TABLE OF CONTENTS

Introduction 1
Operating Instructions 2
Memory Diagnostic 6
Parts List 11
Assembly Instructions 12
Power Supply/Voltage Regulator Check Out 15
Principles of Operation 17
Warranty 20
Component Layout Diagram 21
Schematics 22

Copyright 1978 G. Morrow

Thinker Toys 1201 10th. Street, Berkeley, CA 94710
INTRODUCTION

The ECONORAM* was one of the first low cost fully buffered S-100 memory boards on the market. It made its appearance as the venerable 2102 1K memory chip made its way down the learning curve into high production. Today, the 2114 is at that same point on the volume/learning curve. It is natural then that a low density, low cost, fully buffered 16K static memory board based on the 2114 should be offered by the designer of the original ECONORAM. This time the name is SupeRam! The 2114 memory chip promises to be an even higher volume part than the 2102. This means the SupeRam memory boards will be faster, lower in power consumption, and (hopefully) cheaper with each passing of a milestone on the learning curve of the 2114 1Kx4 memory chip.

*Trademark of Godbout Electronics.
OPERATING INSTRUCTIONS

Whenever the SuperRam memory is plugged into or removed from the host computer, it is important that the power is off.

ADDRESSING

At the top of the circuit board are three eight-position DIP switches. The right two determine the addressing of the memory. (See illustration below for DIP switches 2 and 3. DIP switch 1 will be discussed later.)

In the 64K bytes of address space of the S-100 buss, there are sixteen blocks of 4K segments. The positions of the four switches above Blocks A through D determine which 4K segment of the address space the 4K blocks of the SuperRam will occupy. For example, if the switches above Block A are all on (up), Block A will occupy locations 000:000 through 17:377 octal or 0000 FFF hex. If the switches above Block B are on (15 through 13) and off (12), Block B will occupy memory locations 20:000 through 37:377 octal or 1000 through 1FFF hex.

Above each switch is an address bit that the switch corresponds to. Block positions are formed by making a hex digit pattern with each group of four switches. These hex digits represent the starting address of the block associated with the switches (when followed by three hex zeros). Following is a table of switch positions and corresponding starting addresses.
OPERATING INSTRUCTIONS

Starting Address	A	A	A	A	Corres-	Corresponding		
------------------	----	----	----	----	ponding	Binary		
	Hex	Octal	15	14	13	Hex Digit	Number	
0000	000:000	up	up	up	up	✓	0	0000
1000	020:000	up	up	up	down	1	0001	
2000	040:000	up	up	down	up	2	0010	
3000	060:000	up	up	down	down	✓	3	0011
4000	100:000	up	down	up	up	✓	4	0100
5000	120:000	up	down	up	down	✓	5	0101
6000	140:000	up	down	down	up	✓	6	0110
7000	160:000	up	down	down	down	7	0111	
8000	200:000	down	up	up	up	8	1000	
9000	220:000	down	up	up	down	9	1001	
A000	240:000	down	up	down	up	A	1010	
B000	260:000	down	up	down	down	B	1011	
C000	300:000	down	down	up	up	C	1100	
D000	320:000	down	down	down	up	D	1101	
E000	340:000	down	down	down	up	E	1110	
F000	360:000	down	down	down	down	F	1111	

Note: up = on; down = off.

The 74S287 PROM which is responsible for doing board selection and chip selection has been programmed in such a way that if any two (or more) of the groups of switches address the same block of memory, those two (or more) blocks will disappear from the address space of the S-100 buss. For instance, if all four blocks on the board had their address selection switches on (i.e., all starting at location zero), the board would never be selected and the host computer would behave as if the memory board was not plugged into the chassis.
OPERATING INSTRUCTIONS

WRITE PROTECTION LOGIC

The right most four switches of DIP switch #1 are devoted to write protection for the four blocks A, B, C and D. If the switch below A is on, block A is write protected. When this switch is on (up), it is impossible for the CPU to alter any of the 4096 memory locations spanned by Block A. When this switch is off (down), the processor can write into the memory locations of Block A. A similar set of circumstances holds for the switches below B, C and D. These switches have been arranged in the same order as the address selection switches (A to the left, D to the right) to help minimize errors when these switches are manipulated.

