VBIIC™ 64 CHARACTER VIDEO INTERFACE
S-100 Bus

INSTRUCTION MANUAL

SSM MICROCOMPUTER PRODUCTS, INC.
2190 Paragon Drive
San Jose, California 95131

Telephone: (408) 946-7400
TWX: 910-338-2077
Telex: 171171
DDD: (408) 946-3644 (110 Baud)

™ VBIIC is a trademark of SSM Microcomputer Products, Inc.
Written by Malcolm T. Wright
Edited by Dan Fischler
Illustrated by Judith Sisko

©1980 SSM MICROCOMPUTER PRODUCTS, INC.
All Rights Reserved

Part No. MN0021
January 1982
TABLE OF CONTENTS

1.0 INTRODUCTION

2.0 ASSEMBLY INSTRUCTIONS
 2.1 Unpacking
 2.2 Resistor Installation
 2.3 Diode Installation
 2.4 Socket Installation
 2.5 Capacitor Installation
 2.6 Transistor Installation
 2.7 Crystal Installation
 2.8 Regulator Installation
 2.9 Connector, Header and Switch Installation

3.0 FUNCTIONAL CHECK/IC INSTALLATION
 3.1 Short Test
 3.2 Voltage Check
 3.3 Power Resistor Installation
 3.4 Visual Inspection
 3.5 IC Installation

4.0 SETTING UP YOUR V61C
 4.1 Addressing
 4.2 64 or 32 Characters per Line Selection
 4.3 Graphics or Inverse Video Selection
 4.4 Graphics Patterns
 4.5 Blanking/MSB Control

5.0 THEORY OF OPERATION
 5.1 General Information
 5.2 Sync Generation
 5.3 Addressing
 5.4 Picture Formation
 5.5 Power Supplies
 5.6 Blanking

6.0 SOFTWARE
 6.1 Video Board Driver
 6.2 Video Board Demonstration Routine
 6.3 Graphics Interface Subroutine
 6.4 Doodle Graphics Demonstration
 6.5 Video Test Routine
 6.6 Memory Test Routine

7.0 TROUBLESHOOTING HINTS

8.0 WARRANTY
APPENDIX:

Assembly Drawing
Parts List
Schematic (Insert)
1.0 INTRODUCTION

The SSM VB1C provides a memory mapped video display for any S-100 bus compatible microcomputer.

The VB1C features such capabilities as 32 or 64 characters per line (switch selectable) by 16 lines, upper and lower case with descenders, Greek characters, graphic symbols, black-on-white or white-on-black display, 7 x 9 character matrix, and 1K on-board RAM.

The VB1C is fully compatible with the proposed IEEE 696 standard, with two exceptions: 1) the VB1C uses the 01 clock on bus pin 25 instead of the new PSTALL signal; and 2) when the CPU reads data from the VB1C, data is transferred back without the use of the SMEMR and PDBIN signals.

We suggest that you read this entire manual before either starting assembly or use to improve your understanding of the board and make its set-up and use that much easier.

NOTES:

The VB1C meets the following IEEE 696 compliance levels: D8, M16, N1, T250, W0, SH.

All references to the PC board assume that the board has the 100-pin connector at the lower edge, and the component side (the side with the silk screen) is facing you.

2-80 is a trademark of ZILOG INC., 10340 Bubb Road, Cupertino, CA 95014.

8080 and 8085 are trademarks of INTEL CORP., 3065 Bowers Avenue, Santa Clara, CA 95051.
2.0 ASSEMBLY INSTRUCTIONS

Refer to the Assembly Drawing in the APPENDIX during assembly and test procedures.

2.1 UNPACKING

[] Unpack and check each of the parts against the PARTS LIST provided.

It is a good idea to arrange the parts in a small tray or box to allow for easy identification and accessibility during assembly.

2.2 RESISTOR INSTALLATION

NOTE: Be sure that all resistors and diodes are flush against the PC board. This will insure proper socket installation. **DO NOT install R21 and R22 at this time.**

[] Install and solder SIX (6) 100 ohm (brown, black, brown) resistors at locations R1, 2, and 5-8.

[] Install and solder TEN (10) 2.7K ohm (red, violet, red) resistors at locations R4, 11-18, and 24.

[] Install and solder ONE (1) 1K ohm (brown, black, red) resistor at location R23.

[] Install and solder ONE (1) 220 ohm (red, red, brown) resistor at location R3.

[] Install and solder TWO (2) 470 ohm (yellow, violet, brown) resistors at locations R9 and 10.

2.3 DIODE INSTALLATION

[] Install and solder ONE (1) IN270 germanium signal diode at location CRL. Use caution in installing this component—the banded end (+) MUST be to the LEFT of the board.

2.4 SOCKET INSTALLATION

NOTE: **DO NOT install integrated circuits until specifically instructed to do so.**

[] Install the 8, 14, 16, and 24 pin sockets on the printed circuit board. Orient pin 1 towards the top of the board or to the left, as applicable. See Figure 1 for information on locating Pin 1 on each socket.

CAUTION! **DO NOT install a socket at location S1. A switch will be installed at this location in a later step.**
Three (3) 8-pin sockets at UL-3
Nine (9) 14-pin sockets at U4, 10-13, 17, 18, 20, 21
Twenty-five (25) 16-pin sockets at U6-8, 14, 19, 22-29, 31-42
Three (3) 24-pin sockets at U5, 15, 16

Socket Types

FIGURE 1

[] When all sockets are inserted, place a piece of stiff cardboard over the sockets to hold them in place and turn the board over to expose the reverse side.

[] On each socket, solder pin 1 and the pin diagonally opposite it to 'tack' (lightly solder) each socket in place. When all sockets are tucked in place, turn the board over and examine each socket to make sure it is flush against the board. If needed, reheat the pins and adjust any sockets not firmly mounted.

[] When all the sockets are properly seated, solder the remaining pins of each socket. Do not overheat.

2.5 CAPACITOR INSTALLATION

[] Install and solder TEN (10) 0.1 uf monolithic capacitors at locations C1, 2, 5-9, and 11-13.

[] Install and solder ONE (1) 47-56 pf disc capacitor at location C4.

[] Install and solder ONE (1) .0033 uf disc capacitor at location C17.

[] Install and solder TWO (2) 10 uf axial capacitors at locations C3 and C10. Use caution in installing these components—C3 and C10 MUST have the positive (+) end to the RIGHT side of the board.

[] Install and solder ONE (1) 4.7 uf axial capacitor at location C14. Use caution in installing this component—C14 MUST have the positive (+) end to the LEFT side of the board.

2.6 TRANSISTOR INSTALLATION

[] Install and solder ONE (1) 2N3904 transistor at location Q1. Again, use caution in installing this component; refer to Figure 2 for proper orientation. Use caution that the lead closest to the bottom of the board DOES NOT touch RB.
2.7 CRYSTAL INSTALLATION

[] Install and solder ONE (1) 12.44 MHz crystal at location Y1. Two holes have been provided on either side of the crystal to solder a strap over the crystal to hold it in place. Use a resistor lead to make this strap. **DO NOT** overheat the crystal.

