regular drives. This command
enables the user to step a Double Tracking drive twice
for every normal step. This will make a Double Tracking
drive appear to the system as a regular drive. The
default setting is single stepping. All four drives are
set to this on boot.

LD

This tells the operating system how many drives are
currently installed in the system. This protects the
user from ‘'hanging' the system when inadvertantly
accessing a drive that is not actually on the system.

M1, M2 & M3

This tells the system what the current CPU speed is.
This is used for print spooling. The default is 1MHz.
Please be sure to set this parameter if using a faster
CPU speed to insure proper FLEX cperation.

The following is an example of the use of this command:

+++SETUP,@S51,15285,251DSLD
+++SETUP

The first example tells the operating system the drive @
is to step at 6ms (12 for 5"}); drive 1 is to step at
i¢ms (29ms for 5"} and be single stepping; drive 2 is to
step at 6ms (12 for 5"}, the drive is to be double
stepped and is the last drive on the system. The second
example will, prompt the user for what he wants to
change. The prompts are self-explanitory.

-5.4.2~

=l

leets Ak

Teet 0
TEST, J)

prikeog- -

TTYSET

The TTYSET wtility command 1is provided so the user may control the
characteristics of the terminal. With this command, the action of the
terminal on input and the display format on output may be controlled.

DESCRIPTION
The general syntax of the TTYSET command is:

TTYSET[,<parameter list>]

where <parameter 1ist> 1is a 1list of 2 Tetter parameter names, each
followed by an equals sign {'='), and then by the value being assigned.
Each parameter should be separated by a comma or a space. If no
parameters are given, the values of all of the TTYSET parameters will be
displayed on the terminal.

The default number base for numerical values is the base most
appropriate to the parameter. In the descriptions that follow, 'hh' is
used for parameters whose default base is hex; 'dd' is wused for those
whose default base is decimal. Values which should be expressed in hex
are displayed in the TTYSET parameter 1isting preceded by a '$'. Some
examples follow:

+++TTYSET
++4TTYSET,DP=16,WD=63
+++TTYSET,BS=8,E5=3

The first example simply 1lists the current values of all TTYSET
parameters on the terminal. The next line sets the depth 'DP' to 16
lines and the terminal width, 'WD' to 63 columns. The last example sets
thehbackspace character to the value of hex 8, and the escape character
to hex 3.

The following fully describes all of the TTYSET parameters available to
the user. Their initial values are defined, as well as any special

characteristics they may possess.

BS=hh BackSpace character

This sets the 'backspace' charcter to the character having the ASCII hex
value of hh. This character is initially a ‘control H' (hex 08), but
may be defined to any ASCI! character. The action of the backspace
character 1is to delete the last character typed from the terminal. If
two backspace characters are typed, the Tast two characters will be
deleted, etc. Setting BS=0 will disable the backspace feature.

-Tl].c 1-

FLEX User's Manual

BE=hh Backspace Echo character

This defines the character to be sent to the terminal after a
'backspace' character is received. The character printed will have the
ASCIT hex value of hh. This character is initially set to a null but
can be set to any ASCII character.

The BE command also has a very special use that will be of interest to
some terminal owners, such as SWTPC CT-64.

If a hex 08 is specified as the echo character, FLEX will output a space
(20) then another 08. This feature is very uesful for terminals which
decode a hex 08 as a cursor left but which do not erase characters as
the cursor is moved.

Example: Say that you mis-typed the word cat as shown below:
+++CAY

typing in one CTRL-H (hex 08) would position the cursor on top of the Y
and delete the Y from the DOS input buffer. FLEX would then send out a
space ($20) to erase the Y and another 08 {cursor left) to re-position

the cursor.

DL=hh Delete character

This sets the 'delete current Tine' character to the hex value hh. This
character is initially a 'control X' (hex 18). The action of the delete
character is to 'erase' the current input 1ine before it is accepted
into the computer for execution. Setting DL=0 will disable the line
delete feature.

EL=hh End of Line character

This character is the one used by FLEX to separate multiple commands on
one input Tine. It is inftially set to a colon (':'), a hex value of
3A. Setting this character to 0 will disable the multiple command per
Tine capability of FLEX. The parameter 'El=hh' will set the end of line
character to the character having the ASCII hex value of hh. This
character must be set to a printable character (control characters not

allowed).

DP=dd DePth count

This parameter specifies that a page consists of dd (decimal) physical
lines of output. A page may be considered to be the number of lines
between the fold if using fan folded paper on a hard copy terminal, or a
page may be defined to be the number of lines which can be displayed at
any one time on a CRT type terminal. Setting DP=0 will disable the
paging (this 1is the initial value). See EJ and PS below for more
details of depth,

"'To 1. 2-

@

FLEX User's Manual

WD=dd WiDth

The WD parameter specifies the (decimal) number of characters to be
displayed on a physical line at the terminal (the number of columns).
Lines of text longer than the value of width will be 'folded® at every
multiple of WD characters. For example, if WD is 50 and a line of 125
characters is to be displayed, the first 50 characters are displayed on
a physical line at the terminal, the next 50 characters are displayed on
the next physical line, and the last 25 characters are displayed on the
third physical 1line. If WD is set to 0, the width feature will be
disabled, and any number of characters will be permitted on a physical
line.

