TABLE OF CONTENTS

1. USER GUIDE
 a. Introduction
 b. Theory of Operation
 c. Operation

2. ASSEMBLY
 a. General Construction
 b. Handling MOS Devices
 c. Parts List
 d. Detailed Assembly Instructions
 e. Parts Layout Diagram
 f. 216 Schematic
 g. Memory Checkout

3. GENERAL INFORMATION
 a. Customer Service
 b. Technical Design Labs' Warranty

4. APPENDIX
1. USER GUIDE

a. INTRODUCTION

The Z16 is a low power, very fast access, static memory board capable of supporting 16K of memory on one card.

The card is divided into four blocks of 4K each, which can individually be switch protected, addressed, etc. Each 4K block may be located at any 4K page border, irrespective of the selected address for any other 4K block in the system. (Save only that no two blocks may occupy the SAME address.)

The memory chips employed are the ENM SEMI 4200, which are organized as 4K by 1 bits, and which feature a currently rated access time of 200 nanoseconds. Each 4K block uses 8 memory chips, making a total of 32 for a fully populated board. Due to the treatment of each 4K block as a separate unit, the board may be populated in 4K increments, and thus may serve as an expandable 4, 8, 12 or 16K memory on the same card.

Physically the board is organized around the "SL08" bus (formerly known as the "ALTAIR™/IMSAI BUS"). It follows the specifications as to the number of TTL loads per line, physical dimensions etc. as have been laid out for this standard. The board operates equally well in either an ALTAIR or an IMSAI, as well as in Technical Design Labs' own line of microprocessors.

Only the finest components and materials have been employed in the manufacture of the Z16, and no surplus components are employed at any location.

The typical power consumption from each of the three voltage supplies for a fully populated 16K board are 200ma from the +5, 120ma from the +12 and 20ma from the -5. Thus, a fully populated 16K board draws little or no more power than "low power" 4K boards available from other manufacturers—thus demonstrating a 4:1 power savings.

(Altaïr is a registered trademark of MITS INC.)
b. THEORY OF OPERATION

1. THE 4200 MEMORY CHIP

Exact details of the 4200 memory chip and its specifications etc. are presented in full in the appendix. Those wishing a fuller understanding of this device should refer to those documents which are reproductions of the specifications sheets provided by EMM SEMI.

2. SYSTEM ORGANIZATION

The Z16 card is organized as 4 blocks of 4K each. In essence the card contains 4 separate 4K memory boards. Select, enable logic, power supply etc. are shared.

The four memory blocks are labeled blocks A, B, C and D. U13 to 20 comprise block A; 21 to 28 comprise block B; 29 to 36 block C; 37 to 44 block D.

In each block the highest numbered chip (I.E. U20 of block A) of the block contains bit 0 of the word, and the lowest numbered chip contains bit 7 - the remainder stored sequentially between.

3. READING FROM MEMORY

At the beginning of each processor machine cycle, when both Phase 1 and PSYNC are high, these two signals force the output of U3 (74LS20, pin 6) to go low. This signal then triggers the one-shot, U1 (74121, pin 4), which causes Q' (pin 1) to fall from hi (its normal state) to low and to remain low for a time predetermined by the RC constant of R1 and C3. In this circuit the values of R1 and C3 cause this signal to remain low for 200 nanoseconds.

The U1 is tied to pins 3, 5, 9 and 11 of U11 (74LS02) each of which is one of two inputs to a NOR gate. Pins 2, 6, 8 and 12 of U11 are tied to one of 4 address select jumpers from the address decoding chip U12 (74154). These 4 jumpers are labelled A, B, C and D on both the diagram and the board. These go low when the specific 4K block of memory which they represent is selected. This forces the output of the specific NOR gate (of U11) to go high, while the others remain low.
Each of the four outputs of U11 is then inverted by a section of U10 (7406). Thus three outputs of U10 will be high while the fourth (representing the selected 4K block) will be low.

These outputs are connected to the chip select pins of the 4200s which are arranged in 4K blocks. The 4200 chip select signal is a LOW (CE), and thus only one of the 4K blocks can be selected at any one time.

The Q of the 74121 is also connected to the pin 7s of both U8 and U9 (74173) which is the clock input of these latches. Data may be latched into these chips only when the clocking signal is going from low to hi, which occurs at the end of the 200 nanosecond pulse of the 74121. This delay between the time of selection and the latching in of the data is done to allow the data to stabilize, as is required by the 4200s.

The enabling of the 74173s is controlled by pins 1 and 2 both of which must be LOW for the latched in data to be released. Both pin ones are connected to SMEMR via a gate of U7 (74LS04) which is an inverter. This causes a low to be present on both pin ones when a memory read signal is on the bus.

The signal on pin 2 of both 74173s is controlled by the decoding circuit, U12. When any of the 4 banks is selected the output of U3 (74LS20) goes hi, and the output of this gate is then inverted to a low by a NOR gate configured as an inverter (U2, pins 5 and 6 tied together). Pin 4 of U2 is tied to the pin 2s of both 74173s.

Thus data is being enabled onto the bus from the latches if and only if: a. a memory read signal is on the bus and b. the specific board is selected.

The latching in of the desired data is controlled by the rise of the Q of the 74121 from low to hi, which occurs at a time designed to allow the data from the memory chips to have stabilized.

4. WRITING INTO MEMORY

The memory write circuitry functions in much the same manner as the memory read logic. In this case however, no latching of the data occurs.

The chip select circuitry is the same as that which was employed in the memory read logic.
When the memory write line (Bus pin 68 MWRITE) goes high (indicating that a memory write cycle is in progress), this signal is inverted by U2 (74LS02) configured as an inverter. This low signal goes to pin 9 of U2. When the board is selected as previously described, pin 4 of U2 goes low. Pin 4 is connected to pin 8. When both pins 8 and 9 are low, pin 10 goes high. This high signal serves two functions:

a. After being inverted by a gate of U2, it triggers the 74121, setting in motion the same select procedure as described in the memory read section.

b. This hi signal is brought to the pin 12s of the memory chips where it serves the function of a WRITE command. (Pin 12 is R/W, indicating that a HIGH causes a Write.). Thus, this high signal allows the data present on the data out bus to be written into the memory at the address specified on the address bus.

5. MEMORY PROTECT

Switchable memory protect is provided on the board by means of a 4 position mini-dip switch. Each of the 4 switches represents on 4K bank of memory, and the bank names are marked on both the schematic and the board as A, B, C and D.

Opening any of the switches simply disconnects the memory write line (the output of U2, pin 10) from the R/W of the memory chip banks. When held open, the line is held low by resistors 8 thru 11, which allows reading memory to proceed normally.

Provision for additional memory protect facility is made.

CR3 (1N914) is normally connected as shown in the components layout diagram. However, it may alternatively be connected to the hole marked CMW (pin 59 of the bus - CONDITIONAL MEMORY WRITE) when Technical Design Labs' Memory Management Board (an upcoming product) is in use. This board allows software protect capability for your entire system.

6. ADDRESS DECODING

The address decoding function is performed by U12 (74154). This chip takes the four highest address lines and decodes them into one of 16 possibilities. The one possibility is represented by one of 16 pins going low while the others remain high. Thus each of the
16 pins can represent 1/16th of the total possible memory space in the system, in this case equaling 4K.