WR and MWRITE SELECTION

Some CPU boards do not generate the signal MWRITE which represents the "memory write" strobe function. The original Altair generated MWRITE on the front panel and not on the CPU board. Several other vendors of CPU boards copied this design and so, when this type of CPU is plugged into an S-100 buss board, very likely MWRITE will be absent. If this is the case, the switch below WR should be "on" while the switch below MEMW should be "off". If the signal MWRITE is indeed generated by the CPU board in the host computer, the switch below MEMW should be "on" while the switch below WR should be "off". At no time should both switches be on.
OPERATING INSTRUCTIONS

WAIT STATE

The memory chips included with SupeRam have a guaranteed access time of at least 450 ns over the entire 0-70°C temperature range. At 25°C (room temperature), the typical 2114 in this kit has access times between 175 and 250 ns. Although not guaranteed to run at 4 Mhz over the entire 0-70°C temperature range, the majority of the SupeRam kits currently being shipped will comfortably run at 4 Mhz.

If the host computer is running at 4 Mhz and the SupeRam does not function reliably at this speed, one of the two wait switches should be turned on (up) to produce one wait state of 250 ns. Some mainframes pre-empt PRDY (most notably the Altair front panel). If this is the case, the switch above XRDY should be turned on. Other mainframes pre-empt XRDY (the IMSAI front panel). If the host processor does indeed actively drive XRDY at all times, the switch above PRDY should be turned on.
MEMORY DIAGNOSTIC

The memory test described below was designed by Phil Meads of William Brobeck Associates to exercise the most sensitive circuitry of the memory chips -- the address buffers. The test starts from the middle and works its way outward alternately to the top and bottom of memory. This type of test inverts the address lines more often than sequential ones. This continual inversion process punishes and eventually breaks down weak or faulty address buffers in the device.

USING THE TEST

The test itself must be placed in an area which is different than the location of the board(s) to be tested. The test starts on a page boundary to make the task of relocating the binary code easier.

There are two parameters in the test to be set by the user:

(1) The number of 4K blocks to be tested -- keep in mind that there are four 4K blocks per board. This constant is called BLKCNT and is located at the eleventh byte of the test.

(2) The starting page number of the lowest 4K block to be tested is called PAGENO and is located at the ninth byte of the test.

When testing more than one 4K block of memory, be sure that they occupy contiguous memory.

The page number of the position of the test itself must be entered wherever a (YYY)g or (YY)16 occurs in the test listing. This is necessary because JMP and CALL need both the page number and the location within the page to execute correctly.

The only other thing to remember when loading the test is that it must be placed at the starting address of a page.

Start the test at the first instruction. Once started, the test will run continuously unless an error is detected. If the test encounters an error, all the data pertinent to this error is stored in the last ten locations of the test. After storing this data, the test comes to a dynamic halt at the label STALL. The test may be restarted by stopping the computer and restarting it at the POP PSW instruction following JMP STALL. The user may also restart the test from the beginning. If errors indicate the board is malfunctioning, return it as soon as possible for warranty service.
MEMORY TEST PROGRAM FOR 4K NMOS RAMS
(Octal)

YYY 000 061 175 YYY START LXI SP,STACK INITIALIZE STACK POINTER
003 001 000 000 LXI B,O INITIALIZE CYCLE COUNT
006 305 NEWCYL PUSH B UPDATE CYCLE COUNT
007 006 100 MVI B,PAGENO STARTING ADDR OF TEST MEM
011 016 002 MVI C,BLKNT # OF 4K BLOCKS TO TEST
013 041 377 007 LOOP LXI H,7:377Q HALF SIZE OF MEMORY -1
016 170 MOV A,B
017 204 ADD H CALCULATE MIDDLE
020 147 MOV H,A OF CURRENT BLOCK
021 345 PUSH H SAVE INITIAL ADDRESS
022 315 114 YYY WRITE CALL TWORD GET TEST WORD
025 167 MOV M,A STORE
026 315 123 YYY CALL COMP COMPLEMENT ADDRESS
031 315 114 YYY CALL TWORD GET TEST WORD
034 167 MOV M,A STORE
035 315 134 YYY CALL INCR COMPLEMENT & DECREMENT
040 302 022 YYY JNZ WRITE ADDRESS
043 341 POP H RECOVER INITIAL ADDRESS