NL=dd NuLT count

This parameter sets the (decimal) number of non-printing (Null) 'pad’
characters to be sent to the terminal at the end of each line. These
pad characters are used so the terminal carriage has enough time to
return to the teft margin before the next printable characters are sent.
The initial value is 4. Users using CRT type terminals may want to set
NL=0 since no pad characters are usually required on this type of

terminal.

TB=hh TaB character

The tab character is not wused by FLEX but some of the utilities may
require one {such as the Text Editing System). This parameter will set
the tab character to the character having the ASCII hex value hh. This
character should be a printable character.

Ed=dd Fdect count

This parameter is used to specify the {(decimal) number of 'eject Tlines'
to be sent to the terminal at the bottom of each page. If Pause is
'on', the 'eject sequence' is sent to the terminal after the pause is
terminated. If the value dd is zero (which it is by default), no 'eject
Tines' are issued. An eject line is simply a blank line {line feed)
sent to the terminal. This feature is especially useful for terminals
with fan fold paper to skip over the fold (see Depth). It may alsc be
useful for certain CRT terminals to be able to erase the previous screen
contents at the end of each page.

PS=Y or PS=N PauSe control

This parameter enables (PS=Y) or disables (PS=N) the end-of-page pause
feature. If Pauyse is on and depth is set to some nonzerc value, the
output display is automatically suspended at the end of each page. The
output may be restarted by typing the ‘escape' «character (see ES
description). If pause 1is disabled, there will be no end-of-page
pausing. This feature is useful for those using high-speed CRT terminals

-T.1.3~

FLEX User's Manual
to suspend output long enough to read the page of text.

ES=hh EScape character

The character whose ASCII hex value is hh is defined to be the ‘'escape
character', Its initial value 1is $1B, the ASCII ESC character. The
escape character is used to stop output from being displayed, and once
it 1{is stopped, restart it again. It is also used to restart output
after Pause has stopped it. As an example, suppose you are LISTing a
long text file on the terminal and you wish to temporarily halt the
output. Typing the 'escape character' will do this (this feature is not
supported on computers using a Control Port for terminal
communications). At this time (output halted), typing another ‘'escape
character' will resume output, while typing a RETURN key will cause
control to return to FLEX and the three plus sign prompt will be output
to the terminal. It should be noted that Tine output stopping always
happens at the end of a line.

~T.1.4-

TIME

The TIME command is provided so that the user may read
+he time on the Time-of-Day clock on the GIMIX 68049 PLUS
CPU CARD with the Time-of-Day clock option installed.

DESCRIPTION
The general syntax of the TIME command is:
TIME
TIME takes no parameters and prints the time as read
from the clock.
To use the TIME command merely type the following:
+++TIME
The computer output will have the following format:
FRIDAY SEPTEMBER @5, ©£9:44:41 AM
If the computer responds:
ERROR READING TIME, CLOCK NOT SET
It means that the program detected an invalid value from
the clock and the clock needs to be set. To set the
time use the SETTIME command.
This command uses the FLEX output routines and therefore
the output can be re-directed with any of the FLEX
output re-direction command (i.e. tpr, 'Qf, etc.).
I1f there is no Time-of-Day <clock installed in your
system this program may cause the CPU to loop

infinitely. If this happens the only way to exit the
loop is to press the 'RESET' button on the front panel.

~T.2.1-

c:
o
o
T

=3

The USEMPT command has been provided to allow the GIMIX
FLEX print spooler to be used with a SWTPC MP-@9 CPU card.
GIMIX FLEX normally uses the 6840 on the GIMIX 6809+ CPU
card. This utility requires that the wuser have an SWTPC
MP-T interrupt timer in I/0 slot 4 (SEG40) of his mother
board. Once this command has been invoked the only way to
remove it is to re—-boot. This program uses 39 bytes of user
RAM at the top of available memory. It will not run if the
user has 1less then 24K installed in the system {(including

FLEX RAM).

DESCRIPTION

The general syntax of the USEMPT command 1s:

USEMPT

USEMPT takes no command line parameters.

Te use the USEMPT command merely type the following:

+++USEMPT

The USEMPT command will respond with one of the following
twoe messages:

MP-T IS NOW INSTALLED IN THE PRINT SPOOLER.

Which informs the user that the MP-T is now ‘installed and
ready for |use. This utility does not check to see if the
MP-T is functioning or if it is even in the system. It is
up to the user to insure that the MP-T is placed in I/0 slot

4 (SEp4@) and enabled for IRQ type interrupts. If your
system uses 4 bytes per 1I/0 address then please contact

GIMIX for a special version of this command.

The other possible message 1s:
NOT ENOUGH MEMORY INSTALLED IN SYSTEM

This informs the user that the USEMPT command could not find
any usable RAM above address §$3FFF.

-U.1.1-

UPDATE

The UPDATE utility enables the user to change the date in a file's
directory entry to the "current date™.

DESCRIPTION
The general synatax of the UPDATE command is:

UPDATE,<filespec>
Where <filespec> is the name of the file for which the date is to be
changed. If the file extension is not specified, UPDATE defaults to an
extension of .TXT . The file's directory entry is changed to reflect

the current date. UPDATE does not alter the contents of the file
itself.