Since this memory board is actually the equivalent of 4 separate 4K boards, four jumper plugs are provided which when connected to one of the 16 pins causes the specific 4K block to be selected only when the address which it's pin represents is addressed.

The 16 pins are labelled \mathcal{A} to \mathcal{F} (hexadecimal notation) on the schematic, but are labelled 1 to 16 on the board.

The four 4K banks are labelled $\mathcal{A1}, \mathcal{B}, \mathcal{C}$ and \mathcal{D} on both the schematic and the board.

Both enable pins (18 and 19) of the 74154 must be low for the board to be enabled. Pin 19 is connected to pin 45 on the bus (SOUTH) which goes high only during output operations, thus disabling the board when output operations are in progress. This is not required in an ALTAIR, however, in an IMSAI, a memory write signal is generated during output operations by the front panel, thus making this necessary. The handling of pin 18 is discussed in the section on BANK SWITCHING.

7. BATTERY BACKUP

J1 is provided as a point at which battery power may be applied to the memory. Diodes CR1 and CR2 are provided to prevent backflow of current from the battery onto the bus.

Automatic switching of the battery during line power failure can be achieved by voltage sensing circuitry at the battery. A battery pack with this feature will be made available by Technical Design Labs in the future.

8. BANK SWITCHING

Under control of the upcoming Memory Management board, any 16K board can be made to disappear from the bus. This is achieved by forcing pin 18 of U12 (74154) high, which disables the board. The current version of the board allows two complete 64K banks of memory to coexist in the same mainframe, and be switched under software control using the aforementioned board.

At the bottom of the board directly above the edge fingers and directly beneath the right hand edge of the 74154 are two plated thru holes labelled "X" and "Y". There is a third pad directly between these two.
If the center pad is connected to the "Y" pad, then pin 18 is held low by using part of U7 (74LS04) to invert the output of the 1k pullup resistor. (R12) This is the standard configuration for the board, and is the REQUIRED configuration when the memory management board is NOT in use.

If the center pad is connected to the "X" pad, then pulling down the A8X line (A8X = NOT ALTERNATE BANK X Bus pin 60) by the memory management board is necessary for the board to be enabled.

9. THE SCHEMATIC

Several points about the schematic are worthy of mention for the sake of clarity.

a. For the specific pin-outs of the 4200 chips, refer to the spec sheets for these pins located in the appendix.

b. Data Out and Data In are marked on the top row of chips on the schematic. These are the PIN NAMES. They are named in reference to the PROCESSOR. Data Out is DATA OUT FROM THE PROCESSOR. Data In is DATA IN FROM THE PROCESSOR.

 The small arrows under these names are the direction of data flow relative to the memory chips themselves.

c. Rather than draw a confusing jungle of lines, the Address, Data Out and Data In lines are represented by busses. This is possible because these lines are connected in parallel from chip to chip.

c. OPERATION

 Operation of the board is very straightforward. Only two advices need be observed:

 1. Do not place the address selection jumpers in any address when the bank which the specific jumper represents is unoccupied by chips.
2. When a given bank is unoccupied, the memory protect switch for that bank should be left in the OFF position.

Of course, all the rules which normally govern the general handling of electronic equipment apply - for example, do not insert or remove the board from the motherboard when power is applied, avoid dirt, dust etc. etc.

Operation of the board involves the manipulation of three options. These are:

1. Address selection
2. X or Y bank choice
3. Memory write line choice

The latter two are of consequence only when the Memory Management Board is in use. The normal configurations of these two are:

X or Y bank choice: Center Pad to "Y"
Memory Write Line: CR3 Cathode to RIGHT hole

See the component layout diagram for details of these.

Address selection is set up in the simplest possible fashion. Each of the four banks of 4K (A, B, C and D) is individually addressable at any 4K border in memory. Four plugs (augat pins) attached to wires are soldered into the board above a row of 16 augat pins which lie above U12.

Each of the 16 Augat pins represents one 4K block of memory. The pin on the far right labelled "1" represents the first 4K block of memory (0 hex; 0 octal). The pin on the far left labelled "16" represents the last 4K block of memory (FFFF hex; 170000 octal; 360000 crazy octal).

Each jumper from one of the 4K blocks may be inserted into any one of the 16 augat pins, at which time that block will be located at whatever 4K border address which the pin you have chosen represents.

Note: Again, remember that if a 4K block of your board is NOT occupied by memory chips, it's jumper plug should not be inserted into one of the 16 augat pins.

In addition to the three options, the protect switch is operated simply. When a switch is ON, the block it represents is UNPROTECTED, and vice-versa.
2. ASSEMBLY

CAUTION

THE 216 KIT CONTAINS STATIC SENSITIVE DEVICES. THESE ARE ALL OF THE MEMORY CHIPS. DO NOT REMOVE THESE DEVICES FROM THEIR PROTECTIVE TUBES UNTIL NEEDED IN ASSEMBLY. HANDLE ONLY AS PER THE INSTRUCTIONS IN THIS MANUAL. FAILURE TO HEED THIS PRECAUTION MAY RESULT IN PERMANENT DAMAGE TO THESE DEVICES AND AUTOMATICALLY voids THE WARRANTY.

a. GENERAL CONSTRUCTION

It's a good feeling to construct a kit on your own, plug it in, and have it work the first time up. Two factors are of the utmost importance in this: Quality engineering, and careful construction. We've taken care of the engineering, but the construction is up to you. We've listed here some of the construction tips which are considered standard operation in most commercial shops. Following these procedures in your own construction will increase the likelihood that your kits will work first time, every time.

1. ALWAYS read all of the instructions before starting construction.
2. Always work in a clean, well-lit area.
3. Use only high quality rosin-core solder of a gauge similar to the size of the leads being soldered.
4. Ensure that you have all of the parts necessary for a given stage of construction before starting that stage.
5. Use the lowest power soldering iron that will get the job done. A 25 watt iron is quite adequate for most kits using a printed circuit board.
6. Use a fine point soldering iron, and keep the tip clean and well tinned.
7. Avoid overheating the PC board and components.
8. Before soldering, check and make sure that the right component is in the right place. Having to remove and resolder a wrongly placed component is difficult, and there is a great likelihood that damage to the board or component will occur.
9. Apply the solder to the iron tip, the pad and the component lead at the same time. The solder will melt and flow in a second or two. If it doesn't, stop and find out why before continuing.

10. Use only enough solder to assure electro-mechanical integrity. 1/8th inch or so of the solder supplied with this kit is generally adequate around IC pads and most component leads.

11. Look carefully at each joint both during and after soldering it. If should have a clean, bright appearance. If the surface is rough or dull it might be a cold solder joint. If so, reheat and apply very little or no additional solder.

12. Don't work on construction if you're very tired.

13. Always check the voltages on the appropriate IC pins after soldering and before installing the ICs in their sockets.

14. Never install ICs in sockets when there is voltage on the board.

15. ALWAYS install MOS/CMOS devices LAST, after checking that all else is perfect.

16. NEVER insert the board into it's socket when power is on the machine.

b. HANDLING MOS/CMOS DEVICES

When handled correctly, static damage to these sensitive devices is quite unlikely to occur. The rules for correct handling are simple:

1. Keep everything in contact with everything else. While the ICs are still in the tubes, hold it in your hand, touch both to the table, the PC board, etc. This allows any static to discharge.