2.8 REGULATOR INSTALLATION

[] Place TWO (2) 7805 regulators on the board so that the mounting hole in the regulator is in line with the hole in the board. Mark the leads for proper bending to match the holes in the board (allow for bend radius).

[] Bend the regulator leads to match the holes in the board.

[] If available, apply thermal compound to the back side of each regulator case (the side that will contact the heatsink). Use just a little thermal compound. **Too much is worse than none at all**.

[] Install and solder TWO (2) 7805 regulators at locations U9 and U30 so that the following order results from back to front: screw, PC board, heatsink, regulator, lock washer, and nut. Be sure that the regulators and heatsinks sit flat on the board and then solder all regulator leads.

2.9 CONNECTOR, HEADER AND SWITCH INSTALLATION

[] Install and solder ONE (1) 4-pin molex connector at location J1 such that the short pins are inserted in the PC board. Be sure that the teflon base sits flat against the board.

[] Install and solder ONE (1) 2-pin molex connector at location J2 such that the short pins are inserted in the PC board. Again, be sure that the teflon base sits flat against the board.

[] Install and solder ONE (1) 3-pin header at location E1-E3.

[] Install and solder ONE (1) 8-position DIP switch at location S1. Orient the switch with position 1 at the top of the board.

At this point the only parts yet to be mounted are the two power resistors and all the ICs. **DO NOT INSTALL THESE PARTS AT THIS TIME.**
3.0 FUNCTIONAL CHECK/IC INSTALLATION

WARNING! DO NOT INSTALL OR REMOVE THE BOARD WITH POWER ON. DAMAGE TO THIS AND OTHER BOARDS COULD RESULT!

3.1 SHORT TEST

[] If an ohmmeter is available, measure the resistance between pin 50 (negative meter probe) and pin 1 (positive meter probe) on the edge connector, and verify a resistance of 20 ohms or greater. If your reading is below 20 ohms, check your board for possible shorts.

3.2 VOLTAGE CHECK

[] Apply power (+8V to +10V) to the board by plugging into the computer or by connection to a suitable power supply (with power turned off). Measure the outputs of the +5V regulators (U9 and U30). The voltage should be +5.0V (+/- 0.2V). If the regulator doesn't meet this test, check the board for shorts or errors. (See the figure below for the pin assignments of the regulator.)

![7805 Voltage Regulator Diagram]

CAUTION: WHILE IT HAS NEVER HAPPENED TO US, SHORTED REGULATORS HAVE BEEN KNOWN TO EXPLODE WITH POSSIBLE INJURY TO EYES AND HANDS. BETTER SAFE THAN SORRY—KEEP YOUR FACE AND HANDS CLEAR OF THE REGULATOR SIDE OF THE BOARD DURING THE INITIAL POWER-UP OF YOUR BOARD.

3.3 POWER RESISTOR INSTALLATION

[] Insert and solder TWO (2) 15 ohm 3-watt power resistors at locations R21 and R22. For improved cooling and to prevent the PC board from discoloring, mount these two resistors off the board about 1/8 inch.

3.4 VISUAL INSPECTION

[] Now, look over the board carefully. Check for solder bridges, cold solder joints, and unsoldered pins. Also, using the Assembly Drawing in the APPENDIX, check for improper part location or polarity. A few minutes of careful inspection could save hours in troubleshooting later.
3.5 IC INSTALLATION

[] Refer to the Assembly Drawing to install the following integrated circuits. BE CERTAIN THAT PIN 1 OF EACH IC IS ORIENTED PROPERLY. It is sometimes helpful to bend the leads of the IC's SLIGHTLY inward by placing the circuit on its side and applying firm pressure. This assures that the leads will be straight and makes it easier to install the device in the socket.

[] Install the following IC's as shown in the Assembly Drawing:

[] U4 7486
[] U17 74LS00
[] U18 7432
[] U23,28,34,35,40,41 74367
[] U42 DM8131

[] The following IC's are extremely sensitive to static electricity. Avoid touching the IC leads without first touching the PC board to make sure that both items are at the same static potential.

[] U24,25,26,27 2102AL-2
[] U36,37,38,39

[] The VBIC can now be tested as a standard 1K memory board. A memory test program is provided in Section 6.6 for this purpose. Be sure to set the DIP switch (SI) to the desired setting before attempting any testing. Refer to Section 4.1 for information on addressing your board.

[] Install the following IC's as shown in the Assembly Drawing:

[] U1,2,3 75451
[] U5,15 74150
[] U6,7 74157
[] U8 74166
[] U10 74504
[] U11,12,13,20 7474
[] U14,22,32,33 74193/74LS193
[] U19 74153
[] U21 7408
[] U29,31 74161

[] The following IC is extremely sensitive to static electricity. Avoid touching the IC leads without first touching the PC board to make sure that both items are at the same static potential.

[] U16 MMC66714

[] The VBIC can now be tested for proper video operation. A program is provided in Section 6.5 to display the ASCII character set plus the 64 different graphic characters.
4.0 Setting Up Your VBlC

4.1 Addressing

The VBlC occupies 1K bytes of the address space of the computer. By setting DIP switch S1, the user can locate his VBlC at any one of 64 different memory locations.

Switch:
ON=Closed=0
OFF=Open=1

<table>
<thead>
<tr>
<th>ADDRESS</th>
<th>A15</th>
<th>A14</th>
<th>A13</th>
<th>A12</th>
<th>A11</th>
<th>A10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000-03FF</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>0400-07FF</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>0800-0BFF</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>0C00-0FFF</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>1000-13FF</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>>B000-E3FF</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>>E000-E3FF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>FC00-FFFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
<td>OFF</td>
</tr>
</tbody>
</table>

> Address used by SSM 8080 Monitor V1.0 in 2708 EPROM
>> Address used by SSM Z-80 Monitor V1.10 in 2716 EPROM

4.2 32 or 64 Characters Per Line Selection

The VBlC has the capability to display either 32 or 64 characters per line. The selection is made by setting switch 1 position 2 to the desired line length.

64 characters/line = switch ON or closed
32 characters/line = switch OFF or open

4.3 Graphics or Inverse Video Selection

The VBlC is switched between two types of display by setting data bit 7 to a 0 or a 1. The display mode is determined by the setting of S1-1 as follows:

<table>
<thead>
<tr>
<th>'VID REV'/</th>
<th>DISPLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIT D7</td>
<td>GRAPHICS</td>
</tr>
<tr>
<td>0</td>
<td>ON</td>
</tr>
<tr>
<td>1</td>
<td>ON</td>
</tr>
<tr>
<td>0</td>
<td>OFF</td>
</tr>
<tr>
<td>1</td>
<td>OFF</td>
</tr>
</tbody>
</table>
4.4 GRAPHICS PATTERNS

If switch S1-1 (GRAPH) is on and the byte you are writing into the VB1C has the most significant bit (bit D7) set to a one, the display will show a graphics pattern. The lower 6 bits of each byte will display as a 2 x 3 matrix on the video display.