-U.5.1-

VERIFY

The VERIFY command is used to set the File Management System's write
verify mode. If VERIFY is on, every sector which is written to the disk
is read back from the disk for verification (to make sure there are no
errors in any sectors). With VERIFY off, no verification is performed.

DESCRIPTION
The general syntax of the VERIFY command is:
VERIFY[,ON]
or
VERIFY[,OFF]

where ON or OFF sets the VERIFY mode accordingly. If VERIFY is typed
without any parameters, the current status of VERIFY will be displayed
on the terminal., Example:

+++VERIFY,ON
+++VERIFY

The first example sets the VERIFY mode tc ON. The second 1line would
display the current status (ON or OFF) of the VERIFY mode. VERIFY
causes slower write times, but it is recommended that it be left on for
your protection,

-V.l.l-

VERSION

The VERSION wutility is used to display the version number of a utility
command. If problems or updates ever occur in any of the utilities, they
may be replaced with updated versions., The VERSION command will allow
you to determine which version of a particular utility you have.

DESCRIPTION
The general syntax of the VERSION command is:
VERSION,<file spec>

where <file spec> is the name of the utility you wish to check. The
default extension {s CMD and the drive defaults to the working drive.

As an example:
+++VERSION, 0. CAT

would display the version number of the CAT command (from drive 0) on
the terminal.

-v.2.1-

XouT

X0UT 1is a special form of the delete command which deletes all files
having the extension .0UT.

DESCRIPTION The general syntax of XOUT is:
XOUT[,<drive spec>]

where <drive specd> is the desired drive number. If no drive is
specified all, .OUT files on the working drive will be deleted and if
auto drive searching is enabled, all .OUT files on drives 1 and 2 will
be deleted. XOUT will not delete any files which are delete protected
or which are currently in the print queue.

Example:

++4+X0UT
+++X0UT 1

-Xolnl-

The YEAR

internal

command is used to display or change the year in the
FLEX date register. This command is used when PLEX 1is

patched to load the current day and month from the Time-of-Day
clock on the GIMIX 6889 CPU board (see the section on patching
FLLEX to use the Time-of-Day clock). The YEAR command should be
included in the STARTUP file to set the year when the system is
booted.

DESCRIPTION

The general syntax of the YEAR command is:

YEAR, [YY)

Where YY is the last two digits of the current year. If no year
is entered the current year in the FLEX system date area will be

printed.

To use the YEAR command type the following:

+++YEAR

or

+++YEAR,81

The first example prints the year in the FLEX date register.
The second example sets the year to 1981.

The error message :

INVALID YEAR IN INPUT LINE

Indicates that an'illegal value was entered for the year [YY].

-Y.1.1-

The Y utility enables the user to automatically answer "¥Y© (yes) to
"Y or N" prompts from other utilities. The Y utility is especially

useful when writing EXEC files.

DESCRIPTION

The general synatax of the Y command iss
Y,<command string>

Where <command string> is a valid command line to be executed. If Y
is used in a line with multiple commands, using the end of line
character, it only affects the command immediately following it. Some

examples follow:

+++Y,C0OPY, 8,1
+4++Y,DELETE, TESTFILE.CMD

The first example will copy all files from drive #0 to drive #1,
automatically answering "Y" (yes) to any "DELETE ORIGINAL?" and "ARE
YOU SURE?" prompts that occur because of duplicate files on the two
disks. The second example will delete the specified file,
automatically answering "Y¥T (yes) to the "DELETE <file spec.>?" and
"ARE YOU SURE?" prompts. Use caution when using the Y utility,
especially when files are being deleted, since it bypasses the normal
protection against unintentionally deleting the wrong file.

""Yo 2- 1"

+ZAP

The ZAP command 1is a file delete utility. Either all files or only
files matching a specified match Tist are deleted without any prompting.
This command is very convenient for quickly removing a lot of no longer
needed files from a disk.

DESCRIPTION
The general syntax of the ZAP command is:
ZAP[,<drive 1ist>][,<match 1ist>]

where drive 1ist and match Tist are the same as described in the CAT
command. Upon execution of ZAP, the name of each file deleted will be

printed at the terminal in the form:
DELETING "FILE"

Be aware that there is no chance for "second thoughts". Once ZAP is
invoked, the files will be deleted without any further intervention by
the user. An example follows:

+++7AP,1, .BAK

This command would cause a1l of the files on drive 1 with a .BAK
extension to be deleted. It is wise, before invoking ZAP, to check
which files will be deleted by doing a CAT, DIR, or FILES with the same
match Tist that will be used with ZAP.

-Zolal"

GENERAL SYSTEM INFORMATION

I. DISK CAPACITY

Each sector of a FLEX disk contains 252 characters or bytes of user data
(4 bytes of each 256 byte sector are used by the system). Thus a
single-sided mini disk has 340 sectors or 85,680 characters or bytes of
user information. A single-sided full sjze disk has 1140 sectors or
287,280 bytes of user data. Double-sided disks would contain exactly
twice these amounts,

IT. WRITE PROTECT

Floppy disks can usually be physically write protected to prevent FLEX
from performing a write operation. Any attempt to write to such a disk
will cause an error message to be issued. It is good practice to write
protect disks which have important files on them.