2. Work on a conductive surface. Bare grounded metal (a cookie tin or piece of aluminum foil will do) is best. Glass is very bad, plastics among the worst.

3. Don't wear synthetic clothing. They generate static. Wear Cotton.

4. A high humidity environment is better than a dry one.

These rules are very simple. Remember: the most basic rule is to keep everything in contact with everything else. If you adhere firmly to this one rule and use your common sense, it's very unlikely that you will ever damage a static-sensitive component.
c. PARTS LIST - 216

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1, U2, U3, U4, U5, U6, U7, U8, U9, U10, U11, U12</td>
<td>74121, 74LS02, 74LS20, 74LS04, 74173, 7406, 74154, 4200, 7905, 7812, 7805</td>
</tr>
<tr>
<td>C 1,4</td>
<td>47mF, 25V tantalum electrolytic</td>
</tr>
<tr>
<td>C 2</td>
<td>33mF, 20V tantalum electrolytic</td>
</tr>
<tr>
<td>C 3</td>
<td>68pF disc ceramic</td>
</tr>
<tr>
<td>C 5</td>
<td>220pF disc ceramic</td>
</tr>
<tr>
<td>C 6,13</td>
<td>3.3 or 4.7mF, 25V tantalum electrolytic</td>
</tr>
<tr>
<td>C 7-12</td>
<td>1nF disc ceramic, 10V (or same as C 14-26)</td>
</tr>
<tr>
<td>C 14-26</td>
<td>1nF molded ceramic, 67 volt (black marked 100ns)</td>
</tr>
<tr>
<td>R 1</td>
<td>3.3K, 1/8th watt (orange, orange, red)</td>
</tr>
<tr>
<td>R 2-5,12</td>
<td>1K, 1/8th watt (brown, black, red)</td>
</tr>
<tr>
<td>R 6</td>
<td>220 ohm 1/8th watt (red, red, brown)</td>
</tr>
<tr>
<td>R 7-11</td>
<td>47K, 1/8th watt (yellow, violet, orange)</td>
</tr>
<tr>
<td>J1</td>
<td>4 pin molex connector</td>
</tr>
<tr>
<td>J2-17</td>
<td>16 augat pins</td>
</tr>
<tr>
<td>P1-4</td>
<td>4 augat pins</td>
</tr>
<tr>
<td>CR1,2</td>
<td>1N4002</td>
</tr>
<tr>
<td>CR3</td>
<td>1N914B</td>
</tr>
<tr>
<td>S 1-4</td>
<td>four position mini-dip switch</td>
</tr>
</tbody>
</table>

MISCELLANEOUS

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 hole heatsink</td>
</tr>
<tr>
<td>2</td>
<td>5/16" sloophead screw, nut, lockwasher</td>
</tr>
<tr>
<td>9</td>
<td>14 pin low profile sockets</td>
</tr>
<tr>
<td>2</td>
<td>16 pin low profile sockets</td>
</tr>
<tr>
<td>1</td>
<td>24 pin low profile socket</td>
</tr>
<tr>
<td>32</td>
<td>22 pin low profile sockets (32 sockets are for a 16K board, 24 for 12K etc.)</td>
</tr>
<tr>
<td>1</td>
<td>6" piece of jumper wire</td>
</tr>
<tr>
<td>1</td>
<td>6" piece of solder</td>
</tr>
<tr>
<td>1</td>
<td>216 PC card</td>
</tr>
</tbody>
</table>
d. DETAILED ASSEMBLY INSTRUCTIONS

() 1. Read these instructions through once from beginning to end before continuing.
() 2. Inventory all parts against the parts list.
() 3. Refer to the board layout diagram and familiarize yourself with the layout.
() 4. Examine the PC board carefully for any obvious errors and correct any you may find. (Such as shorted traces etc.). Although numerous quality control checks are done, a slip found now can save many hours of troubleshooting later.
() 5. Install the 5 1K resistors (R2-5,12) in their respective locations and solder.
() 6. Install the 3.3K resistor (R1) and solder.
() 7. Install the five 47K resistors (R7-11) in location and solder.
() 8. Install the 220 ohm resistor (R6) and solder.
() 9. Install CR1 and CR2 (1N4002) and solder. On CR1 the band goes DOWN. On CR2 the band goes to the LEFT.
() 10. Install CR3 (1N914) and solder. If installed in a normal system the band goes to the RIGHT. If installed in a system equipped with Technical Design Labs' Memory Management board, then the band goes to the LEFT and the lead is soldered into the hole labelled CMW.

NOTE: While soldering the diodes, use as little heat as possible. Also, the 1N4002s and 1N914 may be discriminated on the basis of physical size. The 1N4002s are larger.

() 11. Install all of the low profile sockets in their locations. Note that ALL 14 and 16 pin sockets are oriented with their pin ones DOWN. The 24 pin socket has the pin one to the RIGHT. ALL 22 pin memory sockets have the pin 1 UP. (IC sockets have a notch or chamfer to indicate pin 1).
() 12. Invert the board and solder all of the pins. Make sure that each socket is flush with the board before you solder - otherwise solder may
flow thru the hole when you solder and short out the pins. This is difficult both to trace and to repair.

NOTE: If the sockets tend to fall out when you invert the board, either bend two diagonally opposite pins on each, or preferably, place a piece of thin, stiff cardboard over all of the sockets and turn the board over holding them in place with the cardboard.

() 13. Install the 16 augat pins (J2-17) immediately above the 24 pin socket. The best way to get them in straight is to slip them onto the pins of an old 16 pin dip IC, then bend the row slightly out from the perpendicular, insert all 8 pins into the holes, solder these 8 and then repeat the process for the remaining 8.

() 14. Cut 4 pieces of jumper wire, each 1½ to 1¾ inches long. Trim ¼" of insulation off of one end of each, and 3/16ths of insulation off of the other end of each.

() 15. Insert the four ends with the 3/16ths" insulation removed into 4 augat pins and solder each. It's best to place the augat pins into empty IC sockets to hold them erect, then place a clean soldering iron tip alongside the pin, then flow the solder onto the wire and the hole at the top of the pin. Use caution not to melt the socket body or to get solder on the tip of the augat pin.

() 16. Insert each of the four 1½" trimmed ends into the four holes marked A,B,C and D above the 16 augat pins and solder.

() 17. Insert the 68pF capacitor (C3) into it's location alongside U1 and solder. Don't bend this over the socket or you won't be able to get the IC in.

() 18. Insert the 220pF capacitor (C5) and solder.

NOTE: The polarity of tantalum electrolytics is usually marked in one of three ways:

a. A + sign next to the voltage rating is usually closest to the + lead.

b. A dot next to a lead indicates that as the + lead.

c. A large dot high on the body of the capacitor - with the dot facing you - the + lead is on the right.
19. Insert the 33Mf tantalum electrolytic (C2) alongside the heatsink area. Make sure that the polarity is correct. The + lead goes toward the top of the board. Make sure you leave room for the heatsink. Leave the leads a bit long if necessary.

20. Insert the two 47Mf tantalum electrolytics (C1,4) in their respective positions and solder. Make certain that correct polarity is maintained.

