VIDEO DISPLAY BOARD

IA-1100

Instruction Manual

Issued Nov., 1978

Revised May, 1979

© Ithaca Audio 1978

All rights reserved
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE OF CONTENTS</td>
<td>X</td>
</tr>
<tr>
<td>FEATURES</td>
<td>1</td>
</tr>
<tr>
<td>ASSEMBLY INSTRUCTIONS</td>
<td>2</td>
</tr>
<tr>
<td>BOARD ASSEMBLY</td>
<td>2</td>
</tr>
<tr>
<td>DIP SWITCH SELECTION</td>
<td>4</td>
</tr>
<tr>
<td>CIRCUIT DESCRIPTION</td>
<td>5</td>
</tr>
<tr>
<td>MASTER TIMING</td>
<td>5</td>
</tr>
<tr>
<td>SCREEN MEMORY</td>
<td>7</td>
</tr>
<tr>
<td>CHARACTER GENERATION</td>
<td>8</td>
</tr>
<tr>
<td>CURSOR</td>
<td>9</td>
</tr>
<tr>
<td>DEBUG INSTRUCTIONS</td>
<td>11</td>
</tr>
<tr>
<td>VISUAL</td>
<td>11</td>
</tr>
<tr>
<td>VOLTAGES</td>
<td>11</td>
</tr>
<tr>
<td>TIMING CHAIN</td>
<td>12</td>
</tr>
<tr>
<td>Character Clock</td>
<td>12</td>
</tr>
<tr>
<td>Horizontal Timing</td>
<td>14</td>
</tr>
<tr>
<td>Line Counter</td>
<td>16</td>
</tr>
<tr>
<td>Row Counter</td>
<td>18</td>
</tr>
<tr>
<td>VIDEO</td>
<td>18</td>
</tr>
<tr>
<td>SYNC</td>
<td>20</td>
</tr>
<tr>
<td>BUS ACCESS</td>
<td>20</td>
</tr>
<tr>
<td>CURSOR</td>
<td>20</td>
</tr>
<tr>
<td>VIDEO SOFTWARE DRIVER</td>
<td>22</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----</td>
</tr>
<tr>
<td>REVISION LIST</td>
<td>25</td>
</tr>
<tr>
<td>REVISION A</td>
<td>26</td>
</tr>
<tr>
<td>PARTS LIST</td>
<td></td>
</tr>
<tr>
<td>LAYOUT DIAGRAM</td>
<td></td>
</tr>
<tr>
<td>EVALUATION</td>
<td></td>
</tr>
<tr>
<td>SCHEMATIC</td>
<td></td>
</tr>
</tbody>
</table>
FEATURES

* 16 lines of 64 characters each
* Full upper/lower case ASCII character set, numbers, symbols, and Greek letters
* Characters are composed of 7 x 9 dot matrix in an 8 x 10 field
* Selectable display modes, normal or reverse video, blinking character
* Memory addressable to any 1K page
* Software driver simulates TTY, provides full cursor control (up, down, forward, back, home, and flashing), scrolling and paging
* Convenient composite video out connector, RCA phono plug
* 50 - 60 Hz jumper option, compatible with European requirements
* Compatible with CP/M or Ithaca Audio's K3 Operating System
* All 6-100 lines fully buffered
ASSEMBLY INSTRUCTIONS

BOARD ASSEMBLY

1) Install sockets for U1 through U35, U37, and URL (U36 is a spare position). Be sure you don't accidentally solder an IC socket in the upper right hand corner of the board. A DIP switch is normally mounted in this position. DO NOT INSTALL ANY IC'S UNTIL AFTER THE POWER SUPPLY HAS BEEN CHECKED OUT.

2) Install an eight position DIP switch (SPST) in the upper right hand corner of the board. This location is not designated with any IC number. Position # 1 on top.

3) Install a .001 uf (1000 pf) at 15 volts (or higher) capacitor in locations C1 and C7.

4) Install .01 to .1 uf bypass capacitors in locations C8, C10, C11, C12, C18, C19, and C21. These are simply bypass capacitors and their exact value is not critical, although they should be at least .01 uf at 15 volts.

5) Install a 10 pf at 15 volts (or higher) capacitor in location C2.

6) Install a 10 uf at 15 volts (or higher) electrolytic capacitor in locations C3, C4, C14, C15, and C16. A tantalum capacitor is ideal but ordinary aluminum electrolytics are perfectly adequate. With the board facing you and the edge connector down, C3 and C4 are installed with their positive end on your right. C14, C15, and C16 should be installed with their positive end on your left.