A mini disk can be write protected by placing a piece of opaque tape
over the small rectangular cutout on the edge of the disk. Full size
floppys are just the opposite. In order to write protect a full size
disk, you must remove the tape from the cutout. In other words, the
notch must be exposed to write protect the disk. Some full size disks
do not have this cutout and therefore cannot be write protected.

III. THE 'RESET® BUTTON

The RESET button on the front panel of your computer should NEVER BE
PRESSED DURING A DISK OPERATION. There should never be a need to
'reset’ the machine while in FLEX. If the machine is 'reset' and the
system is writing data on the disk, it is possible that the entire disk
will become damaged. Again, never press ‘reset' while the disk is
operating! Refer to the ‘'escape' character in TTYSET for ways of
stopping FLEX.

IV. NOTES ON THE P COMMAND

The P command tries to load a printer driver file named PRINT,SYS from
the same disk which P itself was retrieved. For the requirements of
this file and on writing your own custom PRINT.SYS file, see the section
on su?h later in this manual or consult the ‘Advanced Programmer's
Guide’.

V. ACCESSING DRIVES NOT CONTAINING A DISKETTE
If an attempt is made to access a minifloppy not containing a diskette,
the system will hang up attempting to read until a disk is inserted and

the door closed. Alternatively, you could reset the machine and begin
execution at the warm start location $CDO3.

""3. 1""

FLEX User's Manual

VI. SYSTEM ERRQR NUMBERS l

Any time that FLEX detects an error during an operation, an appropriate
error message will be displayed on the terminal. FLEX internally
translates a derived error number into a plain language statement wusing
a Took-up table called ERROR,SYS. If you have forgotten to copy this
.5YS file onto a disk that you are using, FLEX will report a

corresponding number as shown below:
DISK ERROR #xx

where 'xx' 1is a decimal error number. The table below is a list of
these numbers and what error they represent.

ERROR # MEANING

1 ILLEGAL FMA FUNCTION CODE ENCOUNTERED
2 THE REQUESTED FILE IS IN USE

3 THE FILE SPECIFIED ALREADY EXISTS

4 THE SPECIFIED FILE COULD NOT BE FOUND
5 SYSTEM DIRECTORY ERROR-REBOOT SYSTEM

6 THE SYSTEM DIRECTORY IS FULL

7 ALL AVAILABLE DISK SPACE HAS BEEN USED
8 READ PAST END OF FILE

9 DISK FILE READ ERROR

10 DISK FILE WRITE ERROR
11 THE FILE OR DISK IS WRITE PROTECTED
12 THE FILE IS PROTECTED~FILE NOT DELETED
13 ILLEGAL FILE CONTROL BLOCK SPECIFIED
14 [ILLEGAL DISK ADDRESS ENCOUNTERED

15 AN TLLEGAL DRIVE NUMBER WAS SPECIFIED
16 DRIVE NOT READY
17 THE FILE IS PROTECTED-ACCESS DENIED

18 SYSTEM FILE STATUS ERROR

19 FMS DATA INDEX RANGE ERROR
20 FMS INACTIVE-REBOOT SYSTEM
21 ILLEGAL FILE SPECIFICATION
22 SYSTEM FILE CLOSE ERROR
23 SECTOR MAP OVERFLOW-DISK T0O SEGMENTED
24 NON-EXISTENT RECORD NUMBER SPECIFIED
25 RECORD NUMBER MATCH ERROR-FILE DAMAGED
26 COMMAND SYNTAX ERROR-RE-TYPE COMMAND
27 THAT COMMAND IS NOT ALLOWED WHILE PRINTING
28 WRONG HARDWARE CONF IGURATION

For more details concerning the meanings of these error messages,
consult the 'Advanced Programmer's Guide'.

-3.2-

FLEX User's Manual

VII. SYSTEM MEMORY MAP

The following is a brief 1ist of the RAM space required by the FLEX
Operating System. All address are in hex.

0000 - BFFF User RAM
*Note: Some of this space is used by
NEWDISK, COPY and other utilities.

€000 - DFFF Disk Operating System

bO?F System stack

€100 - C6FF Utility command space

Cchoo FLEX cold start entry address
CDO3 FLEX warm start entry address

For a more detailed memory map, consult the 'Advanced Programmer's
Guide'.

-3l3_

FLEX User's Manual

VIII. FLEX OPERATING SYSTEM INPUT/OUTPUT SUBROUTINES

In order for the FLEX I/0 functions to operate properly, all user
program character input/output subroutines should be vectored thru the
FLEX operating system rather than the computer's monitor. Below is a
list of FLEX's I/0 subroutines and a brief description of each., All
given addresses are in hexadecimal.

GETCHR at $CD15

This subroutine is functionally equivalent to $-BUG's character input
routine. This routine will Took for one character from the control
terminal (I/0 port #1) and store it in the A accumulator. Once called,
the input routine will loop within itself until a character has been
input. Anytime input is desired, the call JSR GETCHR or JSR $CD15 should

be used.