YYY 044 315 114 YYY READ CALL TWORD GET TEST WORD
047 256 XRA M COMPARE
050 304 145 YYY CNZ ERROR
053 315 123 YYY CALL COMP COMPLEMENT ADDRESS
056 315 114 YYY CALL TWORD GET TEST WORD
061 256 XRA M COMPARE
062 304 145 YYY CNZ ERROR
065 315 134 YYY CALL INCR COMPLEMENT & DECREMENT
070 302 044 YYY JNZ READ ADDRESS

YYY 073 076 020 MVI A,20Q ADVANCE
075 200 ADD B THE
076 107 MOV B,A BLOCK
077 015 DCR C DECREMENT BLOCK COUNT
100 302 013 YYY JNZ LOOP
103 173 MOV A,E CALCULATE NEW
104 306 207 ADI 135 BASE FOR
106 137 MOV E,A TEST WORD
107 301 POP B
110 003 INX B INCREMENT CYCLE COUNT
111 303 006 YYY JMP NEWCYL

114 175 TWORD MOV A,L GET LOWER BYTE OF ADDRESS
115 007 RLC ROTATE
116 207 ADD A SHIFT
117 204 ADD H ADD HIGHER BYTE OF ADDR
120 203 ADD E ADD BASE
121 127 MOV D,A SAVE TEST WORD
122 311 RET
Y YY 123 174 COMP MOV A,H COMPLEMENT THE UPPER
124 356 017 XRI 17Q BYTE ADDRESS
126 147 MOV H,A WITH RESPECT TO MEM SIZE
127 175 MOV A,L COMPLEMENT THE LOWER
130 356 377 XRI 37Q BYTE OF THE
132 157 MOV L,A ADDRESS
133 311 RET

Y YY 134 315 123 YY INCR CALL COMP RESTORE ADDR TO NORMAL SIZE
137 053 DCX H DECREMENT
140 300 RNZ TEST IF LOWER BYTE ZERO
141 170 MOV A,B TEST UPPER BYTE EQUAL
142 075 DCR A TO BLOCK
143 274 CMP H BOUNDARY
144 311 RET

Y YY 145 345 ERROR PUSH H SAVE ERROR ADDRESS
146 305 PUS H B SAVE CURRENT BLOCK
147 325 PUS D SAVE TEST WORD
150 365 PUS PSW SAVE ERROR BITS
151 303 151 YY STALL JMP STALL DYNAMIC HALT
154 361 POP PSW RESTORE
155 321 POP D THE CPU
156 301 POP B STATE OF
157 341 POP H THE CPU
160 311 RET

Y YY 161 000 TABLE DB 0 FLAGS
162 000 DB 0 ACC - ONES ARE ERROR BITS
163 000 DB 0 E - CURRENT RANDOM OFFSET
164 000 DB 0 D - CURRENT TEST WORD
165 000 DB 0 C - CURRENT BLOCK COUNT
166 000 DB 0 B - CURRENT BLOCK PAGE
167 000 000 DW 0 HL - ERROR ADDRESS
171 000 000 DW 0 RETURN ADDRESS
173 000 000 DW 0 CYCLE COUNT
175 000 000 STACK DW 0
MEMORY TEST PROGRAM FOR 4K NMOS RAMS

(Hex)