7) Install a .1 uf at 15 volts (or higher) capacitor in locations C5, C6, and C20.

8) Install a 100 uf at 12 volts (or higher) electrolytic capacitor in location C9. The positive end should face down.

9) Install a 470 pf at 15 volts (or higher) capacitor in location C17.

10) Install a 1 to 10 uf electrolytic capacitor at 10 volts (or higher) in location C22. The positive end should face up.

11) Install a 390 ohm 1/4 watt resistor in locations R1 and R2.

12) Install a 4.7K ohm DIP resistor pac in location URL (R6 thru R12). Install a 4.7K ohm, 1/4 watt resistor in location R3, R4, R14 and R23.

13) Install a 2.7K ohm 1/4 watt resistor in locations R5 and R13.

14) Install a 10K ohm 1/4 watt resistor in locations R15 and R22.
16) Install a 100 ohm 1/2 watt resistor in location R16.
17) Install a 330 ohm 1/4 watt resistor in location R17.
18) Install a 270 ohm 1/4 watt resistor in location R18.
19) Install a 75 ohm 1/4 watt resistor in location R19.
20) Install a 1000 ohm 1/2 watt resistor in location R20.
21) Install a 5.6 megohm 1/4 watt resistor in location R21.
22) Install a 7305 (12N3487-5) in locations Q1 and Q2. The voltage regulators should be greased but no heat sink is needed since the current drain on each regulator is well under 1/2 amp.
23) Install a 50K ohm trimpot in locations UP1 and UP2. The trimpots are 1 inch in-line miniatures, such as D26503 ALLEN-BRADLEY.
24) Install the crystal in location Y1. The crystal should be 13,473 MHz if jumper J1 is installed (recommended) and 12.636 MHz if jumper J1 is not installed. Strap the crystal down by soldering a wire across the crystal in the mounting holes provided.
For explanation of J1, refer to page 5.
25) Install a 12 volt zener diode in location Y1. The cathode band end should be on the left.
26) Install J2.
27) Install RCA phono jack, female receptive, such as JEM PJPS116-1 or JEM SQ 3001 in the upper left edge. Insert output cable with male RCA plug.
At this point the board should be completely populated but no ICs should be installed. Insert the card into the computer and measure the voltages on pins 1, 2 and 3 of U12. The voltages should be -5.5, +5 and +12 plus or minus 5% respectively. If the voltages do not check out, examine the zener diodes and Q1. Make sure the diodes are installed properly and check to see if there are any shorts. Measure the voltage on pin 15 of U30. It should be 5 volts plus or minus 5%. When all the voltages check out, the integrated circuits may be installed.
DIP SWITCH SELECTION

POSITION 1: (Top of Board) When switch is on (shorted), normal video is displayed (white on black). When switch is off, reverse video is displayed.

POSITION 2: When switch is on, a solid cursor block is displayed. When switch is off, a blinking cursor block is displayed.

POSITION 3: Determines A15 of board address. On 0, Off 1.

POSITION 4: Determines A14 of board address. On 0, Off 1.

POSITION 5: Determines A13 of board address. On 0, Off 1.

POSITION 6: Determines A12 of board address. On 0, Off 1.

POSITION 7: Determines A11 of board address. On 0, Off 1.

POSITION 8: Determines A10 of board address. On 0, Off 1.
CIRCUIT DESCRIPTION

The IA-1100 can be broken down into essentially five functional blocks: 1) Master timing and sync generation; 2) screen memory; 3) character generation; 4) cursor; 5) and computer interface.

MASTER TIMING

Two inverter gates (U7) connected as a feedback pair with a series resonant crystal (Y1) form a crystal controlled oscillator. This oscillator (typically 13.478 mHz or 12.636 mHz) defines the period for one dot and is referred to as the DOT CLOCK. Since the IA-1100 uses a high resolution 7 x 9 character generator, it is required that 9 DOT CLOCK periods form a complete character along the horizontal. Seven dots are displayed and two dots provide space between characters. U26 provides this character timing by dividing the DOT CLOCK by nine. U26 is preset to 7 by its own carry to provide the proper division. Two outputs are supplied by U26; the LOAD CLOCK, which is an active low signal of one DOT CLOCK duration, and the CHARACTER CLOCK, which is high for 4 and low for 5 DOT CLOCK periods. The positive going edge of the LOAD CLOCK and the CHARACTER CLOCK occur simultaneously.