<table>
<thead>
<tr>
<th>LOWER SIX BITS</th>
<th>INTENSITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>white</td>
</tr>
<tr>
<td>1</td>
<td>black</td>
</tr>
</tbody>
</table>

The data bits are displayed in the following manner:

<table>
<thead>
<tr>
<th>DATA BIT</th>
<th>POSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0</td>
<td>Upper left</td>
</tr>
<tr>
<td>D1</td>
<td>Middle left</td>
</tr>
<tr>
<td>D2</td>
<td>Lower left</td>
</tr>
<tr>
<td>D3</td>
<td>Upper right</td>
</tr>
<tr>
<td>D4</td>
<td>Middle right</td>
</tr>
<tr>
<td>D5</td>
<td>Lower right</td>
</tr>
</tbody>
</table>

4.5 BLANKING/MSB CONTROL

The VB1C has a 3-pin header used to control the default value of the most significant bit of data read into the video display during a blanking operation. During reading or writing to the VB1C, the address lines of the on-board memory are logically tied to the S-100 bus and not to the video timing. The MSB of data during reading or writing may differ from that which would have been displayed under normal video control, so the screen will "sparkle" with periodic differences between old and new characters. The MSB can be forced to a zero value during reading and writing to give a more consistent state, rather than random, by using the 3-pin header.

- Connect E1 to E2 if you want random.
- Connect E2 to E3 if you want the MSB=0 (recommended for most applications.)
5.0 THEORY OF OPERATION

5.1 GENERAL INFORMATION

The V81C video interface is essentially a computer memory combined with an interface circuit that connects the memory to a video monitor. The memory data may be displayed in either alphanumeric form using the internal character generator, or in a direct form (graphics). Characters may be presented either white-on-black or black-on-white, if the graphics mode is not selected. Mixing characters and graphics is also possible.

The 66714 character generator can display 128 different characters. Other generators with different character sets are also available from Motorola (and from SSM on special volume orders).

Sixteen lines of characters are produced and either 32 or 64 characters per line may be selected. Total memory consists of eight 1024-bit RAMs. Ten of the computer's memory address lines are connected to these RAMs through decoders, allowing the computer to selectively address each display position. The computer's remaining 6 address lines are used to set the starting address of the board within the entire memory space, as determined by DIP switch S1.

5.2 SYNC GENERATION

Figure 3 shows the 12.44 MHz crystal oscillator feeding two counters, U31 and U32. Counter U31 divides the 12.44 MHz signal by 8 and passes the resulting 1.5375 MHz signal to U32 for further division by 16. The DOT CLOCK is a square wave timing signal used in shifting out video. The LOAD signal is a pulse occurring once every 8 DOT CLOCKS. Both the DOT CLOCK and the LOAD signal are selected for either 32 or 64 characters-per-line operation. If the '32/64' switch is 'OPEN', the 6.22 MHz from U31 is selected to be the DOT CLOCK. If the '32/64' switch is 'CLOSED', 12.44 MHz from the oscillator is selected. For the LOAD signal, '32/64' switch 'OPEN' (32 characters) selects a 777.5 KHz signal, and '32/64' switch 'CLOSED' (64 characters) selects a +5V level. The LOAD signal is modified by the 1.550 MHz pulse signal from the output of U10 pin 10, to become a series of narrow pulses at either 777.5 KHz (32 characters) or 1.5550 MHz (64 characters).

The 97.2 KHz carry signal from U32 pin 7 is the input for the horizontal timing circuit shown in Figure 4. Both U11 and U20 are used to divide the 97.2 KHz from U32 by 6 to give a horizontal blanking signal at 16.2 KHz. U13 generates a delayed horizontal sync pulse from U21 pin 3, but only during horizontal blanking. U20 develops the horizontal drive signal. Waveforms are shown as aids to troubleshooting in Figures 3 thru 5.

In Figure 5, the BIT SELECTOR CLOCK (16.2 KHz) goes to the bit select counter U29. The outputs from U29 give the row select address for the character generator. When address 11102 is reached, U29 is loaded with 00002 on the next clock pulse to start a new cycle. The load signal is a negative pulse at 1079.9 Hz which is sent to U12 and vertical line counter U33. In addition to 4 bits of the RAM address, U33 puts out negative pulses at 60 Hz on CY. U12 derives negative pulses at 60 Hz for both VERT
FIGURE 3

U19, PIN 4 6.22 MHz
U31, PIN 15 1.505 MHz (+2)
U32, PIN 3 777.5 MHz (+16)

LOAD: SW 64 32 OPEN 777.5 kHz
LOAD: SW 64 32 CLOSED 1.555 MHz

FIGURE 4

U32, PIN 7 (97.2 kHz)
U32, PIN 2 (388.7 kHz)
U32, PIN 5 (388.7 kHz)

U32, CARRY
U11, PIN 6
U21, PIN 3
U13, PIN 5
U15, PIN 5

HORZ. sync
BIT SELECTOR CLOCK B
HORZ. DRIVE
HORZ. BLANK
HORZ. BLANK
HORZ. BLANK
DRIVE (1 ms pulse width) and VERT BLANK (2 ms pulse width). VERT BLANK and HORIZ BLANK are combined by an AND gate to give a composite BLANKING signal. The other 6 bits of RAM address come from counters U14 and U22 which are reset by HORIZ BLANK. U22's clock is the LOAD signal from Figure 3.

5.3 ADDRESSING

The eight 1024-bit RAMs are addressed by the computer using address lines A0 thru A9. Address lines A10 thru A15 form a prefix to specify the board's address. This 6 bit prefix is set by switch 61 positions 3 thru 8; U42 compares the address sent by the computer with the setting of the switch. If the address matches, U42 pin 9 (SELECT) goes low, which actuates the 10 address gates (A0 thru A9), the output gates (D10 thru D17), and the write gate U17. When the SELECT signal is low, it also turns off the output gates of counters U14, U22, and U33. With the VBLC memory logically tied to the S-100 bus, the computer can store the data in the video board memory to be displayed. When the address from the computer is no longer valid, the SELECT line goes high and the memory is isolated again.
5.4 **PICTURE FORMATION**

When in the normal character display mode, the VBLC memory is continually addressed by counters U14, U22, and U33. The memory makes available an 8-bit data word for each location addressed. Only 7 bits go into the character generator to specify a character, or into the multiplexers U5 and U15 for graphics output. The output of the character generator and the output of the graphics multiplexers are sent into two data selectors, U6 and U7. If the GRAPHICS signal is low, U6 and U7 pass the graphics data from U5 and U15. If GRAPHICS is high, U6 and U7 pass the output of the character generator. In either case, the output of U6 and U7 is loaded into parallel-in/serial-out shift register U8. The data is then shifted out to the display monitor. The eighth bit (D7) of VBLC memory is a control bit whose function is determined by the VID REV/GRAPHICS switch (S1-1). When the switch is OPEN, GRAPHICS is high and the output of the character generator goes into parallel-in/serial-out shift register U8. Data bit D7 turns the video reverse on or off by setting U13. This controls the VIDEO REVERSE signal through U2. When VIDEO REVERSE is high, U4 inverts the output which produces a reversed video effect on the monitor.

If the VID REV/GRAPHICS switch is CLOSED, the VIDEO REVERSE signal is low, allowing the output of U8 to pass with no inversion.