GETCHR automatically sets the 8th bit te 0 and does not check for
parity. A call to this subroutine affects the processor's registers as
follows:

ACC. A loaded with the character input from the terminal
B,X,Y,U not affected

PUTCHR at $CD18
This subroutine is used to output one character from the computer to the

control port {I/0 port #1). It is functionally equivalant to the output
character routine in S-BUG.

To use PUTCHR, the character to be output should be placed in the A
accumulator in its ASCII form. For example, to output the letter 'A' on
the control terminal, the following program should be used:

LDA #4541
JSR $cD18

The processor's registers are affected as follows:

ACC. A changed internally
B,X,Y,U not affected

PSTRNG at $CDIE

PSTRNG is a subroutine used to output a string of text on the control
terminal. When address $CDIE is called, a carriage return and line feed
will automatically be generated and data output will begin at the
Tocation pointed to by the index register. Output will continue until a
hex 04 is seen. The same rules for using the ESCAPE and RETURN keys for
stopping output apply as described earlier.

The accumulator and register status after using PSTRNG are as follows:

ACC. A Changed during the operation

-3.4"'

FLEX User's Manual

ACC. B Unchanged

. X Contains the memory Tocation of the last character read from the
string (usually the 04 unless stopped by the ESC key)
Y,u Unchanged

NOTE: The ability of using backspace and line delete characters is a
fgnction of your user program and not of the FLEX I/0 routines described
above.

For additional information consult the 'Advanced Programmer‘’s Manual'.

STAT at $CDAE

This routine is used to determine the "status" of the input device.
That is, to see if a character has been typed on the input terminal
keyboard. Its function is to check for characters such as the ESCAPE key
in FLEX which allows breaking of the output. This routine returns an
EQual condition 1if no character was hit and a Not-Equal condition if a
character was hit. No registers, except for the condition codes, may be

altered.

3.5~

FLEX User's Manual

IX. BOOTING THE FLEX DISK OPERATING SYSTEM

In order to read FLEX from the system disk upon powering up your system,
you must have a short program in RAM or ROM memory. This program is
called a 'bootstrap' loader.

If you are using a Southwest Technical Products disk system and the
S-BUG monitor, there are bootstraps stored in this ROM which you can
use. They are executed by simply typing a 'D' for the full size floppy
or a 'U' for the mini floppy.

Those users of other hardware or monitor ROM should use the boot
supplied with the hardware if compatible with FLEX. A sample boot (for
the SWTPc mini system) is given here for reference.

If the system does not boot properly, re-position the system disk in the
drive and re-execute the bootstrap loader.

0100 B6 EO018 START LDA COMREG TURN MOTOR ON

0103 86 00 LDA #0
0105 B7 EOl4 STA DRVREG

0108 8€ 0000 L DX #0000

010B 3D OVR MUL DELAY FOR SPEED UP
010C 30 IF LEAX -1,X

010E 26 FB BNE QVR

0110 C6 OF LDB #$0F RESTORE
0112 F7 EO0I18 STB COMREG

0115 8D 2B BSR RETURN

0117 F6 EQ18 LOOP! LOB COMREG

011A C5 01 BITB #1

011C 26 F9 BNE LooP1

011E 86 01 LDA #1

0120 B7 EOlA STA SECREG

0123 80 1D BSR RETURN

0125 C6 8C { DB #$8C READ WITH LOAD
0127 F7 E018 STB COMREG

012A 8D 16 BSR RETURN

012C 8 €000 LDX #$C000

0l2F C5 02 LOOP2 BITB #2 DRQ?
0131 27 05 BEQ LOOP3

0133 B6 EOLIB LDA DATREG

0136 A7 80 STA 0, %+

0138 F6 E018 {O0P3 LDB COMREG

013B ¢5 01 BITB #1 BUSY?
0130 26 FO BNE LOOP2

O013F 7E €000 JMP $C000

0142 80 00 RETURN BSR RTN

0144 39 RTN RTS

""3.6-

FLEX User's Manual
X. REQUIREMENTS FOR THE ‘PRINT.SYS' PRINTER DRIVER

FLEX, as supplied, includes a printer driver that will work with most
parallel type printers, such as the SWTPC PR-40. If desired, the
printer driver may be changed to accomodate other types of printers.
Included is the source listing for the supplied driver. Additional
information on the requ1rements for the PRINT.SYS driver can be found in
the Advanced Programmer's Guide.

1) The driver must be in a file called PRINT.SYS

2) Three separate routines must be supplied, a printer initialization
routine (PINIT at $CCCO), a check ready routine {PCHK at $CCD8),
and an output character routine {(POUT at $CCE4}.

3) When the POUT routine is called by FLEX, the character to be output
will be in the A accumulator. The output routine must not destroy
the B, X, Y, or U registers. PINIT may destroy any registers.
PCHK may NOT alter any registers.

4) The routines MUST start at the addresses specified, but may be
continued anywhere in memory if there is not room where specified.
If placed elsewhere in memory, be certain they do not conflict
with any utilities or programs which will use them.

5) A1T three routines must end with a return from subroutine
instruction (RYS).