The CHARACTER CLOCK is counted by U11 and U18. This pair of binary counters is preset to 31 hex (or 37 hex) and count to 90 hex. Thus they count either 96 or 90 CHARACTER CLOCKS. The choice of either 96 or 90 CHARACTER CLOCKS is provided by jumper J1. When it is installed U18 and U11 count 96 CHARACTER CLOCKS and a 13.478 mHz crystal must be used. When the jumper is left out, 90 CHARACTER CLOCKS are counted and a 12.636 mHz crystal must be used.
The preset of U11 and U18 define the left hand margin of the display. Counts 40 hex through 7F hex define the 64 successive displayed character positions and counts 80 hex through 8F hex define the right hand margin. The outputs of U18 provide the 4 lowest order address bits (A0, A1, A2, and A3) to the screen memory. The QA and QB outputs from U11 provide the two higher order address bits (A4 and A5). The QC output from U11 controls the horizontal margin blanking. When QC is low, the screen is blanked; when it is high, characters can be displayed. The QD output from U11 provides the horizontal sync advance and will be discussed later in this section.

When U11 reaches a count of 9, the output of nand gate U9 presets U11 and U18 back to a count of 31 hex (or 37 hex) and the horizontal cycle repeats itself.

At the same time the preset of U11 and U18 occurs, the ROM counter U25 is incremented. The ROM counter counts the horizontal scan lines that make up a row of characters and supplies the line number to the character generator ROM. The ROM counter is preset to a count of 15 and counts from 0 to 11. Therefore it counts 13 horizontal lines per character. U13, U14, and U15 decode the output from the ROM counter and supply it with a load pulse when it reaches a count of 11. This load pulse is used to preset the ROM counter to 15.

The load pulse which presets the ROM counter also increments the row counters U27 and U28. The row counters count the number of rows which are displayed and supply the screen memory with the four highest order address lines (A6, A7, A8, and A9). The row counters are preset to zero
and count to 19. When count 19 is reached, nand gate U17 supplies U27 and U28 with a load pulse and resets them back to count zero.

The row counters also supply the signals that provide vertical margin blanking. When U27 and U28 reach a count of 16, they provide a signal which blanks the screen (QA output of U27). This blanking is needed so only 16 rows are displayed and no "Wrap Around" occurs. This same signal is also used to create the vertical sync advance.

The vertical sync advance line is used to trigger a dual monostable multivibrator U16. One-half of U16 is used to generate a user adjustable delay pulse. The width of this pulse is adjusted by VR1. This pulse is then used to trigger the other half of U16 which provides a vertical sync pulse (typically 700us). By setting VR1 the user can then adjust the vertical sync timing with respect to the video output, thus allowing the vertical position to be "adjusted" to the particular monitor used.

The horizontal sync advance line, mentioned earlier, is used in much the same way as the vertical sync advance line. The QD output from U11 is used to trigger one-half of a monostable, U8, which generates a delay determined by VR2. This delayed generator is used to trigger the other half of U8 which provides the horizontal sync pulse (typically 3us). By setting VR2 the user can then adjust the horizontal sync timing with respect to the video output, thus allowing the horizontal positioning to be "adjusted" in much the same manner as the vertical.

SCREEN MEMORY

The screen memory (U20, U21, U22, U23, U31, U32, U33, and U34)
consist of eight 250ns 2102's. All of the screen memory chips are held enabled (pin 13 low). Memory addressing is provided by four tri-state buffers (U19, U29, U30 and U35) which select addressing from one of two possible sources: external address from the computer or internal character address from U11, U18, and U28. The computer always has priority with respect to the screen memory and the write enable input (pin 3) to the screen memory chips is active only when the computer is doing a screen write operation.

CHARACTER GENERATION

The outputs from the screen memory are connected to the character inputs of U12, the character generator ROM. This ROM has seven character address inputs, four row select inputs, and seven data outputs. The row select inputs, as mentioned earlier, are connected to the row counter U25. The data outputs are connected to U5, a synchronous parallel-in serial-out shift register.

U5 is loaded by the LOAD CLOCK and shifted by the DOT CLOCK. The serial output line of U5 (pin 13) is connected to an exclusive-or gate (U4). This gate performs an exclusive-or operation between the shifted serial output and the cursor control circuitry to provide an "inverted video" cursor block.

The output of the previously mentioned exclusive-or gate is then routed to U2, a four input nand gate. This gate combines all of the blanking signals (horizontal blanking, vertical blanking, and board-enable blanking) with the video.