Data bit D7 directly controls the GRAPHICS signal. If GRAPHICS is high, the character generator output is selected; if GRAPHICS is low, the graphics data is selected.

5.5 **POWER SUPPLIES**

A single +5 volt supply is used to operate the VBLC. The standard S-100 voltage of +8V to +10V is regulated by two 7805 regulators to provide the proper voltage on the board. R21 and R22 are power resistors used to keep the power dissipation low in the regulators. The typical current drain is 1.3A.

5.6 **BLANKING**

Blanking is performed on the VBLC during every CPU read or write operation to the video board's address. U4 pin 11 goes to a logic one each time the VBLC is addressed. U4 pin 11 is buffered by one inverter, U10 pins 12 and 13, to drive an RC timer formed by R24 and C17. The inverter U10 pin 12 provides a blanking signal, with R24 and C17 providing a turn-off delay for increased blanking time.

Blanking is used on the VBLC by forcing the video display to black during CPU accesses. The shift register U8 is cleared (set to black video) during blanking. C17 is discharged and U13 will be set if jumper E2 to E3 (see Section 4.5) has been installed. When the blanking signal is removed (U10 pin 12 goes high), C17 slowly charges to a logic one level and maintains a clear to U8 for an additional time period.
6.0 SOFTWARE

The following 4 programs are provided for use with the VBLIC:

1. Video Board Driver
2. Video Board Driver Demonstration Routine
3. Graphics Interface Subroutines
4. Doodle Graphics Demonstration

NOTES:

a. All 4 programs assume the VBLC is addressed at E000-E3FF. This may be changed by altering the value to which 'VID' is EQUated.

b. All programs are written in 8080 assembly language and are executable on a Z-80, 8085, and the 8080.

Two other programs are provided for initial checkout of the VBLC:

1. Video Test Routine
2. Memory Test Routine

NOTE: These two programs assume that the VBLC is addressed at E000-E3FF. In the Video Test Routine this may be changed by altering the value to which 'VID' is EQUated. In the Memory Test program, 'START' specifies the beginning of VBLC memory and 'MEND' specifies the end.

6.1 VIDEO BOARD DRIVER

This is a complete driver routine for the VBLC, including cursor control, clear screen, carriage return, line feed, and cursor addressing.

The driver may be located in ROM or RAM, but three bytes pointed to by VDPRTR and VDHLD must be in RAM. Characters to be output are expected in the C register.
; VIDEO BOARD DRIVER

; This subroutine facilitates the use
; of the SSM VBIC and a video display
; as a console output device.

; ASCII characters presented to the
; subroutine in the C register are
; displayed on the screen. Certain
; characters, listed below, receive
; special treatment. All registers
; are preserved by this subroutine.

; LOC is the beginning address of the
; subroutine. It may be in RAM or ROM.

3F00 = LOC EQU 3F00H

; VID is the beginning address assigned
; to the display RAM located on the VBIC
; board.

E000 = VID EQU 0E000H

; Three bytes of RAM are required for
; housekeeping. These bytes must be
; in an area unused by other programs.

3FF8 = VDPtr EQU 3FF8H ;Cursor pointer
3FFA = VDHLD EQU VDPtr+2 ;Character hold

; Non-displayable characters

001A = CS EQU 1AH ;Control Z
000E = NL EQU 0EH ;Clear screen, home cursor
000D = CR EQU 0DH ;Down one line, clear line
;Carriage return
;Move cursor to the left margin

; Optional cursor control characters

000B = UP EQU 0BH ;Control K
000A = DN EQU 0AH ;Control J
000C = FW EQU 0CH ;Control L
0008 = BK EQU 08H ;Control H
001E = HM EQU 18H ;Control ^
; NORMAL ENTRY POINT

3F00 ORG LOC

3F00 E5 VDITY: PUSH HL ; Save HL
3F01 21F83F LXI H,VDPTR ; Address of cursor pointer

; ALTERNATE ENTRY POINT
; This entry point may be used if
; the cursor pointer and character
; hold are at locations other than
; those specified on this listing.
; The user must supply subroutine
; entry code as follows:

; ENTR: PUSH H ; Save HL
; LXI H,PWIR ; Address of cursor pointer
; JMP ALTVD ; Join this code

3F04 D5 ALTVD: PUSH D ; Save DE
3F05 C5 PUSH B ; Save BC
3F06 F5 PUSH PSW ; Save AF
3F07 5E MOV E,M ; LPTR
3F08 23 INX H
3F09 7E MOV A,M ; HPTR
3F0A E603 ANI 3 ; Convert to video
3F0C C6B0 ADI VID SHR 8 ; RAM address
3F0E 57 MOV D,A
3F0F 23 INX H
3F10 46 MOV B,M ; Character under cursor
3F11 EB XCHG ; Pointer to HL
3F12 7C MOV M,B ; Restore previous character

; Identify input character

3F13 79 MOV A,C ; New character
3F14 FE1A CPI CS
3F16 CA763F JZ VIDFF ; Form feed
3F19 FE0D CPI CR
3F1B CA843F JZ VIDCR ; Carriage return
3F1E FE0E CPI NL
3F20 CA883F JZ VIDLF ; Line feed

; The following instructions
; (marked YYYYY) may be removed
; if cursor control is not
; required.

3F23 FE0B CPI UP ; YYYYY
3F25 CADE3F JZ CHUP ; YYYYY
3F28 FE0A CPI DN ; YYYYY
3F2A CAE43F JZ CRDN ; YYYYY
3F2D FE0C CPI FW ;YYYY
3F2F CA4C3F JZ CRTT ;YYYY
3F32 FE08 CPI BK ;YYYY
3F34 CAEA3F JZ CRTL ;YYYY
3F37 FE1E CPI HM ;YYYY
3F39 CAF03F JZ CRHM ;YYYY

; Displayable Characters

; The following instructions
; (marked XXXX) may be removed
; if sense switches are not
; to be used.

; Check for end of line

3F3C 7D MOV A,L ;XXXX
3F3D 63F ANI 3FH ;XXXX
3F3F FE3F CPI 3FH ;XXXX
3F41 C2AB3F JNZ VIDB0 ;XXXX

; Ignore character if end of line
; and sense switch 2 equals a one

3F44 DBFF IN 0FFH ;XXXX
3F46 E602 ANI 2 ;XXXX
3F48 CA623F JZ VIDRT ;XXXX
3F4B 71 VIDB0: MOV M,C
3F4C 010100 CRRT: LXI B,C

; Adjust cursor pointer

3F4F 09 CRADJ: DAD B

; Check for overflow

3F50 7C MOV A,H
3F51 FEE4 CPI (VID+1024) SHR 8
3F52 C2623F JNZ VIDRT
3F56 2EB3 MVI H,(VID+960) SHR 8
3F58 7D MOV A,L
3F59 F6C0 ORI 0COH
3F5B 6F MOV L,A
3F5C CDB53F CALL ROLLO
3F5F C3683F JMP VIDRL

; Common exit code
; Normalize cursor pointer

3F62 7C VIDRT: MOV A,H
3F63 B603 ANI 3
3F65 C6E0 ADI VID SHR 8
3F67 67
3F68 7E
3F69 367F
3F6B 2B
3F6C 77
3F6D 2B
3F6E 72
3F6F 2B
3F70 73