YY 00 31 7D YY START LXI SP,STACK
03 01 00 00 LXI B,0
06 C5 NEWCYL PUSH B
07 06 40 MVI B,PAGENO
09 0E 02 MVI C,BLKCNT
0B 21 FF 07 LOOP LXI H,7:377Q
0E 78 MOV A,B
10 84 ADD H
12 07 MOV H,A
14 E5 PUSH H
12 CD 4C YY WRITE CALL TWORD
15 77 MOV M,A
16 CD 53 YY CALL COMP
19 CD 4C YY CALL TWORD
1C 77 MOV M,A
1D CD 5C YY CALL INCR
20 C2 12 YY JNZ WRITE
23 E1 POP H

YY 24 CD 4C YY READ CALL TWORD
27 AE XRA M
28 C4 65 YY CNZ ERROR
2B CD 53 YY CALL COMP
2E CD 4C YY CALL TWORD
31 AE XRA M
32 C4 65 YY CNZ ERROR
35 CD 5C YY CALL INCR
38 C2 24 YY JNZ READ

YY 3B 3E 10 MVI A,20Q
3D 80 ADD B
3E 47 MOV B,A
3F 0D DCR C
40 C2 0B YY JNZ LOOP
43 7B MOV A,E
44 C6 87 ADI 135
46 5F MOV E,A
47 C1 POP B
48 03 INX B
49 C3 06 YY JMP NEWCYL

YY 4C 7D TWORD MOV A,L
4D 07 RLC
4E 87 ADD A
4F 84 ADD H
50 83 ADD E
51 57 MOV D,A
52 C9 RET
YY 53 7C COMP MOV A,H
54 EE 0F XRI 17Q
56 67 MOV H,A
57 7D MOV A,L
58 EE FF XRI 377Q
5A 6F MOV L,A
5B C9 RET

YY 5C CD 53 YY INCR CALL COMP
5F 2B DCX H
60 C0 RNZ
61 78 MOV A,B
62 3D DCR A
63 BC CMP H
64 C9 RET

YY 65 E5 ERROR PUSH H
66 C5 PUSH B
67 D5 PUSH D
68 F5 PUSH PSW
69 C3 69 YY STALL JMP STALL
6C F1 POP PSW
6D D1 POP D
6E C1 POP B
6F E1 POP H
70 C9 RET

YY 71 00 TABLE DB 0 FLAGS
72 00 DB 0 ACC - ONES ARE ERROR BITS
73 00 DB 0 E - CURRENT RANDOM OFFSET
74 00 DB 0 D - CURRENT TEST WORD
75 00 DB 0 C - BLOCKS LEFT TO TEST
76 00 DB 0 B - CURRENT BLOCK PAGE
77 00 00 DW 0 HL - ERROR ADDRESS
79 00 00 DW 0 RETURN ADDRESS
7B 00 00 DW 0 CYCLE COUNT
7D 00 00 STACK DW 0
PARTS LIST

1 8" x 10" glossy photo
1 5" x 10" printed circuit board
3 SIP resistor packs
23 by-pass capacitors*
5 39 µf d tantalum capacitors
4 14-pin low-profile sockets
4 16-pin low-profile sockets
32 18-pin low-profile sockets
2 20-pin low-profile sockets
1 24-pin low-profile socket
3 8-position DIP switches
4 heat sinks
4 6-32 x 5/16 machine screws
4 6-32 hex machine screws
1 74LS154/74154 1 of 16 decoder
2 74LS240/74LS241/74LS244 octal tristate** buffer
4 74LS266 quad exclusive nor gates
1 74S287/82S129/6301 4x256 PROM
1 74S288/82S123/6331 8x32 PROM
1 74368 hex tristate** inverting buffer
1 74LS368 hex tristate** inverting buffer
32 2114 4 x 1k static PROMs
4 7805/340.5 monolithic 5 volt regulators

*by-pass capacitors will vary in value between .01 µf d and .1 µf d.

**tristate is a trademark of National Semiconductor.
ASSEMBLY INSTRUCTIONS

DO NOT INSTALL OR SOLDER ANY PARTS UNTIL YOU HAVE READ THESE INSTRUCTIONS SEVERAL TIMES AND HAVE FULLY DIGESTED THE INFORMATION!