The output of U2 is sent through another exclusive-or gate, U4,
which allows the entire screen to be inverted (black on white). This option is provided by the first position on the dip switch. When the switch is on, normal video (white on black) is displayed. When the switch is off, reverse video (black on white) is displayed.

The output of the inverted video exclusive-or gate is connected to U1, the video output gate. U1 combines the video signal with the horizontal and vertical sync pulses that are generated by the previously mentioned one-shots, U8 and U16. R17, R18, and R19 set the voltage ratios of the video level and the sync level. The final video output is coupled through the output capacitor, C9.

CURSOR

A CMOS inverter, U6, is connected as a self oscillating RC feedback oscillator. The .5 second period of this oscillator is set by R21 and C20. The output of this oscillator is connected to R22 and then inverted by another gate in U6. The input to this gate can be shorted to ground by switch position 2 on the dip switch, thus allowing the cursor to appear as a solid inverted video block or as a hardware blinking inverted video block (when the switch is on, the cursor is solid - when it is off, it will blink).

The output of the gate described above is connected to the reset line on U3, a "D" type flip-flop. U3 is used to clock the data from bit 7 of the screen memory to the previously described video inversion exclusive-or gate, U4. When the output of U6 is low, U3 is held in a reset state and no video inversion occurs. When the output of U6 is high, video inversion can occur if bit 7 of the screen memory is high, thus the cursor
will appear to blink.

Any character in the screen memory can appear as an inverted video cursor simply by setting bit 7 of that character location high.
DEBUG INSTRUCTIONS

1) Visual Check: CAREFULLY (95% of problems come from these errors)
 1.1 Pins bent under sockets
 1.2 Pins folded out
 1.3 Solder splashes
 1.4 Cold solder, missing solder

INSERT BOARD: Remove all other boards: Turn on machine

2) Check Voltages:
 2.1 plus 5 volts at plus of C3
 2.2 plus 5 volts at plus of C4
 2.3 minus 3.3 volts at minus of C16
 2.4 plus 12 volts at plus of C15
3) Timing Chain

It is not possible to debug the timing chain without an oscilloscope. If there is no scope available, return board to factory. See instructions in warrantee.

3.1 Character Clock: See Fig. 1

A) Dot Clock: Check at IC 26 pin 2
 This signal is a square wave with period of 75 nsec

B) Load Clock: Check at IC 26 pin 11
 74 nsec low, 600 nsec high

C) Character Clock: Check at IC 7 pin 10
 300 nsec high, 375 nsec low

D) AO at IC 18 pin 14
 Square wave with period of 1.35 usec
 Also check at IC 34 pin 7

E) (not on Fig. 1)
 AI at IC 18 pin 13
 Square wave with period of 2.7 usec
 Also check at IC 34 pin 5

F) A2 at IC 18 pin 11
 Square with period of 10.8 usec
 Also check at IC 34 pin 15

G) A3 at IC 18 pin 11
 Square with period of 10.8 usec
 Also check at IC 34 pin 14
CHARACTER CLOCK TIMING
(all times in (nsec) nanoseconds)

FIG. 1
3.2 Horizontal Timing: See Fig. 2

A) High count enable at IC 11 pins 7 and 10
Narrow high going pulse with period of 10.8 usec

B) A4 at IC 11 pin 14
Square wave with period of 21.6 usec
Also check at IC 34 pin 2

C) A5 at IC 11 pin 13
See Fig. 2 for timing
Also check at IC 34 pin 1

D) Horizontal screen blank at IC 11 pin 12
43.2 usec high, 21.6 usec low
Screen blanked while low

E) Horizontal Sync Adv at IC 11 pin 11
10.8 usec low, 54 usec high

F) Horizontal Reset at IC 11 pin 9
Narrow negative pulse with period of 64.8 usec
HORIZONTAL TIMING
(all times in μsec microsec)
FIG. 2
3.3 Line Counter: See Fig. 3

A) Line Clock at IC 9 pin 11
 Narrow negative going pulse with period of 64 usec

B) Line Bit 0 (QA output) at IC 25 pin 14
 See Fig. 3 for Timing

C) Line Bit 1 (QB output) at IC 25 pin 13
 See Fig. 3 for Timing

D) Line Bit 2 (QC output) at IC 25 pin 12
 See Fig. 3 for Timing

E) Line Bit 3 (QD output) at IC 25 pin 11
 See Fig. 3

F) Line Reset (load input) at IC 25 pin 9
 Narrow negative pulse with period of 832 usec
LINE COUNTER TIMING
(all times in μsec microseconds)