*

* PRINT.SYS PIA DRIVERS FOR GENERAL CASE PRINTER
*

EOIC PIA EQU $£01cC PIA ADDRESS FOR PORT #7

*

* PRINTER INITIALIZATION (MUST BE AT $CCCO)

*

cccao ORG $ccco MUST RESIDE AT $CCCO
CCCO 86 3A PINIT LDA #$3A SELECT DATA DIRECTION REG.
CCC2 B7 EOID STA PIA+1 BY WRITING O IN DDR CONTROL
CCC5 86 FF LDA #$FF SELECT ALL OUTPUT LINES
CCC7 B7 EOIC STA PIA PUT IN DATA DIRECTICN REG.
CCCA 86 3t LDA #$3E SET UP FOR TRANSITION CHECKS
CCCC B7 EOID STA PIA+1 AND ENABLE OUTPUT REGISTER
CCCF 39 RTS

* PRINTER READY ROUTINE
ccpo 70 EOIC PREADY TST PIA RESET PIA READY INDICATION
CCh3 73 CCE3 COM PFLAG SET THE PRINTER READY FLAG
CChé6 39 RTS

-3.7-

FLEX User's Manual

CcCb8
cCD8
CCDB
cCoD
CCEO
CCEZ

CCE3

CCE4
CCE4
CCE6
CCES
CCEB
CCEE
CCFO
CCF2
CCF4
CCF7

7D
2B
7D
2B

FF

CCE3

EQID
EE

F2

CCE3
EC1C

02
3E
EO1D

*

* CHECK FOR PRINTER READY (MUST BE AT $CCD8)
*

PCHK

PCHKX

ORG
TST
BMI
TST
BMI
RTS

$cCo8
PFLAG
PCHK X
PIA+]
PREADY

* PRINTER READY FLAG

PFLAG

*

FCB

$FF

PRINT TEST AT $CCD8

TEST FOR PRINTER READY

IF NEGATIVE, PRINTER READY
CHECK FOR TRANSITION

IF MINUS, PRINTER NOW READY

PRINTER READY FLAG

* PRINTER QUTPUT CHARACTER ROUTINE (MUST BE AT $CCE4)
*

POUT

POUTB

ORG
BSR
BPL
CLR
STA
LDA
BSR
L.DA
STA
RTS

END

$CCE4
PCHK
POUT
PFLAG
PIA
#$36
POUTB
#$3E
PIA+1

-3.8-

MUST RESIDE AT $CCE4

TEST FOR PRINTER READY

LOOP UNTIL PRINTER READY
SET PRINTER FLAG NOT READY
SET DATA IN OUTPUT REGISTER
SET DATA READY, HIGH TO LOW
STUFF BYTE INTO THE PIA
THEN SEARCH FOR TRANSITION
OF LOW LEVEL TO HIGH LEVEL

FLEX User's Manual

Sample Drivers for Serial Printer

The following 1listing is a sample set of drivers for a serial type
printer using an ACIA as its interface. This set of drivers is not
supplied on disk. In order to use these drivers, you must type in the
source and assemble it. If you have a serial printer, you will probably
want to vreplace the parallel PRINT.SYS file on the disk with one
containing these drivers. _

1 *
2 * PRINT.SYS DRIVERS FOR GENERAL SERIAL PRINTER
3 * CHANGE ACIA EQUATE IF NECESSARY
4 %*
5
6 EOLC ACIA EQU $E01C ACIA ADDRESS FOR PORT #7
; \
9 * PRINTER INITIALIZATION (MUST BE AT $CCCO)
10 *
11 CCCo ORG $ccco MUST RESIDE AT $CCCO
12 ccco 86 13 PINIT LDA #$13 RESET ACIA
13 . ¢cCC2 B7 EOIC STA ACIA
14 CCC5 86 11 LDA #$11 SET 8 BITS & 2 STOP
15 CCC7 B7 FOIC STA ACIA e
16 CCCA 39 RTS RETURN
17
18 *
19 * CHECK FOR PRINTER READY (MUST BE AT $CCD8)
20 *
21 cCp8 ORG $CC08 PRINT TEST AT $CCD8
22 CCD8 34 04 PCHK PSHS B SAVE B ACC.
23 CCDA F6 EODIC LDB ACIA GET STATUS
24 CCDD 56 RORB. GET TOR BIT INTO
25 CCDE 56 RORB SIGN POSITION
26 CCDF 56 RORB
27 CCE0 35 04 PULS 8 RESTORE B ACC.
28 CCE2 39 RTS RETURN
29
30 *
31 _ * PRINTER OUTPUT CHARACTER ROUTINE (MUST RE AT $CCE4)
32 *
33 CCE4 ORG $CCES MUST RESIDE AT $CCE4
34 CCE4 34 04 POUT PSHS B SAVE B ACC.
35 CCE6 F6 FOIC r—4>POUT2 DB, ACIA GET STATUS
36 CCE9 57 | ASRB GET TDR BIT
37 CCEA 57 . ASRB INTO CARRY
38 CCEB 24 F9¢ - ~ "TBCC POUT2 LOOP IF NOT READY
39 CCED 35 04 PULS B RESTORE B ACC.
40 CCEF B7 EOID STA ACIA+] WRITE OUT THE CHAR.
41 CCF2 39 RTS RETURN
42
43 END