21. Insert the two 3.3 (or 4.7) mF tantalum electrolytics (C6 and 13) in position and solder. The leads may have to be bent out for proper positioning. Insure correct polarity.

22. Insert the six .1mF 10volt discs (or 6 black molded .1s) (C 7 to 12) in position and solder.

23. Insert the thirteen .1mF molded 67 volt caps (C 14 to 26) in position and solder.

NOTE: These MUST be the black molded units. Also, if only a 4K board is being constructed, install only C 21 to 26, omitting C14 to 20.

24. Install the 7905 voltage regulator (U45). Bend the leads 90 degrees, insert in the three holes and solder. Keep the body of the regulator off of the PC board.

25. Bend the leads of the 7805 and the 7812 voltage regulators (U47 and 46 respectively) down 90 degrees about ½" from the body.

26. Insert the screws through the board with the heads on the soldering side of the board, and lay the board down on the table. Place the heatsink over the screws with the longer dimension of hole to edge toward the bottom of the board.

27. Place the 7805 over the bottom screw with it's pins toward the bottom of the board. Place the lockwasher and the nut over the screw and finger tighten. Have the regulator leads go thru the three holes provided.

28. Place the 7812 over the top of the two screws with its pins toward the top of the board and repeat the above process.

29. Tighten both screws. Keep the regulators straight when doing this.

30. Solder the leads on these two regulators.
NOTE: Heatsink compound may be used on these two regulators if desired, but is generally not necessary due to the low power consumption of the board - and thus cool operation.

() 31. Install the 4 pin molex connector to the left of the 7905 and solder. If you're using a high-density motherboard it may be necessary to bend these pins down for adequate board to board clearance.

() 32. Install a jumper wire between the center pad and "X" or "Y" depending on which 64K bank the board is to be assigned to. If the Memory Management Board is not in use, solder from center pad to "Y" ONLY.

() 33. Trim all leads, including socket pins, down as close to the board as you can using the flat side of diagonal cutters.

() 34. Using Trichloroethylene or some other solvent, plus a stiff ¼ inch artist's brush and a clean cloth, clean all residue from the soldering operation off of the board. (When using ANY solvent, NEVER work near an open flame, and ALWAYS work in a WELL ventilated area. The fumes of most solvents are toxic.

NOTE: This is the construction step most often omitted by the unwise. Cleaning the board thoroughly will eliminate 95% of those troublesome "solder splashes" that can cause so much trouble, and make the finding of any that remain a "snap".

Start in a corner, applying the solvent liberally by pouring on and "scrubbing" with the brush. BLOT off the remainder with the cloth before the solvent evaporates. (You can't rub over the rough edges.) Repeat if necessary. Continue until the whole board is VERY clean. For final cleaning of the edge fingers, etc. pour some solvent on the rag and wipe clean.

() 35. Install the 4 position mini-dip switch in position and solder. It goes with the number one position toward the bottom of the board. (This is done after cleaning because any rosin flux in the switch from the cleaning operation can ruin the switch.

() 36. Now examine the board carefully for solder shorts, cold solder joints, unsoldered leads etc. Correct any errors that you find.

() 37. Check the board once more to insure that you have all of the components in the correct locations and that they are correctly oriented where applicable.

THIS COMPLETES MECHANICAL ASSEMBLY OF THE BOARD.
You are now ready to continue with the electrical checkout of the board.

() 38. Measure the resistances between bus pins 1 and 50, 2 and 50, and 52 and 100. If any of these is Zero, a short circuit is indicated. Locate and correct this.

() 39. Insert the board (with no chips other than the regulators installed) in an unoccupied chassis, apply power and measure the voltages at the following locations:

() a. between the right hand and center pins of the 7805; should measure +5 volts.
() b. between the left hand and center pins of the 7812; should measure +12 volts.
() c. between the left hand and right hand pins of the 7905; should measure -5 volts.
() d. between pins 7 and 14 of U1 to 11, and pins 12 and 24 of U12 should measure +5 volts.
() e. between pins 22 and 5 of the 22 pin sockets should measure +12 volts. Between pins 22 and 11 should measure +5 volts. Between pins 22 and 1 should measure -5 volts.

If any of the above voltages differ by more than a very small percent from the above specs, check for shorts, cold solder joints, shorted or open pull-up resistors, bad power supply components etc. and correct the problem before continuing.

() 40. Insert all of the chips except for the memory chips. Refer to the component layout diagram and insure that the chips are correctly located and properly oriented.

() 41. Again plug the board into an unoccupied chassis and turn the power on. Recheck the voltages as per step 39. They should remain the same. A significant change probably indicated a chip which is shorted.

NOTE: At this point you should allow the board to remain on for a few minutes and then check to see if any of the chips (other than the regulators) is getting significantly hotter than those around it. Looking for a "hot" chip is a very useful troubleshooting technique. Many times a malfunctioning board can be repaired easily by using this technique to locate a bad chip.
(17)

() 42. While following the procedure for the handling of MOS devices, insert one memory chip into the slot for U20, making sure the chip is properly oriented. (Pin one UP). Insert the "A" plug into the augat pin for address zero (pin 1). The other plugs should be out. Place the protect switch for bank "A" in the ON position. The others should be off. Place the memory in the chassis along with the processor and no other boards.

NOTE: You are starting by checking only one memory chip because these chips are EXPENSIVE. In small quantities they cost nearly as much as an 8080 processor!

() 43. Apply power, reset, and examine memory location zero. Now try alternately depositing ones and zeros into the memory for bit ZERO. You should be able to cause this light to go on and off.

NOTE: If your system has no front panel you'll have to do this under monitor program control.

() 44. If you cannot deposit this bit, recheck the board for any of the possible errors, such as misaligned chips, chips in wrong locations, diodes placed backwards etc etc. If still no luck you probably have an undetected solder short, faulty component or some such.

() 45. Once you are successful with step 43, insert the remainder of the memory chips into bank A.

() 46. Now try to deposit and deposit next starting with all zeros, then bit one by itself, then bit 2,3 and so on up to bit seven. This determines if the data in and out lines are correctly functioning. A problem here usually indicates that one or more of these lines are shorted, or that the associated chips are either wrongly inserted or bad.

() 47. Next try to examine from zero on up - using the examine next switch. This tests that the address lines are in order. A problem here indicates problems similar to the above.

() 48. If the above checks out, then proceed to insert the chips in the remainder of the banks which you intend to populate.

This completes construction and mechanical as well a logical operation checkout of the board.
g. MEMORY CHECKOUT

Now that your board is finished it is wise to verify not only that the board is operating normally, but that the memory chips themselves are accurately writing and reading the memory you actually desire. In manufacturing, finding one chip out of a 100 lot being bad is not uncommon. The following is designed to help you verify the accuracy of your memory. Any bad chips returned to Technical Design Labs will be replaced immediately as per the terms of the warranty.

For those of you whose system is equipped with the ZPU, use of either the ZAP (1K) or ZAPPLE (2K) monitors is by far the easiest means of running a memory check.

With the ZAP monitor, use of the J command is your easiest means of locating hard memory failures. Simply type the J command followed by the memory block to be tested and hit return. If all is OK, the monitor will perform a line feed and print a period (.).