VIDRL:
MOV H,A
MOV A,M ;Character under cursor
MVI M,7FH ;Cursor
XCHG ;Pointer to DE
MOV M,A ;Character under cursor
DCX H ;H pointer
DCX H
MOV M,E ;L pointer

; Restore registers and exit

3F71 F1
3F72 C1
3F73 D1
3F74 E1
3F75 C9

; Process form feed
; Fill screen with spaces
; Move cursor to top left

3F76 2100B0
3F79 E5
3F7A 3620
3F7C 23
3F7D 7C
3F7E FEE4
3F80 F7A3F
3F83 E1

VIDFF: LXI H,VID
PUSH H
VIDFC: MVI M, ' '
INX H
MOV A,H
CPI (VID+1024) SHR 8
JM VIDFC
PUSH H

; Process carriage return
; Move cursor to the beginning
; of the line

3F84 7D
3F85 D6C0
3F87 6F
3F88 C3623F

VIDCR: MOV A,L
ANI 0COH
MOV L,A
JMP VIDRT

; Process line feed
; Move cursor down one line,
; Fill new line with spaces

3F8B D5
3F8C 114000
3F8F 19
3F90 7C
3F91 FEE4
3F93 C20C3F

VIDLF: PUSH D
LXI D,64
DAD D
MOV A,H
CPI (VID + 1024) SHR 8
JNZ VIDLF3
; Delay before wrapping
; around screen

3F96 E5
3F97 210080
3FA 2B
3F9B 7C
3F9C B5
3F9D C29A3F
3FA0 E1

; PUSH H
LXI H,8000H
DCX H
MOV A,H
ORA L
JNZ VDLFL1
POP H

; The following instruction
; (marked XXXX) may be removed
; if sense switches are not
; to be used

3FA1 DBFF
3FA3 E601
3FA5 CAA13F

; IN OPFH ;XXXX
; ANI 1 ;XXXX
; JZ VDLFL2 ;XXXX

; Roll the whole display up one
; line

3FA8 CDB53F
3FAB 7D
3FAC F6C0
3FAE 6F
3FAF 26E3
3FB1 D1
3FB2 C3623F

; CALL ROLL0
MOV A,L
ORI OCOH
MOV L,A
MVI H,(VID+960) SHR 8
POP D
JMP VIDRT

; Roll subroutine

3FB5 D5
3FB6 E5
3FB7 11000E0
3FBA 2140E0
3FBF 7E
3FBE 12
3FBB 3620
3FC1 13
3FC2 23
3FC3 7C
3FC4 FEE4
3FC6 C2BD3F
3FC9 E1
3FCA D1
3FCB C9

; PUSH D
PUSH H
LXI D,VID
LXI H,VID+64
MOV A,M
STAX D
MVI M,20H
INX D
INX H
MOV A,H
CPI (VID+1024) SHR 8
JNZ ROLL1
POP H
POP D
3FCC E5 3FCD 7D 3FCE E6C0 3FDO 6F 3FD0 3620 3FD1 3620 3FD3 23 3FD4 7D 3FD5 1D 3FD6 C2D13F 3FD9 E1 3FDA D1 3FDB C3623F

VDLF3: PUSH H
MOV A,L
ANI 0CCH
MOV L,A

VDLF4: MVI M0
INX H
MOV A,L
DCR E
JNZ VDLF4
PUSH H
PUSH D
JMP VIDRT

; The following instructions, along with those marked YYYY above, may be removed if cursor control is not required.

; Cursor control processing

3FDE 01C0FF 3FE1 C34F3F 3FE4 014000 3FE7 C34F3F 3FEA 01FFF 3FED C34F3F 3FF0 210000 3FF3 C3623F

CRUP: LXI B,-64 ;YYYY
JMP CRADJ ;YYYY
CRDN: LXI B,64 ;YYYY
JMP CRADJ ;YYYY
CRLT: LXI B,-1 ;YYYY
JMP CRADJ ;YYYY
CRIM: LXI H,0 ;YYYY
JMP VIDRT ;YYYY

3FP6 END
6.2 VIDEO BOARD DRIVER DEMONSTRATION ROUTINE

This routine in conjunction with the Video Board Driver can be used to create a "glass teletype".

NOTES:

a. The console assignments are defined in the following manner:

<table>
<thead>
<tr>
<th>Port</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status Port</td>
<td>00H</td>
</tr>
<tr>
<td>Data Port</td>
<td>01H</td>
</tr>
<tr>
<td>Data Available Bit</td>
<td>01H</td>
</tr>
</tbody>
</table>

b. The routine must be located in RAM.

; VIDTY DEMONSTRATION ROUTINE

; LOC is the beginning address of the
; routine. It must be in RAM.
3E00 = LOC EQU 3E00H

; VID is the beginning address assigned
; to the display RAM located on the VBI C
; board.
E000 = VID EQU 0E000H

; VIDTY is the video driver
; routine.
3F00 = VIDTY EQU 3F00H
3E00 = STACK EQU 3E00H

; Non-displayable characters
001B = INV EQU 1BH ; Escape
001A = CS EQU 1AH ; Control Z
000E = NL EQU 0EH ; Control N
000D = CR EQU 0DH ; Carriage return
000B = UP EQU 0BH ; Control K
000A = DN EQU 0AH ; Control J
000C = FW EQU 0CH ; Control L
0008 = BK EQU 08H ; Control H
001E = HM EQU 1EH ; Control ^

; Console Assignments
0000 = CSTAT EQU 00H ;Console status port
0001 = CDATA EQU 01H ;Console data port
0001 = DAV EQU 01H ;Data available bit

3E00 ORG LOC

3E00 31003E ;Demo: LXI SP, STACK
3E03 CD4C3E ;call CI
3E06 E67F ;ANI 7FH
3E08 4F ;MOV C, A
3E09 FE1A ;CPI CS
3E0B CA453E ;JZ DISPL
3E0E FE0D ;CPI CR
3E10 CA453E ;JZ DISPL
3E13 FE0E ;CPI NL
3E15 CA453E ;JZ DISPL
3E18 FE0B ;CPI UP
3E1A CA453E ;JZ DISPL

3E1D FE0A ;CPI DN
3E1F CA453E ;JZ DISPL
3E22 FE0C ;CPI FW
3E24 CA453E ;JZ DISPL
3E27 FE08 ;CPI BK
3E29 CA453E ;JZ DISPL
3E2C FE1E ;CPI HM
3E2E CA453E ;JZ DISPL
3E31 FE1B ;CPI INV
3E33 3A4B3E ;LDA BIT8
3E36 C2433E ;JNZ DISPL
3E39 E680 ;ANI 80H
3E3B EE80 ;XRI 80H
3E3D 324B3E ;STA BIT8
3E40 C3033E ;JMP DL
3E43 Bl ;DISPL: ORA C
3E44 4F ;MOV C, A
3E45 CD003F ;DISPL: CALL VDTTY ;Call video board driver
3E48 C3033E ;JMP DL
3E4B 00 ;BIT8: DB 0

; Console input subroutine

3E4C DB00 ;C: IN CSTAT ;Input from status port
3E4E E601 ;ANI DAV ;Test for data available
3E50 C24C3E ;JNZ CI
3E53 DB01 ;IN CDATA ;Input data
3E55 C9 ;RET
3E56 END
6.3 **GRAPHICS INTERFACE SUBROUTINE**

The following graphics program will allow you to utilize the VBI C as a 128 x 48 graphics board.