FIG. 3
3.4 Row Counter: See Fig. 4

A) Row Clock at IC 25 pin 9
 Negative pulse with period of .83 msec

B) A6 (Q0 output) at IC 28 pin 14
 Square wave with period of 1.664 msec
 Also check at IC 34 pin 4

C) A7 (Q1 output) at IC 28 pin 13
 Square wave with period of 3.328 msec
 Also check at IC 34 pin 16

D) A8 (Q2 output) at IC 28 pin 12
 See Fig. 4
 Also check at IC 34 pin 6

E) A9 (Q3 output) at IC 28 pin 11
 6.656 msec high, \approx 10 msec low
 Also check at IC 34 pin 8

F) Vertical Sync Adv at IC 27 pin 14
 13.312 msec low, 3.32 msec high

G) Row Counter Reset (load input) at IC 27 pin 9
 IC 28 pin 9
 Negative pulse with period of 16.64 msec

4) Video

A) Access Blanking: At IC 2 pin 12
 Should be high unless board is Accessed

B) Open switch at Position 1
 Check IC 4 pin 11 for presence of high frequency video signal

C) Close switch at Position 1
 Video should invert
5) Sync: See Fig. 5

A) Horizontal delay at IC 8 pin 4
 Pulse width should vary with adjustment of HPOS control VRZ
 from 750 nsec to 8 usec

B) Horizontal sync at IC 4 pin 1
 low 60 usec, high 4.5 usec

C) Vertical Delay at IC 16 pin 4
 Pulse width should vary with VPOS control (VR1)
 from 200 usec to 3 msec

D) Vertical Sync at IC 4 pin 2
 Low 16.6 msec, high 190 usec

E) Composite Sync at IC 4 pin 3

6) Bus Access

Plug a CPU into the computer and connect the front panel.
Close switches at Positions 3 thru 8.
Turn on and hit rest and examine location \varnothing

A) ENABLE at IC 37 pin 9
 Should be low

B) ACCESS BLANK at IC 10 pin 8
 Should be low

C) ADDRESS MUX
 at IC 19 pin 1 - should be high
 at IC 19 pin 15 - should be low

D) Deposit each data bit, one at a time.
 These should then appear on the front panel data lights.

E) Check IC 34 pins 8, 6, 16, 4, 1, 2, 15, 14, 5, 7
 All should be low

F) Examine location \varnothing3FF
 Repeat step E but all should be high

7) Cursor

A) Cursor Blink at IC 6 pin 13
 Square wave with period of 1 sec

B) Open switch at Position 2
 Deposit FF at location \varnothing
 Connect video monitors
 Cursor should blink
VIDEO DISPLAY DRIVER 5/4/78

A E000

E000 0005 *
E000 0010 *
E000 0015 *SOFTWARE VIDEO DRIVER FOR IA-1100, VB1-B, & VDM
E000 0020 *
E000 0025 *CHANGE SCROLLING SPEED BY TYPING A NUMBER DURING OUTPUT
E000 0030 * (1=FAST,-2=SLOW)
E000 0035 *
E000 0040 *STOP DISPLAY BY TYPING SPACE BAR, RESTART BY TYPING
E000 0045 * ANY OTHER CHARACTER
E000 0050 *
E000 0055 *CALL ROUTINE AT 'STRT' WITH CHARACTER IN ACCUMULATOR
E000 0060 *
E000 0065 *NOTE: A SCREEN CLEAR (CTRL-L) MUST BE FIRST CHARACTER SENT
E000 0070 * TO DRIVER UPON SYSTEM INITIALIZATION TO SET UP SCREEN
E000 0075 * AND PROPER SCROLLING
E000 0080 *
E000 0085 *MAY BE PLACED IN PROM IF SCRATCHPAD RAM IS PROVIDED
E000 0090 *
E000 0095 * FOR 'VDMP' AND 'NEWSP', ALSO: THIS DRIVER USES
E000 0100 *
E000 0105 * ABOUT 16 BYTES OF THE USER'S STACK.
E000 0110 *