If one or more bits are bad, the response will be the Address of the bad bit, followed by the bit pattern recorded at that address.

For example, if the monitor responds with:

\[7F77 \quad 00100000\]

this means that the third bit at location 7F77 is bad.

Address 7F77 is in block A (when it's addressed at zero). And the third bit is contained in U18. Therefore you may conclude that U18 is at fault. Replace this one with a chip from a higher bank and return it for replacement.

While this test is excellent for the location of "hard" memory failures, it is not a dynamic test, so it is not 100% definitive. User's of the ZAPPLE monitor have an additional tool at hand which does provide a dynamic test.

With the monitor in use, MOVE the monitor from it's working address to an address contained within the memory being tested. Now use the VERIFY command to verify that the data remained the same. Positive results on this test are a very strong indication that all is well.
There follows the source code for a memory test program designed to allow a thorough verification of the validity of your memory. This is provided for those who do not have either the SAP or ZAPPLE monitors available, or as a supplement to these facilities.

A paper tape in absolute hex format is provided with this kit.
TITLE *8080/Z-80 MEMORY TEST VERSION 1.0*

TECHNICAL DESIGN LABS, INC.
RESEARCH PARK
PRINCETON, N.J. 08540
SEPTEMBER 1976 -R.A.

THERE IS NO MEMORY TEST AVAILABLE THAT CAN BE
CALLED THE "DEFINITIVE MEMORY TEST PROGRAM".

THE FOLLOWING IS ONE THAT WILL AT LEAST PROVIDE
SOME DIAGNOSTIC ASSISTANCE, AS WELL AS SOME
DEGREE OF CONFIDENCE.

THE BEST TEST IS A FEW WEEKS OF TIME, RUNNING
THE SYSTEM, AND EXERCISING THE SYSTEM AS A
WHOLE. YOU WILL KNOW SOON ENOUGH IF THE
MEMORY IS SOUND.

THIS PROGRAM STARTS AT ADDRESS 0100H. (YOU MAY TEST
MEMORY FROM 0400H ON UPWARDS. MAX=OFFFFFH). THE
TAPE IS SENT IN THE INTEL STYLE HEX FILE FORMAT,
AND CAN BE READ BY EITHER THE APPLE/ZAPPEL MONITORS,
(DOR ZAP), OR BY USING THE BOOT LOADER PROVIDED.
THE PROGRAM IS SELF-CONTAINED. IT CAN BE EASILY
PAICHED FOR ANOTHER I/O SYSTEM IF NEEDEl. IT IS
CONFIGURED FOR THE STANDARD PORT ZERO ALTALR-SYIE
TELETYPETE I/O.

THE PROGRAM WILL SIGN ON, AND ASK FOR THE RANGE.
THIS SHOULD BE GIVEN IN HEX. "START?", "FINISH".
IT WILL TEST CONTINUOUSLY UNTIL A CONTROL-C IS
SEEN ON THE KEYBOARD. ERRORS WILL BE PRINTED OUT
WITH THE ADDRESS OF THE ERROR, THE TEST BYTE,
AND THE MEMORY ERROR PATTERN. THE BISS THAT
DON'T AGREE ARE "!". ALSO, WHILE THE TEST IS IN
PROGRESS, A NUMBER WILL BE PRINTED ON THE
CONSOLE FOR EACH LOOP THROUGH ALL 13 TESTS.

<CONSTANTS>

0000 0001 0080 0001 0000
STAT= OH DATA= 1H TBE= 80H TDA= 1
0001 0000 CR= 0DH LF= 0AH

<PROGRAM BEGINS HERE>

0100 .LOC 0100H .PABS .ABSOLUTE OBJECT FILE
0100 31 0344 START= LXI SP, STACK .SET UP A STACK
IDL Z80 RELOCATING ASSEMBLER VERSION 1.0
8080/Z-80 MEMORY TEST VERSION 1.0

0100 21 02 EC LXI H, MSG 0 SIGN ON MESSAGE
0100 21 02 DF CALL TYPE
0109 21 03 EZ LXI H, TEMP INITIALIZE TEMP. VALUES
010C 36 00 MVI W, 0
010E 23 INX H
010F 36 40 MVI M, 40H
0111 09 02 MVI B, 2 GET TWO ADDRESSES
0113 21 00 00 EXPR: LXI H, 0 GET PARAMETERS
0114 0D 02 D1 CALL KBD GET PARAMETERS
0116 4F MOV C, A
011A 0D 01 29 EX1: CALL NIBBLE CONVERT TO HEXADECIMAL
011D DA 01 39 JC EX2 CONVERT TO BINARY
0120 29 DAD H
0121 29 DAD H
0122 29 DAD H
0123 29 DAD H
0124 85 ORA L
0125 6F MOV L, A
0126 C3 01 16 JMP END
0129 D6 30 NIBBLE: SUI 0 ASCII TO HEX
012B D8 RC
012C FE 17 CPI *09*09*
012E 3F CMC
012F D8 RC
0130 FE 0A CPI 10
0132 3F CMC
0133 D0 RNC
0134 D6 07 SUI *A9B9B9 1
0135 FE 0A CPI 10
0138 C9 RET
0139 79 EX2: MOV A, C
013A 0D 02 BE CALL CHK
013C EB XCHG
013E 05 DCR B TWO ADDRESSES YET?
013F C2 01 13 JNZ EXPR
0142 3E 4F MVI A, *G*
0144 0D 02 9E CALL SEND ALL OK
0147 3E 4B MVI A, *K*
0149 CD 02 9E CALL SEND
014C CD 02 B4 CALL CRLF