NOTES:

a. Coordinate 0,0 is in the lower left corner of the display. This is in accordance with an X-Y graph.

b. The routine may be located in ROM or RAM.

```plaintext
; GRAPHICS INTERFACE SUBROUTINES

; These subroutines facilitate the use of the SSM VBI C board and a video display as a graphics display device.

; These subroutines treat the display screen as a matrix of dots, 48 dots high by 128 dots wide. Each dot is specified in terms of its vertical coordinate (0-47) and its horizontal coordinate (0-127). Dot 0,0 is at the lower left corner of the screen.

; For best results, the display memory should be initialized to 'FF' hex prior to attempting graphics output.

ENTRY CONDITIONS:

H = VERTICAL COORDINATE
L = HORIZONTAL COORDINATE

EXIT CONDITIONS

A = DIFFERS BY SUBROUTINE
B = PRESERVED
C = BIT MASK FOR SPECIFIED DOT
D = MEMORY ADDRESS OF DOT
H = VERTICAL COORDINATE
L = HORIZONTAL COORDINATE

H and L are converted (if necessary) MODULO 48 and 128 respectively.
```
LOC is the beginning address of these subroutines. It may be in RAM or ROM.

3E80 = LOC EQU 3E80H

VID is the beginning address assigned to the display RAM located on the VELC board.

B000 = VID EQU 0E000H

3E80 ORG LOC

The check subroutine sets the zero flag to indicate whether the specified dot is white or black. If the dot is currently, white the zero flag is set on; if the dot is black, the flag is set off. The A register contains zero if the dot is white, and contains the bit mask if it is black.

3E80 CD9A3E CHECK CALL CNVRT
3E83 A1 ANA C
3E84 C9 RET

The white subroutine sets the specified dot white. Register A contains the new contents of the memory location.

3E85 CD9A3E WHITE: CALL CNVRT ;Convert
3E88 B6BF ANI 0BFH ;Clear unused bit
3E8A F680 ORI 80H ;Set graphics bit
3E8C B1 ORA C ;Set this dot
3E8D A9 XRA C ;Clear this dot
3E8E 12 STAX D ;Update byte
3E8F C9 RET

The black subroutine sets the specified dot black. Register A contains the new contents of the memory location.

3E90 CD9A3E BLACK: CALL CNVRT ;Convert
3E93 B6BF ANI 0BFH ;Clear unused bit
3E95 F680 ORI 80H ;Set graphics bit
3E97 B1 ORA C ;Set this dot
3E98 12 STAX D ;Update byte
3E99 C9 RET

6-11
; The CNVRT subroutine performs
; the coordinate to address-bit
; mask conversion. Register A contains
; the current contents of the memory
; location.

3E9A C5 CNVRT: PUSH B

; Normalize the coordinates

3E9B 7D MOV A_L
3E9C E67F ANI 7FH
3E9E 6F MOV L_A
3E9F 7C MOV A_H
3EA0 D630 Dl: SUI 48
3EA2 F2A3EJP Dl

3EA5 C630 D2: ADI 48
3EA7 FA53E JM D2
3EAA 67 MOV H_A
3EAB E5 PUSH H

; Convert coordinates to address
; in DE

3EAC 44 MOV B_H
3EAD 4D MOV C_L
3EAE 5C MOV E_H
3EAF 1600 MVI D_0
3EB1 210100 LXI H_1
3EB4 19 DAD D
3EB5 29 DAD H
3EB6 29 DAD H
3EB7 19 DAD D
3EB8 29 DAD H
3EB9 29 DAD H
3EBA 19 DAD D
3EBB 54 MOV D_H
3EBC 7D MOV A_L
3EBD E6C0 ANI OCOH
3EBF 5F MOV E_A
3EC0 19 DAD D
3EC1 19 DAD D
3EC2 29 DAD H
3EC3 29 DAD H
3EC4 78 MOV A_B
3EC5 94 SUB H
3EC6 47 MOV B_A
3EC7 3EC0 MVI A_(VID+960) AND OFFH
3EC9 93 SUB E
3ECA 5F MOV E_A
3ECB 3EE3 MVI A_(VID+960) SHR 8
38CD 9A SBB D
38CE 57 MOV D,A
38CF 79 MOV A,C
38D0 1F RAR
38D1 B3 ORA E
38D2 5F MOV E,A

; GENERATE BIT MASK

38D3 79 MOV A,C
38D4 1F RAR
38D5 78 MOV A,B
38D6 17 RAL
38D7 4F MOV C,A
38D8 0600 MVI B,0
38DA 21E43E LXI H,DTAB
38DD 09 DAD B

38DE 7E MOV A,M

; PREPARE FOR EXIT

38DF E1 POP H
38E0 C1 POP B
38E1 4F MOV C,A
38E2 1A LDX D
38E3 C9 RET

38E4 04 DTAB: DB 04H
38E5 20 DB 20H
38E6 02 DB 02H
38E7 10 DB 10H
38E8 01 DB 01H
38E9 08 DB 08H
38EA END

6-13
6.4 DOODLE GRAPHICS DEMONSTRATION

This routine, when used in conjunction with the graphics interface subroutine, will provide the user with an electronic drawing board.

NOTES:

a. The Graphics Interface Subroutine must be present beginning at location 3E80H. This may be changed by altering the values to which 'CHECK', 'WHITE', and 'BLACK' are EQUated.

b. The console assignments are defined in the following manner:

Status Port: 00H
Data Port: 01H
Data Available Bit: 01H
; DOODLE (GRAPHICS DEMO)

E000 = VID EQU 0E000H ;Address of VBlC
3E00 = STACK EQU 3E00H ;Set stack
3E80 = CHECK EQU 3E80H ;Black/white check routine
3EB5 = WHITE EQU 3EB5H ;Routine to set dot white
3E90 = BLACK EQU 3E90H ;Routine to set dot black

; Console Assignments

0000 = CSTAT EQU 00H ;Console status port
0001 = CDATA EQU 01H ;Console data port
0001 = DAV EQU 01H ;Data available bit

3D00 ORG 3D00H
3D00 31003E DOODL: LXI SP,STACK

; Clear video screen

3D03 2100E0 LXI H,VID
3D06 36BF D0: MVI M,0BFH
3D08 23 INX H
3D09 7C MOV A,H
3D0A FEE4 CPI (VID+1024) SHR 8
3D0C C2063D JNZ D0
3D0F C3153D JMP D2

3D12 22CD3D D1: SHLD CURS
3D15 2ACD3D D2: LHLD CURS
3D18 CD803E CALL CHECK
3D1B 1A LDAX D
3D1C F680 ORI 80H
3D1E 32CF3D D3: STA OLD