CAUTION - DO NOT SOLDER OR CLIP COMPONENT LEADS WITHOUT USING SAFETY GLASSES!

INSPECTION

Use the parts list to make sure that there are no missing items in your kit. Please notify us of any shortages. Be sure to check for missing parts before you start assembling.

SOCKETS

A socket is furnished for every integrated circuit. It is important that you use the sockets; otherwise, a defective part will be extremely difficult to replace.

NO REPAIR OR SERVICE WILL BE PERFORMED ON A CIRCUIT BOARD WHICH HAS HAD INTEGRATED CIRCUITS SOLDERED TO IT.

PARTS ORIENTATION

In all references throughout the instructions, the convention used is that the gold edge connector is the bottom of the board. Orientation identification is molded into the plastic of the sockets either with numbers or in the manner illustrated below.

This orientation mark or an embossed "1" identifies where pin #1 of the integrated circuit is to be positioned when inserted into the socket. The sockets should be inserted in the board so that the orientation mark is in the upper right hand corner.
ASSEMBLY INSTRUCTIONS

The tantalum capacitors should be oriented so that the red strip or positive mark is to the left when the part is inserted in the board. The three DIP switches at the top of the board should be positioned so that switch #1 is to the left.

The SIP resistor packs have an orientation dot at one end. The pin associated with this dot is the common point of the nine resistors in this package and must be to the right when the parts are soldered to the board.

SOLDERING AND SOLDER IRONS

The most desirable soldering iron for complex electronic kits is a constant temperature soldering iron with an element regulated at 650° F. The tip should be fine so that it can be brought in intimate contact with the pads of the circuit board. Both Unger and Weller have excellent products which fit the above requirements.

There are three important soldering requirements for building this kit:

1. Do not use an iron that is too cold (less than 600° F) or too hot (more than 750°).

2. Do not apply the iron to a pad for extended periods.

3. Do not apply excessive amounts of solder.

The proper procedure for soldering components to the circuit board is as follows:

1. Bring the iron in contact with both the component lead and the pad.

2. Apply a small amount of solder at the point where the iron, component lead, and pad all make contact.

3. After the initial application of solder has been accomplished with the solder flowing to the pad and component lead, the heat of the iron will have transferred to both the pad and the lead. Apply a small amount of additional solder to cover the joint between the pad and the lead. **DO NOT PILE SOLDER ON THE JOINT! EXCESSIVE HEAT AND SOLDER CAUSE PADS AND LEADS TO LIFT FROM THE CIRCUIT BOARD. EXCESSIVE SOLDER IS THE PRIMARY CAUSE FOR BOARD SHORTS AND BRIDGED CONNECTIONS.**
ASSEMBLY INSTRUCTIONS

PARTS INSTALLATION

Install:

- Sockets 1B-8B, 1C-8C, 1D-8D, 1E-8E, 18-pin low-profile. Pin #1 to upper right.
- Sockets 1F, 2F, 2H, 8H, 16-pin low-profile sockets. Pin #1 to upper right.
- Sockets 3F, 4F, 3H, 4H, 14-pin low-profile sockets. Pin #1 to upper right.
- Sockets 5F, 5H, 20-pin low profile. Pin #1 to upper right.
- Socket 7H, 24-pin low-profile. Pin #1 to upper right.
- C1-C5, 39 μfd tantalum capacitors. Orientation mark to the left. .6" wide.
- By-pass capacitors (23) as shown on the silk screen legend on the circuit board.
- DIP switches 1, 2 and 3. Switch #1 of each DIP is to the left.