~3.9~

R
“i

1}

Ly

I

o

T
'Y\/\NOL&\A%\ ﬁgr‘{’ 4{- on §

a1

1;Emv?7

’

wTYe

Tl b

PRANTNLE L TXT

NN

i
HEUTF

b
5TER

5 & linefaegr

,.:.
Kt et
E]
il i3
2t idd
et - el i 3
¥ 3 &t i e
<z - - £ 4 P ga
= = wd T ol B g
Ll B B i+ i = =1
£ b tn b a3 $o
- s = <5
= -, ;
[ok L3 pu] £3
= 3
] R)
F g 3 0
= e M
- LA i3
R I R ik
iy]
o ey ey
N
[0 JEE: B+
L
T3 pw ot

POLEE e B

N
shole bl

bi

4

n
ad

[RELgR

Lk i

e
a
ER]

(W

{\

#
*
X
X
#
*
*
w
*
e
A
g
A

o e . u..., \-r

Taee Ly Lt LS P
Li, &3 <5 A Ipdoo fre 2
(RN 3 Lo S LI AN L R Se HH il

B
-
(N

SRR - . = 2y
03 P i i W BAE RE L
Pn oo % el ey gt Bt
L 20 - S g 0 B 0 e
Y Er LY LS £ Fyfrra gy
R W Lol (313 43 43

N e " rilvardiiand
90 0 L3 SR O o By 0

fun
H
i E
fag .
Lid 3
i) oL
] £f,
» o
in :
o b [t ot
- b <. #=i
£ 4 o B T
i ‘m [I 4 il
. iSlibeililrad .
e e B 0 L]

i -
oy o
Gaf e
i, » IS
L —rn Bl
i fro e
.y EN
o -+
] P
L Lt

o M Ui {.

Ty P
£l oem 1
i S}

[t s o]

S + IR o] -
pry
]

oy e

. o

Lo LiEOLEZ [

ORI I O HY

e .

[I

XI.

SYSTEM CONFIGURATION FOR GIMIX FLEX 1.8

The system should be configured for GMXBUG-89 or SBUG-E
as reguired.

GIMIX 6889 CPU BOARD

i.

Select the desired CPU speed. See the CPU board
manual for more information. When running at 1.5
or 2MHz the siow I/0, as on the GIMIX 68@9 MOTHER
BOARD, must be enabled. Please note that only the
68B¢9 will run at 2MHz.

if print spooling is to be used configure the 6848

programmable timer by jumpering clock gate #§1 to
ground and connecting the timer to the 'IRQ' line.

GIMIX 5/8 DISK CONTROLLER

Enable the 'Pseudo Ready' option. See the DISK ;{})

CONTROLLER manual for more information. e
Set up for sixteen bytes per I/0 address.
Set up for head load with motor on.

\

MEMORY ADDRESSING

1.

Address 8k of memory for $C@G8 to S$SDFFF and the

remainder starting at 508006¢ and up to $BFFF. GIMIX
FLEX 1.8 requires 16k of memory starting at $@060
and ending at $3FFF in addition to the 8k starting

at $CpP@@ and ending at SDFFF.

PATCHING FLEX TO USE THE TIME-QOF~DAY CLOCK
CN THE GIMIX 6899 CPU BOARD

When Flex is initialized (booted) it normally prompts the
user for the <current date. GIMIX FLEX disks include a file
called DATEPAT.BIN which, when appended to FLEX.S5Y5, configures
FLEX to read the day and month from the Time-of-Day clock on the
GIMIX 6889 CPU board. Since the current year is not available
from the Time-of-Day <c¢leck, a separate utility called YEAR is
provided to allow the year to be set from a STARTUP file. Once
this patch is implemented and the YEAR command is included in the
STARTUP file, the FLEX internal date register will be set to the
current date automatically when the system is booted. The
patched FLEX will not prompt the user for the date unless the
date from the Time-of-Day <c¢lock 1is invalid (the clock is not

properly set).

To patch FLEX, put a copy of the GIMIX FLEX system disk in
drive zero (#) and execute the following command lines:

+++APPEND,g.FLEX.SYS, 2. DATEPAT.BIN, 8. FLEXDATE,.S5YS
+++LINK,@.FLEXDATE.SYS

This creates a new file called FLEXDATE.SYS which is the
patched version of FLEX. When creating backup disks, "LINK"
FLEXDATE.SYS to create a disk that reads the day and month from
the Time-of-Day clock. "LINK" FLEX.SYS will create a disk that

prompts for the date.

The YEAR command (see page Y.1l.1) should be included in a
STARTUP file, to set the current year, when the patched FLEX is
used.

If the date read from the Time-of-Day clock is invalid the
following message is printed:

CLOCK NOT SET
and FLEX will prompt for the current date. After the date is
entered FLEX returns without executing the STARTUP file. If this

occurs the SETTIME utility should be used to set the Time-of-Day
clock, and the system re-booted to execute the STARTUP file.