; Flash cursor

3D21 3ACF3D D4: LDA OLD
3D24 A9 XRA C
3D25 12 STAX D
3D26 0610 MVI B,10H
3D28 CD83D CALL WAIT
3D2B C23A3D JNZ D5 ;Exit if keyboard typed
3D2E 3ACF3D LDA OLD
3D31 12 STAX D
3D32 0620 MVI B,20H
3D34 CD83D CALL WAIT
3D37 CA213D JZ D4

3D3A 3ACF3D D5: LDA OLD
3D3D 12 STAX D
3D3E CDD03D CALL CI ;Get ASCII character
3D40 FE42 CPI 'B' ;Black?
3D43 CA743D JZ BLK
3D46 FE57 CPI 'W' ;White?
3D48 CA7A3D JZ WHT

6-15
3D48 FE53 CPI 'S' ;Save command?
3D4D CA803D JZ SAVE
3D50 FE47 CPI 'G' ;Get command?
3D52 CA863D JZ GET
3D55 2C INR L
3D56 FE52 CPI 'R' ;Move right?
3D58 CA123D JZ D1
3D5B 2D DCR L
3D5C 2D DCR L
3D5D FE4C CPI 'L' ;Move left?
3D5F CA123D JZ D1
3D62 2C INR L
3D63 24 INR H
3D64 FE55 CPI 'U' ;Move up?
3D66 CA123D JZ D1
3D69 25 DCR H
3D6A 25 DCR H
3D6B FE44 CPI 'D' ;Move down?
3D6D CA123D JZ D1
3D70 24 INR H
3D71 C3153D JMP D2
3D74 CD903E BLK: CALL BLACK
3D77 C3153D JMP D2
3D7A CD853E WHT: CALL WHITE
3D7D C3153D JMP D2
3D80 CD903D SAVE: CALL NUM
3D83 C38A3D JMP SG
3D86 CD903D GET: CALL NUM
3D89 EB Xchg
3D8A CDAA3D SG: CALL MOVE
3D8D C3153D JMP D2

; Get a number between
; 0 & 9
3D90 CD003D NUM: CALL CI
3D93 D630 SUI '0'
3D95 FA903D JM NUM
3D98 FE0A CPI 10
3D9A F2903D JP NUM
3D9D 67 MOV H,A
3D9E 2E00 MVI L,0
3DA0 29 DAD H
3DA1 29 DAD H
3DA2 110004 LXI D,STORE
3DA5 19 DAD D
3DA6 1100ED LXI D,VID
3DA9 C9 RET
3DA 0604 MOVE: MVI B,4
3DA 1A MV1: LDAX D
3DA D6BF ANI 0BFH
3DA F77 MOV M,A
3DB 0 13 INX D
3DB 1 2C INR L
3DB 2 C2AC3D JNZ MV1
3DB 5 24 INR H
3DB 6 05 DCR B
3DB 7 C2AC3D JNZ MV1
3DB A C9 RET

; Check keyboard & delay
3DB C5 WAIT: PUSH B
3DB C3DC3D WI: CALL CSTS
3DB F7 ORA A
3DB C 2CB3D JNZ W2
3DB 0D DCR C
3DB 4 C2BC3D JNZ W1
3DB 05 DCR B
3DB 8 C2BC3D JNZ W1
3DB C1 W2: POP B
3DB C9 RET

3DC D000 CURS: DW 0
3DC 00 OLD: DB 0

; CONSOLE INPUT SUBROUTINE
3DD DB00 CI: IN CSTAT ;Check status
3DE E601 ANI DAV ;Is data available?
3DF C2D03D JNZ CI
3DD DB01 IN CDATA ;Get character
3DD 67F ANI 7FH ;Strip parity
3DB C9 RET

; CONSOLE STATUS SUBROUTINE
3DD DB00 CSTS: IN CSTAT ;Check status
3DE E601 ANI DAV ;Is data available?
3DE 601 SUI 1
3DE 9F SBB A ;Set flag
3DE C9 RET

0400 ORG 1024

0400 STORE: DS 10240 ;Space for ten
;graphics pictures
;1024 bytes each

2C00 END
6.5 VIDEO TEST ROUTINE

The following is a short program to display the character set plus the 64 different graphic characters available on the VBI.

; This simple program was designed to display
; the output of the SSM VBI video interface
; board.

; Written by David Bruce Maerkze

; The upper half of the display shows the 64
; unique graphic characters while the lower
; half displays the ASCII character set.

; NOTE: To select graphics mode the graphics
; position of the dip switch, S1, must be
; closed and data bit D7 set to a one.

EO00 = VID EQU 0E000H ;Video RAM address

0100 ORG 100H ;Starting address of routine

0100 210000 LXI H,VID
0103 3EF0 MVI A,0FH
0105 06FF MVI B,0FFH
0107 7C LOOP1: CMP H
0108 C1001 JZ PROG
010B 70 MOV M,B
010C 23 INX H
010D C3701 JMP LOOP1
0110 210000 PROG: LXI H,VID
0113 0E09 MVI C,09H
0115 3E0F MVI A,0FH
0117 140000 LOOP2: LXI D,40H
011A 19 DAD D
011B 0D DCR C
011C C1C01 STUCK: JZ STUCK
011F 77 LOOP3: MOV M,A
0120 23 INX H
0121 23 INX H
0122 3D DCR A
0123 1D DCR E
0124 1D DCR E
0125 C1701 JZ LOOP2
0128 C3F01 JMP LOOP3
012B END
6.6 MEMORY TEST ROUTINE

The following memory test program performs a rotating bit test. If memory is good, location 'GORB' will contain a 00H. If memory fails, 'GORB' will contain the pattern that failed.

Location 'LAST' will be equal to 'MEND' if memory passes without an error. If memory fails, it will be equal to the address last tested.
Simple Memory Test

Written by Andrew Schneider
Modified by Malcolm Wright
Copyright 1977 by SSM

Set "START" to the starting address of memory to be tested. Set "MEND" to the last address of memory to be checked.

The program will stop (HALT) when complete or if an error was found. "GORB" (good or bad) will be set to 00H for good memory or to the byte pattern that would not read or write correctly into memory. "LAST" is the location where the last address tested will be saved. If memory is good, then LAST=MEND.

0100 = BEGIN EQU 0100H ;Start of program
0E00 = START EQU 0E000H ;Beginning address
E3FF = MEND EQU 0E3FFH ;Ending address

0100
ORG BEGIN
0100 2100B0 LXI H,START
0103 11FFE3 LXI D,MEND
0106 2B DCX H
0107 23 LOOP: INX H
0108 3E7F MVI A,7FH
010A 07 CHECK: RLC
010B 77 MOV M,A
010C BE CMP M
010D C2001 JNZ ERROR
0110 B7 ORA A
0111 FA0A1 JM CHECK
0114 7B MOV A,E
0115 BD CMP L
0116 C20701 JNZ LOOP
0119 7A MOV A,D
011A BC CMP H
011B C20701 JNZ LOOP
011E 3E00 MVI A,0
0120 322701 ERROR: STA GORB ;If using an IMSAI front panel
 ;replace with CMA
 ;OUT 0FFH
 ;to display byte on front panel.
0123 222801 SHLD LAST
0126 76 HLT
0127 00 GORB: DB 0
0128 0000 LAST: DW 0
012A END
7.0 **TROUBLESHOOTING HINTS**

1. Check for proper settings of the DIP switch.

2. Verify that all IC's are in the correct sockets.

3. Visually inspect all IC's to be sure that all leads are in the sockets. Be sure that the lead isn't under the IC or bent out from the socket.