7805/LM340.5 5-volt regulators (4) by bending the leads, inserting and hand tightening the nut and bolt through the regulator, heat sink, and circuit board. Solder the leads. If heat sink grease is available, apply a thin film between the board, heat sink and regulator before soldering the leads. Finally, tighten the nut.
POWER SUPPLY/VOLTAGE REGULATOR CHECK OUT

Voltage requirements: (reference to ground - pins 50 and 100)

Pins 1 and 51: not less than 7 volts approx. 2000 ma
not more than 10 volts

Before installing any of the integrated circuits, apply power to
pins 1 and 51 as specified above. Power can come from external supplies or
from a host computer. After applying power, perform the following measure-
ments:

(1) 1F pin 16 +5 volts
(2) 2H pin 16 +5 volts
(3) 3H pin 4 +5 volts
(4) 4H pin 14 +5 volts
(5) 5H pin 20 +5 volts
(6) 7H pin 24 +5 volts
(7) 8H pin 16 +5 volts

If the voltage at any of the check points differs by more than 5% of
the required value, return the board for warranty/repair trouble shooting.

POWER-UP CHECK OUT

Install the integrated circuits as per the layout sheet. Be very care-
ful not to bend pins of the ICs under the package. Often a pin which is bent
under an IC appears to be inserted in the socket. REMEMBER: BENT PINS ARE
THE MOST COMMON REASON FOR A MALFUNCTIONING BOARD!

After the parts have been installed, repeat the seven voltage measure-
ments specified in the previous section. If the test points differ from the
required values, the board should be returned. Under no circumstance should
sockets be removed from the board. Such abuse may void the warranty under
which repair and service is performed.

SYSTEM CHECK OUT

Select four different bank positions for the four blocks of memory on
the board. Make sure that the write protect switches are all off. Select
PWR or MWRITE (switches number 3 and 4 of DIP switch #1) as appropriate for
the host computer. Finally, qualify XRDY or PRDY if the host computer is
running at 4 Mhz (switches number 1 and 2 of DIP switch #1). Normally, both
switch #1 and #2 of DIP switch #1 should be off. Next, plug the board into
System Check Out

an empty slot of the main frame and apply power. Examine several locations in each of the four different blocks and verify that all zeros and all ones can be written into and read from each of the four 1K sub-blocks of each 4K block.

Finally, a memory test (either the one included in this manual or one of your own choosing) should be run for several hours over the entire 16K. After completion of these steps, the memory is ready for use in your mainframe.
PRINCIPLES OF OPERATION

ADDRESS SELECTION

Sixteen address switches are set up to select memory as four independently addressable blocks of 4K bytes each. The first four address switches of DIP switch #2 set memory address for the first 4K block and the second four switches set memory address for the second 4K block; the first four switches of DIP switch #3 set memory address for the third 4K block and the second four switches set memory address for the fourth 4K block.

Each address switch is connected to an open-collector exclusive NOR gate and pull-up resistor so that if the switch is closed, less than .6 volts pass, producing a logical 0. If the switch is open, more than 2.4 volts pass, producing a logical 1. The logical values of the voltages passing through each address line and its switch line are compared, determining the signal sent to the select line: if both the address line and the switch line equal logical 1 or both equal logical 0, that selecting signal is high, but if they do not equal each other, that selecting signal is low. When each pair in each set of four lines match, producing a high signal (whether through matching at logical 0 or logical 1) the corresponding 4K block of memory is selected; if the pairs of lines do not match (for example, if three pairs produce a high signal but one produces a low signal) the memory block is not selected.

<table>
<thead>
<tr>
<th>Input</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Off</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>On</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>On</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Off</td>
</tr>
</tbody>
</table>

These select lines enter PROM 74S287/82S131/6301, effectively a 4 to 2 encoder, which ultimately selects the memory boards and chips to be used. It combines the select signals with five other bus signals as discussed below. Provided that PHANTOM is high while SOUT, SINP, and SINP are low, BD ENBL will be low. When BD ENBL is low, STB BUFFER goes low if PDBIN goes high and vice versa. STB BUFFER acts to enable the 74LS240/241/244 input data buffers to transfer data from the memory to the CPU. (If PHANTOM is low, all other signals will be ignored and addressing is not enabled. If either SINP or SOUT is high, an input or input instruction is occurring and the address lines are ignored. If PDBIN is low, signals are moving from the CPU to the memory board. If SINTA is low, the unit will work as memory; if it is high, other signals will be ignored.)
Principles of Operation