014F E5 DDIT: PUSH H START TESTING
0150 36 AA MVI M, OA AH 10101010 PATTERN
0152 23 INX H
0153 36 55 MVI M, 55H 10101010 PATTERN
0155 CD 02 49 CALL HILDO RANGE SATISFIED YET?
0158 D2 01 50 JNC . J
015B CD 02 3C CALL DELAY BITS ARE TRICKY AT TIMES
015E E1 POP H RESTORE START POINTER
015F E5 PUSH H SAVE IN STACK
0160 3E AA . MVI A, OA AH PICK UP MEMORY BYTE
0162 46 MOV B, M
0163 B8 CMP B
0164 C4 02 4F CNZ ERROR TELL IF BAD
0167 23 INX H
0168 3E55 MVI A, 55H
016A 46 MOV B, M
016B BB CMP B
016C C4 024F CNZ ERROR
016F CD 0249 CALL HILO RANGE TEST
0172 D2 0160 JNC ..2
0175 E1 POP H
0176 E5 PUSH H
0177 3E55 ..3 MVI W, 055H REVERSE (CHECKERBOARD)
0179 23 INX H
017A 3EAA MVI W, 0AAH
017C CD 0249 CALL HILO
017F D2 0177 JNC ..3
0182 CD 023C CALL DELAY
0185 E1 POP H
0186 E5 PUSH H
0187 3E55 ..4 MVI A, 55H
0189 46 MOV B, M
018A BB CMP B
018B C4 024F CNZ ERROR
018E 23 INX H
018F 3EAA MVI A, 0AAH
0191 46 MOV B, M
0192 BB CMP B
0193 C4 024F CNZ ERROR
0196 CD 0249 CALL HILO
0199 D2 0187 JNC ..4
019C E1 POP H
019D E5 PUSH H
019E 3EFF ..5 MVI W, OFFH ALL ONES
01A0 CD 0249 CALL HILO
01A3 D2 019E JNC ..5
01A6 CD 023C CALL DELAY
01A9 E1 POP H
01AA E5 PUSH H
01AB 3EFF ..6 MVI A, OFFH
01AD 46 MOV B, M
01AE BB CMP B
01AF C4 024F CNZ ERROR
01B2 CD 0249 CALL HILO
01B5 D2 01AB JNC ..6
01B8 E1 POP H
01B9 E5 PUSH H
01BA 0E00 MVI C, 0 SEQUENTIAL NUMBERS TEST
01BC 71 MOV W, C START WITH ZERO
01BD EC INR C
01BE CD 0249 CALL HILO
01C1 D2 01BC JNC ..7
01C4 CD 023C CALL DELAY
01C7 E1 POP H
01C9 E5 PUSH H
01CB 0E00 MVI C, 0
01CC 79 MOV A, C
01CC CC INR C
01CD 46 MOV B, M
01CE B8 CMP B
01CF C4 024F CNZ ERROR
01D0 CD 0249 CALL HILO
01D5 D2 01CB JNC .9
01D8 E1 POP H
01D9 E5 PUSH H #PAGE DECODING TEST
01DA 74 .9: MOV M,H
01DB 24 INR H
01DC CD 024A CALL HILO+1 #JUST INCREMENT H REG
01DF D2 01DA JNC .9
01E2 CD 023C CALL DELAY
01E5 E1 POP H
01E6 E5 PUSH H
01E7 7C ..A: MOV A,H
01E8 46 MOV B,M
01E9 B8 CMP B
01EA C4 024F CNZ ERROR
01ED 24 INR H
01EE CD 024A CALL HILO+1
01F1 D2 01E7 JNC ..A
01F4 E1 POP H
01F5 E5 PUSH H
01F6 7E ..B: MOV A,M FAST COMPLIMENT & TEST
01F7 2F CMA
01F8 77 MOV M,A
01F9 46 MOV B,M
01FA B8 CMP B
01FB C4 024F CNZ ERROR
01FE 3600 MVI M,00 #ZERO MEMORY TEST
0200 CD 0249 CALL HILO
0203 D2 01F6 JNC .8
0206 CD 023C CALL DELAY
0209 E1 POP H
020A E5 PUSH H
020B AF ..C: XRA A #TEST FOR STILL ZERO
020C 46 MOV B,M
020D B8 CMP B
020E C4 024F CNZ ERROR
0211 CD 0249 CALL HILO
0214 D2 020B JNC ..C
0217 CD 022D CALL STOP #SEE IF CONSOLE WANTS TO ABORT
021A 21 032F LXI H,TEMPO #PICK U P COUNTER
021D 7E MOV A,M
021E E607 ANI 7
0220 FD30 ORI '0' #COUNT OF THE NUMBER OF
0222 CD 029E CALL SEND #TIMES THROUGH THE MEMORY
0225 34 INR M
0226 FC 0282 CMP LINE #CRLF EACH 64 CHARACTER
0229 E1 POP H
022A C3 014F JMP DOIT #DO ALL OF THIS AGAIN

; <SUBROUTINES>

; 022D DB00 STOP: IN STAI #SEE IF CONSOLE WANTS TO SIOP
022F E601 ANI TDA
0231 C0 RNZ
0232 DB01 IN DATA
0234 E67F ANI 7FH ⇑CONTROL-C
0236 FE03 CPI 3
0238 C0 RNZ
0239 C3 0100 JMP START ⤲INSERT A MONITOR JUMP HERE
023C 26FF DELAY MVI H,OFFH ⤲CAN BE SHORTENED IF TESTING
023E 2EFF DEL0 MVI L,OFFH ⤲LARGE AMOUNTS OF MEMORY
0240 2D DCR L
0241 C2 0240 JNZ *-1
0244 25 DCR H
0245 C2 023E JNZ DEL0
0248 C9 RET
0249 23 HILO INX H
024A 7B MOV A,E
024B 95 SUB L
024C 7A MOV A,D
024D 9C SBB H
024E C9 RET

024F F5 ERROR PUSH PSW ⤲SAVE TEST BYTE
0250 3A 032E LDA TEMP ⤲SEND MESSAGE?
0253 B7 ORA A
0254 C2 0263 JNZ .NO ⤲NO
0257 2F CMA
0258 32 032E STA TEMP ⤲MESSAGE SENT
025B E5 PUSH H
025C 21 030C LXI H,MSG
025F CD 02DF CALL TYPE
0262 E1 POP H
0263 7C .NO MOV A,H ⤲SEND HIGH BYTE OF ADDRESS
0264 CD 028D CALL WRIT2
0267 7D MOV A,L ⤲AND LOW BYTE
0268 CD 028D CALL WRIT2
026B CD 02AA CALL BLK ⤲SPACE OVER
026E F1 POP PSW ⤲GET TEST BYTE
026F F5 PUSH PSW ⤲SAVE AGAIN
0270 CD 028D CALL WRIT2 ⤲PRINT IT
0273 CD 02AA CALL BLK
0276 F1 POP PSW ⤲GET BYTE BACK
0277 A8 XRA B ⤲GET BAD BIT LOC.
0278 0608 MVI B,8 ⤲NUMBER OF BITS/BYTE
027A 17 .BIT RAL ⤲SET/RESET CARRY
027B F5 PUSH PSW ⤲SAVE THE BAD BITS
027C 3E18 MVI A,(RO) ⤲/2
027E 8F ADC A ⤲MAKE 'O' OR '!' IN
027F CD 029E CALL SEND
0282 F1 POP PSW ⤲GET BAD BYTE
0283 05 DCR B
0284 C2 027A JNZ .BIT ⤲PUMP 'EM OUT,
0287 CD 0284 CALL CRLF
028A C3 022D JMP STOP ⤲SEE IF CONSOLE WANTS TO STOP
028D F5 WRIT2 PUSH PSW ⤲BINARY TO ASCII HEX
028E OF RRC
028F OF RRC
0290 OF RRC
0291 OF RRC
0292 CD 0296 CALL ..ISJ
0295 F1 POP PSW
0296 E60F ..IST: ANI OFH ;THIS DAA IS CUTE
0298 G900 ADI 90H
029A 27 DAA 4CH ;THANKS, INTEL
029B CE40 ACI 40H
029D 27 DAA

029E F5 SEND: PUSH PSW ;MAIN TELETYPE OUTPUT
029F DB00 ..S: IN STAT
02A1 E680 ANI TIRE
02A3 C2 029F JNZ ..S
02A6 F1 POP PSW
02A7 D301 OUT DATA
02A9 C9 RET
02AA 3E20 BLK: WVI A,/'
02AC CD 029E CALL SEND
02AF C3 029E JMP SEND
02B2 3E40 LINE: WVI M,4CH ;RESET TEST COUNTER
02B4 3E0D CRLF: WVI A,CR ;CRLF ON CONSOLE
02B6 CD 029E CALL SEND
02B9 3E0A WVI A,LF
02BB C3 029E JMP SEND