4. Verify that the output voltage of each regulator is correct.

5. Inspect the back side of the board for solder bridges. If a trace looks suspicious, run a knife blade between the two traces.

6. If you have an addressing problem:
 a. Check U42 (8131) for addresses A10 thru A15.
 b. Check the inputs and outputs of address buffers U23, U35, and U40 for shorts as well as proper operation.

7. If you have problems with data output (consistent missing bits):
 a. Check inputs and outputs of buffers U28, U40, and U41 for shorts as well as proper operation.
 b. Check memory chips U24 thru U27, and U36 thru U39.

8. If you have a problem with horizontal sync:

9. If you have a problem with vertical sync:
 a. Check signals on U12, U33, U29, and U17.
8.0 WARRANTY

SSM warrants its products to be free from defects in materials and/or workmanship for a period of ninety (90) days for kits and bare boards and one (1) year for factory assembled boards. In the event of malfunction or other indication of failure attributable directly to faulty workmanship and/or material, then, upon return of the product (postage paid) to SSM at 2190 Paragon Drive, San Jose, California 95131, "Attention: Warranty Claims Department", SSM will, at its option, repair or replace the defective part or parts to restore said product to proper operating condition. All such repairs and/or replacements shall be rendered by SSM without charge for parts or labor when the product is returned within the specified period of the date of purchase. This warranty applies only to the original purchaser.

This warranty will not cover the failure of SSM products which at the discretion of SSM shall have resulted from accident, abuse, negligence, alteration, or misapplication of the product. While every effort has been made to provide clear and accurate technical information on the application of SSM products, SSM assumes no liability in any events which may arise from the use of said technical information.

This warranty is in lieu of all other warranties, expressed or implied, including warranties of merchantability and fitness for use. In no event will SSM be liable for incidental and consequential damages arising from or in any way connected with the use of its products. Some states do not allow the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you.

IMPORTANT: Proof of purchase is necessary for products returned for repair under warranty. Before returning any product, please call our Customer Service Department for a return authorization number.
PARTS LIST

CHIP PACK

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>U17</td>
<td>74LS00</td>
</tr>
<tr>
<td>1</td>
<td>U10</td>
<td>74S04</td>
</tr>
<tr>
<td>1</td>
<td>U21</td>
<td>7408</td>
</tr>
<tr>
<td>1</td>
<td>U18</td>
<td>7432</td>
</tr>
<tr>
<td>4</td>
<td>U11,12,13,20</td>
<td>7474</td>
</tr>
<tr>
<td>1</td>
<td>U4</td>
<td>7486</td>
</tr>
<tr>
<td>2</td>
<td>U5,15</td>
<td>74150</td>
</tr>
<tr>
<td>1</td>
<td>U19</td>
<td>74153</td>
</tr>
<tr>
<td>2</td>
<td>U6,7</td>
<td>74157</td>
</tr>
<tr>
<td>1</td>
<td>U8</td>
<td>74166</td>
</tr>
<tr>
<td>4</td>
<td>U14,22,32,33</td>
<td>74LS193</td>
</tr>
<tr>
<td>2</td>
<td>U29,31</td>
<td>74161</td>
</tr>
<tr>
<td>6</td>
<td>U23,28,34,35,40,41</td>
<td>743677</td>
</tr>
<tr>
<td>3</td>
<td>U1,2,3</td>
<td>75451</td>
</tr>
<tr>
<td>1</td>
<td>U42</td>
<td>8131</td>
</tr>
<tr>
<td>1</td>
<td>S1</td>
<td>8 position DIP switch</td>
</tr>
</tbody>
</table>

MEMORY PACK

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>U16</td>
<td>66714</td>
</tr>
<tr>
<td>8</td>
<td>U24-27,36-39</td>
<td>21L02-2</td>
</tr>
</tbody>
</table>

RESISTOR PACK

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>R21,22</td>
<td>15 ohm 3W</td>
</tr>
<tr>
<td>6</td>
<td>R1,2,5,6,7,8</td>
<td>100 ohm 1/4W 5%</td>
</tr>
<tr>
<td>1</td>
<td>R3</td>
<td>220 ohm 1/4W 5%</td>
</tr>
<tr>
<td>2</td>
<td>R9,10</td>
<td>470 ohm 1/4W 5%</td>
</tr>
<tr>
<td>1</td>
<td>R23</td>
<td>1K ohm 1/4W 5%</td>
</tr>
<tr>
<td>10</td>
<td>R4,11-18,24</td>
<td>2.7K ohm 1/4W 5%</td>
</tr>
</tbody>
</table>

CAPACITOR PACK

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C4</td>
<td>56 pf disc radial</td>
</tr>
<tr>
<td>1</td>
<td>C17</td>
<td>.0033 uf monolithic radial</td>
</tr>
<tr>
<td>10</td>
<td>C1,2,5,6,7,8,9,11,12,13</td>
<td>.1 uf monolithic filter capacitor</td>
</tr>
<tr>
<td>2</td>
<td>C3,10</td>
<td>10 uf 25V axial tantalum</td>
</tr>
<tr>
<td>1</td>
<td>C14</td>
<td>4.7 uf 20V axial electrolytic</td>
</tr>
</tbody>
</table>

DIODE PACK

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Q1</td>
<td>2N3904</td>
</tr>
<tr>
<td>1</td>
<td>CR1</td>
<td>1N270</td>
</tr>
</tbody>
</table>
REGULATOR PACK
- 2 U9,30: 7805 +5 volt regulators
- 1 Y1: 12.44 MHz crystal
- 1: 3x1 header strip
- 2: heatsinks
- 2: #6 hardware sets
- 1: mini-jumper

MOLEX PACK
- 1 J1: 2 pin molex male connector
- 1 J2: 4 pin molex male connector
- 1: 2 pin molex shell
- 1: 4 pin molex shell
- 6: molex pins

SOCKET PACK
- 3: 8-pin sockets
- 9: 14-pin sockets
- 3: 24-pin sockets

MISCELLANEOUS PACK
- 25: 16-pin sockets

MISCELLANEOUS
- 1: VBIC PC board
- 1: VBIC Instruction Manual
- 1: Warranty card
VBLC MANUAL REGISTRATION FORM

In our effort to continually upgrade our documentation, we would appreciate any feedback you may have concerning this manual. Please mail your comments and suggestions to SSM Customer Service at the address below.

COMMENTS AND CORRECTIONS ON THE SSM VBLC INSTRUCTION MANUAL

VBLC Serial Number __________________________

Name ________________________________

Title ________________________________

Company ________________________________

Address ________________________________

Telephone ________________________________

SEND TO: SSM MICROCOMPUTER PRODUCTS, INC.
2190 Paragon Drive
San Jose, California 95131
Attention: Customer Service Department