Pin 9 of the 74S287/6301 PROM will be referred to as BLOCK SELECT I (BS I) and Pin 10 as BLOCK SELECT II (BS II). If SELECT A is the only high select line, both the BS I and BS II lines will equal logical 0; if SELECT B is the only high select line, BS I line will equal logical 0 and BS II line will equal logical 1; if SELECT C is the only high select line, BS I line will equal logical 1 while BS II line will equal logical 0; if SELECT D is the only high select line, both BS I and BS II lines will equal logical 1. If two or more select lines are high, STB BUFFER and BD ENBL signals will remain high and no block will be selected.

In addition to these BS I and II lines entering decoder chip 74154 are two address lines, A10 and A11. These four lines, governed by the BD ENBL signal, select two of thirty-two chips, each pair of chips containing 1K by 8 bits (1K bytes) of memory. If BD ENBL is high, all chip selects are high and no chips are selected. If BD ENBL is low, one chip pair is selected by matching the logical values of the two BLOCK SELECT lines and the two address lines as shown in the following table:

<table>
<thead>
<tr>
<th>A10</th>
<th>A11</th>
<th>BS I</th>
<th>BS II</th>
<th>Selected Pair</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>15</td>
</tr>
</tbody>
</table>

Each chip contains ten address lines, four (bidirectional) input/output data lines, a 5 volt power supply, a ground, and a write line (low for writing and high for reading). Additionally, memory chips and buffers are tri-state and when enabled can transmit a high signal to turn the data buffers on or a low signal to turn the data buffers off, or they can transmit no signal (completely off).
Principles of Operation

WRITE OPERATION

Four write-protect switch lines enter PROM 74S288, each switch governing one 4K block of memory. Additionally, the PWR line carries signals from the CPU (or, in some computers, the PWR, front panel write, and low SOUT combine to produce a MWRITE signal) to enable writing. During a write operation, PDBIN is low, and PWR is low and/or MWRITE is high. Signals enter the PROM and when combined with signals from write-protect switches in the unprotected mode emit a write enable signal.

READ OPERATION

To read, PDBIN is high, and PWR is high and/or MWRITE is low. When an address is selected (see "Address Selection"), the STB BUFFER enables the output buffers of the selected board which then buffer data from the selected chip through the input data buss lines.

WAIT STATE

To allow guaranteed operation at 4 MHz with standard speed 2114 parts, two switches of DIP Switch 1 are set aside to invert PSYNC through the 74368 tri-state buffer to conditionally drive either XRDY or PRDY low to produce one wait state during a memory cycle which addresses the board.

OCTAL BUFFERS

For writing and reading, data buffers containing eight input and output lines are used. These buffers may or may not invert signals, but in SupeRam the buffers are paired so that signals are consistently inverted or not inverted and the 74S288 PROM can be programmed to set enabling at a low or high value.
WARRANTY

Parts are warranted to be free from defects in material and workmanship. Defective parts returned postpaid will be exchanged free of charge. SupeRams purchased in kit form are warranted for six months from date of invoice; SupeRams purchased as assembled units are warranted for one year from invoice date. Malfunctioning units will be repaired, tested, and returned with a minimal charge for postage/handling if in the opinion of Morrow's Micro-Stuff or Thinker Toys care has been exercised in their assembly and/or use. Warranty is void if on inspection by Morrow's or Thinker Toys it is found that the product has been subject to improper assembly or abuse. Charges will be assessed accordingly for repair parts and labor if the unit is determined to be repairable. Repair fees will not exceed $25.00 unless prior approval has been obtained from purchaser.

The foregoing warranty is in lieu of all other warranties expressed or implied and in any event is limited to product repair or replacement.

Please note: a registration card is enclosed with each Thinker Toy product; please return to record your warranty.