02BE FE2C CHK: CPI ,/ ;SPACE OR COMMA BETWEEN ADDR
02C0 C8 RZ
02C1 FE20 CPI ,/
02C3 C8 RZ
02C4 FE0D CPI CR ;TERMINATION?
02C6 C2 0100 JNZ START ;HHHHH....
02C9 7B MOV A,B
02CA 3D DCR A
02CB C2 0100 JNZ START ;TOO MANY OR TOO FEW PARAMS
02CE C3 02B4 JMP CRLF

02D1 DB00 KBD: IN STAT ;MAIN TELETYPE INPUT ROUTINE
02D3 E601 ANI TIDA
02D5 C2 02D1 JNZ KBD
02DB DB01 IN DATA
02DA E67F ANI 7FH ;CLR PARITY
02DC C3 029E JMP SEND ;ECHO INPUT

02DF CD 022D TYPE: CALL STOP ;TEST FOR AN ABORT
02DE 7E MOV A,M ;MESSAGE SENDER ROUTINE
02E3 B7 ORA A
02E4 C8 RZ
02E5 CD 029E CALL SEND
02EB 23 INX H
02EE C3 02DF JMP TYPE

<MESSAGES>

02EC 000A MSG0: .BYTE CR,LF
TDL Z80 RELOCATING ASSEMBLER VERSION 1.0
8080/Z-80 MEMORY TEST VERSION 1.0

02EE 4D454D4F52 .ASCII 'MEMORY TEST VER. 1.0'
0302 0D6A .BYTE CR,LF
0304 52414E4745 .ASCII 'RANGE=
030B 00 .BYTE 00
030C 0D6A MSG: .BYTE CR,LF
030E 414445220 .ASCII 'ADDR TEST 76543210 -BAD BITS'
032B 000A00 .BYTE CR,LF,00

032E 00 TEMP: .BYTE 0
032F 40 TEMPO: .BYTE 40H COUNTER
0344 STACK= +20

END

+++++ SYMBOL TABLE ++++

BLK 02A A CHK 02BE CR 000D CRLF 02B4
DATA 0001 DELO 023E DELAY 023C DOIT 014F
ERROR 024F EXD 0116 EX1 011A EX2 0139
EXPR 0113 HILO 0249 KBD 02D1 LF 000A
LINE 02B2 MSG 030C MSG0 02EC NIBBLE 0129
SEND 029E STACK 0344 START 0100 STAT 0000
STOP 022D TEMP 032E TEMPO 032F TBE 0080
TIDA 0001 IYPE 02DF WRT2 02B0
3. GENERAL INFORMATION

a. CUSTOMER SERVICE

Customer service falls into two broad categories:

1. Equipment troubleshooting
2. User applications counseling

In the case of equipment troubleshooting when you wish to return the unit for factory service, the following procedure should be adhered to whether the unit is under warranty or not.

1. Write up the exact symptoms of the problem. Give exact details of what you observed, what you noticed, what you were doing when the problem was first noticed, etc.

2. Describe the system you had in operation when the problem developed. Note the kind of mainframe, accessory boards in use, program being run, switch positions, peripheral connections etc. Also note if the other boards appear to be functioning normally.

3. Describe what you have done to try and handle the problem. Please be as specific as possible.

4. Pack the unit well (you would be wise to keep the shipping carton and materials this unit came in for this possibility.) and return it postpaid to Technical Design Labs.

5. If the unit is NOT under warranty, enclose an authorization to repair and bill to whatever dollar limit beyond which you would want to be informed before we continue.

6. If the unit is under warranty, it will be treated as per the conditions as laid out in the warranty.

In the case of user applications counseling, the service is generally free of charge. This service is designed to aid you in applications where your own ability or experience is not sufficient to provide the answer. This is not intended to provide a broad educational service of a general nature. Rather it is designed to answer specific applications problems where a "how to may not be clear
to a less than very experienced computerist. If your questions are specific, you will receive an answer as quickly as possible.

For questions of a more general nature, such as those that might repeat from many users, or for items which we feel would be of interest to a broader public, such will be printed up and distributed as part of the Z-80 users' group Newsletter which has been established. The newsletter will publish any information on program development, novel computer applications, hardware configurations etc. which fall into the above broad interest category. We hereby solicit any such submissions as you may wish to provide.

It is not currently possible to offer aid other than of a general nature in the debugging of user prepared software. We will however be glad to offer advice when feasible.

A software library is currently being established for your use, and if you have any software which you feel would benefit others, please feel free to submit this for our inclusion.

Listings of available software will be published in the Users Group Newsletter.
b. WARRANTY

TECHNICAL DESIGN LABS INC., in recognition of its responsibility to provide quality components and adequate instructions for their proper use and assembly, warrants its products as follows:

All components sold by Technical Design Labs Inc., (hereinafter referred to as TDL) are first quality prime and are procured from reputable distributors and/or factories and their representatives, and any part which fails because of defects in manufacture or material will be replaced at no charge for a period of 3 months for kits, and one year for assembled products following the date of purchase measured from the date of receipt. For replacement, the defective part must be returned to TDL postpaid within the warranty period.

Any malfunctioning unit or subunit, purchased as a kit and returned to TDL within the 3 month warranty period, which in the judgement of TDL has been constructed with care, and has not been subject to electrical or mechanical abuse, will be restored to proper operating condition or replaced at TDL's discretion and returned, with a minimal charge to cover postage.

Any units or subunits purchased as a kit and returned to TDL within the 3 month warranty period, which in the opinion of TDL is not covered by the above conditions will be repaired and returned at a cost commensurate with the work required. In no case will this charge exceed $30.00 without prior notification and approval of the owner.

Any unit or subunit, purchased as assembled units are guaranteed to meet the specifications in effect at the time of manufacture for a period of at least one year following purchase. These units are additionally guaranteed against defects in materials or workmanship for the same one year period. All warranted factory assembled units returned to TDL postpaid will be repaired and returned without charge providing only that no evidence of electrical or mechanical abuse exists.

This warranty is made in lieu of all other warranties expressed or implied and is limited in any case to the repair or replacement of the unit or subunit involved.
TIMING DIAGRAMS