-3.11-

N
~
k4

. 5“'
~

e a0 dsan St b s sy g eey Cave et et wede meeb by

R L o Lid
H .~y ' H H
+ ot afa T e
H s ey S®
t) o s LBl e
: it el o]
2] g Fan]
I | i i3 A
B2 P
i =D
; 2
wi At
FEN

7
¥

B R
X

a1

it

¥

i
L

THE

¥
Ly
'

S
L

P
L

&

AT
N
&

H
1
i
H
3 il
i 3
" ey
; :
3 £

H -
i -
H
\ i
i | Y !
H LR
P [
I &
L B
H - =
{ [Ty Lo
m i il
T M = s
! bl o i
i * = s
i (<8 b=t
H i ’ .
S) Li=
: - A
i 2 Ll S
H
i
f

w..!\

E
LI I R

PAF e
%

ZERT

&

.o
1

B
A

o T

-
T

(=i
:

£ %

3
i

.
i

""ﬁ%}i

1%

g
P]

A

FlL.b Ay

or
"

A e £
& Faor

%

GH

u

-
TLd

I\

-
4

3
+

sl

[B
A VR S &

3
g

e

U s i

gy ey
£

e Lop A1

{

#n

e e gy

EA L)
(AR

£ e

F
iy

S

o

£ # T

L kst

3
~
]

e

CIOF &a Py

FathH PR UBE RITH k1 ya

.y

h &

i

. W G

o e H

ooy p ‘y e .

Wb A it l‘\Lﬂ.J

oy IR T e

f e L | i it !“1

EN

e
$EE

B i

BLEE7

ST e
L 3T Y

Lh

L s wibinte

P SFCND R ST

be ks T 7 ? LI
s

T

~
{
fad La3 42

Ak

fa R T
HEES

yrmy veon ware ape o .

Ko VRN T b

]
T

™
L.

'
H
bat et

£ i oo FLEGHT bR
e £ . oo 1y oo B o e
LLay Chisg ol i LK WAEM BTAR

ey dged g

N e R
i1 NG L) {{:) L n

Feow MR PR
HA e TR 1N Ll

P e [l ast g o
LI T T O ? L

S E T
Aol t

A0 00 I 54 M AL

»
-

e if »,

43
A
WL

R

W

-
£ 4
et

r
T

e mAradttie e W a s r=rh v ETEY
PO MEMURY INGTALLED IR BYSTEY

LI o S
P
olan 54
[I B Y

[s I
WITH GLFLE b

s s awe s gpr g
I T L DR

GIWY 20 49 46 6

- . ; B0

w R

&) Y o

L0030 i

o

L i, 4

P e

TP by

-

g

Pl B
L

i d

7
1,
¢
L

o 22
!

e

[

- gt o gt gron o

i b b

T A 4t o

Lo b ol SBY

32

ey
[t A o)
e e £
[P

Caoo BN

P,
L

LA ool W)

COMMAND SUMMARY

APPEND,<file spec>[,<file list>],<file spec>
Default extension: .TXT
Description page: A.l

ASN[,W=<drive>][,5=<drive>)
Description page: A.2

BUILD,«<file spec>
Default extension: .TXT
Description pge: B.1l

CAT[,<drive list>][,<match list>]
Description page: C.1

COPY,<file spec>,<file spec>

COPY,<file spec>,<drive>

COPY,<drive>,<drive>[,<match list>]
Descripyion page: C.2

CLEANT[,<drive spec>]
Description page: C.3

CHECKSUM{[,<drive spec>]
Description page: C.4

DATE[,<mm,dd,yy>]
Description page: D.1

DELETE,<file spec>{,<file list)>]
Description page: D.2

EXEC,<file spec>
Default extension: .TXT
Description page: E.1

EXTEND[,<drive spec)>,<parameter>]
Description page: E.2

FORMAT[,<drive spec>]
Description page: F.1l

GET,<file spec>{,<file list>]
Default extension: .BIN
Description page: G.1l

I,<file spec>,<command>
Default extension: .TXT
Description page: I.1

JUMP, <hex address>
Description page: J.1

LINK,<file spec>
Default extension: .8Y¥S
Description page: L.1

LIS8T,<file spec>[,<line range>][,N]
Default extension: .TXT
Description page: L.2

MON
Description page: 1.7

NAME[,<drive spec>]
Description page: N.1

N,<command string>
Description page: N.2

0,<file spec>,<command>
Default extension: .0UT
Description page: 0.1

P,<command>
Description page: P.1

PRINT,<file spec>
Default extension: .OUT
Description page: P.2

PROT,<file spec>[, (options}}
Description page: P.3

QCHECK
Description page: Q.1

RENAME,<file spec>,<file spec 2>
Default extension: .TXT
Description page: R.1

REPORT
Description page: R.2

SAVE,<file spec>,<begin adr>,<end adr>|[,<transfer adr>]
Default extension: .BIN
Description page: S.1

STARTUP
Description page: 5.2

SETTIME
Description page: 5.3

SETUP[,<parameter 1list>]
Description page: S.4

TTYSET{,<parameter list)>]
Description page: T.1

TIME
Description page: T.2

USEMPT
Description page: U.1

UPDATE,<file spec>
Default extension: .TXT
Description page: U.5

VERIFY[,<ON or OFF>]
Description page: V.1l

VERSION,<file spec>
Default extension: .CMD
Description page: V.2

XOUT[,<drive spec>]
Description page: X.1

YEAR[,YY]
Description page: Y.l

Y ,<command string>
Description page: Y.2