Figure 1 – Read Cycle

Figure 2 – Write Cycle

22 PIN DUAL IN-LINE

PIN ASSIGNMENT

CERAMIC PACKAGE DIMENSIONS
Absolute Maximum Ratings (See Note 1) (Referenced to GND)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>VDD</td>
<td>5.0</td>
<td>5.5</td>
<td>6.5</td>
<td>Vdc</td>
</tr>
<tr>
<td></td>
<td>VSS</td>
<td>-5.0</td>
<td>-5.5</td>
<td>-6.0</td>
<td>Vdc</td>
</tr>
<tr>
<td>Input & Output Voltage</td>
<td>VIH</td>
<td>3.0</td>
<td>3.3</td>
<td>4.0</td>
<td>Vdc</td>
</tr>
<tr>
<td>Input & Output Voltage</td>
<td>VIL</td>
<td>-1.5</td>
<td>-1.4</td>
<td>-1.0</td>
<td>Vdc</td>
</tr>
<tr>
<td>Chip Select Input Voltage</td>
<td>VSS</td>
<td>-6.0</td>
<td>-5.5</td>
<td>-5.0</td>
<td>Vdc</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>PD</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>W</td>
</tr>
<tr>
<td>Operating Ambient Temperature Range</td>
<td>TAMB</td>
<td>0</td>
<td>100</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td></td>
<td>-65</td>
<td>150</td>
<td>150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Recommended Operating Conditions, TAMB = 0°C to 70°C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>VDD</td>
<td>11.4</td>
<td>12.0</td>
<td>12.6</td>
<td>Vdc</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>VOS</td>
<td>4.75</td>
<td>5.0</td>
<td>5.5</td>
<td>Vdc</td>
</tr>
<tr>
<td>Substrate Voltage</td>
<td>VSS</td>
<td>-4.5</td>
<td>-5</td>
<td>-5.5</td>
<td>Vdc</td>
</tr>
<tr>
<td>Input High Level</td>
<td>VIH</td>
<td>3</td>
<td>0</td>
<td>0.3</td>
<td>Vdc</td>
</tr>
<tr>
<td>Input Low Level</td>
<td>VIL</td>
<td>3</td>
<td>0</td>
<td>0.3</td>
<td>Vdc</td>
</tr>
<tr>
<td>Chip Select High Level</td>
<td>VOSH</td>
<td>-10</td>
<td>-5</td>
<td>0</td>
<td>Vdc</td>
</tr>
<tr>
<td>Chip Select Low Level</td>
<td>VOSL</td>
<td>0.3</td>
<td>0.3</td>
<td>0.5</td>
<td>Vdc</td>
</tr>
</tbody>
</table>

DC Electrical Characteristics (Full Operating Voltage & Temperature Range Unless Otherwise Noted)

Characteristics
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Current (Selected and Averaged over cycle)</td>
<td>IN</td>
<td>10</td>
<td>100</td>
<td>µA</td>
</tr>
<tr>
<td>Chip Select Input Current</td>
<td>ICs</td>
<td>-2</td>
<td>5</td>
<td>mA</td>
</tr>
<tr>
<td>Output "Low" Voltage</td>
<td>VOSL</td>
<td>0.3</td>
<td>0.5</td>
<td>Vdc</td>
</tr>
<tr>
<td>Output "High" Voltage</td>
<td>VOSH</td>
<td>2.0</td>
<td>3.5</td>
<td>Vdc</td>
</tr>
<tr>
<td>Output Current Unselected</td>
<td>IDQ</td>
<td>-36</td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>Supply Current Unselected</td>
<td>IDQ</td>
<td>-2.2</td>
<td>-3</td>
<td>mA</td>
</tr>
<tr>
<td>Reference Supply Current</td>
<td>IRIS</td>
<td>0.36</td>
<td>0.95</td>
<td>mA</td>
</tr>
<tr>
<td>Standby Current at Reduced Voltages</td>
<td>TAMB = 0°C</td>
<td>IDQ</td>
<td>0.2</td>
<td>2</td>
</tr>
<tr>
<td>Standby Current at Reduced Voltages</td>
<td>TAMB = 0°C</td>
<td>IDQ</td>
<td>1.8</td>
<td>6</td>
</tr>
</tbody>
</table>

Additional Conditions
- VSS = 0.5V or 5.0V
- VCG = 0.5V or 12V
- VOS = 0.5V or 1V
- VOSH = 2.0V or 3.3V
- VOSL = 0.3V or 0.5V
- VCG = 2.7V, VCS = 12V
- TAMB = 25°C
- VOS = 0.5V to 5.0V
- VCG = 0.5V to 12V
- TSS = 25°C
- TREC = 25°C
- VSS = 0.5V to 5.0V
- VCG = 0.5V to 12V
- TSS = 25°C
- TREC = 25°C

AC Electrical Characteristics (Full Operating Voltage and Temperature Range Unless Otherwise Noted)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chip Select Read Pulse Width</td>
<td>TCR</td>
<td>15ns</td>
<td>15ns</td>
<td>20ns</td>
<td>ns</td>
</tr>
<tr>
<td>Chip Select Write Pulse Width</td>
<td>TCSV</td>
<td>25ns</td>
<td>25ns</td>
<td>30ns</td>
<td>ns</td>
</tr>
<tr>
<td>Chip Select Rise and Fall Time</td>
<td>TCRF</td>
<td>-</td>
<td>10</td>
<td>50</td>
<td>ns</td>
</tr>
<tr>
<td>Setup Time</td>
<td>TS</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>ns</td>
</tr>
<tr>
<td>Access Time</td>
<td>TA</td>
<td>-215 ns</td>
<td>-215 ns</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Cycles Time TCR + TCS < 10ns</td>
<td>TC</td>
<td>1520</td>
<td>1520</td>
<td>1520</td>
<td>ns</td>
</tr>
<tr>
<td>Data Set Time</td>
<td>TWS</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>ns</td>
</tr>
<tr>
<td>Output Recovery Time</td>
<td>TOER</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td>ns</td>
</tr>
<tr>
<td>Read Recovery Time</td>
<td>TCRER</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>ns</td>
</tr>
<tr>
<td>Write Recovery Time</td>
<td>TOWR</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>ns</td>
</tr>
</tbody>
</table>

Capacitance

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Capacitance</td>
<td>CGS</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>pF</td>
</tr>
<tr>
<td>Output Capacitance</td>
<td>CQ</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>pF</td>
</tr>
</tbody>
</table>

Conditions
- VSS = 2.4V
- VCG = 0.5V to 12V
- VOS = 0.3V to 0.5V
- TSS = 25°C
- TREC = 25°C
DEVICE OPERATION

Basic Operation

The 4096 static bits of memory are organized in an array of 64 rows by 64 columns. The memory cells are loaded or interrogated by simultaneously decoding the X address A9 through A5 for the rows (see Block Diagram) and the Y address A4 through A1 for the columns. Each column contains a presence amplifier, the outputs of which are "OR-ed" and connected to the output TTL buffer. Each bit or memory cell is a standard flip flop consisting of R1, R2, Q2D, and Q4D with two access devices Q1D and Q3D (See Figure 4). The load resistors R1 and R2 are 60 megohms typical and connect to the VDD supply. Q1D and Q3D are used to connect the cell to the sense lines whenever the X access line is high. In the read mode the cell pulls one of the sense lines low from its normally high state. The selected presence circuit detects the differential voltage on the sense lines and amplifies it. In the write mode one sense line is forced low by the presence circuit and the selected cell assumes the state of the sense line.

Chip Select

The Chip Select controls the operation of the memory. When the Chip Select input is high the input address buffers, decoders, sensing circuits and output stages are held in the "off" state and power is supplied only to the memory elements. When the Chip Select input is pulled low, the memory is enabled. The Chip Select negative going edge clocks the TTL logic level addresses R/W, and data input into "D" type flip flops, and enables the output stage.

Data Output

While Chip Select is high, the output is high impedance to allow "wire-or" connections. When Chip Select goes low, the output data will be presented within the specified access time, and will remain until Chip Select goes high again. The output data signal is specified to drive any TTL series with good noise immunity at a fan-out of 1. Output data is inverted with respect to the input data.

Figure 4. MEMORY CELL

Figure 5. OUTPUT TEST LOAD

Figure 6. TYPICAL CHIP SELECT DRIVER
Figure 3. OPERATING IDD AS A FUNCTION OF CYCLE TIME

BLOCK DIAGRAM