E000 E5
E001 D5
E002 C5
E003 F5
E004 2A D2 E0
E005 FE 00
E006 CA 2B E0
E007 FE SF
E008 CA 2F E0
E009 FE 0C
E010 CA B0 E0
E011 FE 20
E012 DA 6D E0
E013 77
E014 18
E015 23
E016 36 40
E017 C3 34 E0
E018 36 20
E019 28
E020 C3 1D E0
E021 36 20
E022 7D
E023 E6 C0
E024 C6 40
E025 6F
E026 00
E027 8C
E028 67
E029 22 D2 E0
E030 3E 7F
E031 A5
E032 C2 6D E0
E033 36 20
E034 21 CO CF

0115 STRT PUSH H ;SAVE SYSTEM REGISTERS
0120 PUSH D
0125 PUSH B
0130 PUSH PSW ;CHARACTER IN ACCUM.
0135 LHLD VDMP ;GET SCREEN POSITION POINTER
0140 CPI 00H ;IS IT A CARRIAGE RETURN?
0145 JZ CR ;YES; SCROLL; OUTPUT A CR
0150 CPI 5FH ;IS IT AN UNDERLINE(BACKSPACE)?
0155 JZ BS ;YES; MOVE CURSOR BACK
0160 CPI 0CH ;IS IT A CTRL-L (FORM FEED)
0165 JZ CLEAR ;YES-ERASE ENTIRE SCREEN
0170 CPI 20H ;DON'T DISPLAY CONTROL CHARACTERS
0175 JC SPEED ;EXIT TO CHANGE SPEED
0180 MVI M,A ;IT MUST BE DATA
0185 INX H ;UPDATE SCREEN POSITION
0190 MVI M,00H ;PUT CURSOR ON SCREEN
0195 JMP LINOV ;TEST FOR LINE OVERFLOW
0200 BS MVI M,20H ;REMOVE CURSOR
0205 DBX H ;BACK UP POINTER
0210 JMP BS-5
0215 CR MVI M,20H ;CHAR IS A CARRIAGE RETURN
0220 MOV A,L ;UPDATE NEXT CHAR POSITION
0225 ANI 00H ;SETTING UP FOR NEW LINE
0230 ADI 40H ;ADDRESS OF NEW LINE
0235 MOV L,A ;SAVE POINTER FOR NEXT CHAR
0240 MVI A,0 ;SAVE POINTER FOR NEXT CHAR
0245 ABC H
0250 MVI H-A
0255 LINOV SHLD VDMP
0260 MVI A,7FH
0265 ANA L
0270 JWI SPEED
0275 MVI M,20H
0280 LXI H:OCFOOH ;SET UP DATA LINE (LINE 16)
E085 32 FF 0F 0595 STA SCREEN #SAVE FLAG IN LAST SCREEN LOCATION
E088 3E 20 0600 CLERI MVI A+20H
E08A 77 0605 MOV M+1
E08B 23 0610 INX H
E08C 3A FF 0615 LDA SCREEN
E08F FE 2E 0620 CPI 20H
E0C1 C2 BB 0E 0625 JNZ CLER1 #CONTINUE CLEARING
E0C4 21 CO CF 0630 DUNIT LXI H+0CFCH #RESET DATA LINE TO LINE 16
E0C7 36 A0 0635 MVI M+0A0H #RESTORE CURSOR TO SCREEN
E0C9 22 D2 E0 0640 SMLD VMP #SAVE SCREEN POINTER
E0CC AF 0645 XRA A #CLEAR VDM-1 STATUS LATCH
E0CD D3 CB 0650 OUT 0CBH
E0CF C3 6D E0 0655 JMP SPEED
E0D2 00 00 0660 VDMP DS 02H
E0D4 00 00 0665 NEWSP DM 00H
E0D6 0670 NFLAG EDU 0AAH #END OF SCREEN FLAG
E0D6 0675 SCREEN EDU 0CFFH #END OF SCREEN MEMORY
E0D6 0680 *
E0D6 0685 *THese are AUXILIARY ROUTINES FOR I/O THAT ARE
E0D6 0690 *Normally part of the calling program. THEY ARE
E0D6 0695 *USED HERE FOR INPUT OF SCROLLING SPEED FROM
E0D6 0700 *THE KEYBOARD
E0D6 0705 *
E0D6 0710 STAT EQU 0B5H
E0D6 0715 KBD EQU 0B4H #INPUT FROM STATUS PORT
E0D6 0720 STATS IN STAT #LOOK AT STATUS BIT ONLY
E0D6 0725 ANI 0BH
E0D6 0730 RET
E0D6 0735 DATA IN KBD #INPUT FROM DATA PORT
E0D6 0740 ANI 7FH #STRIPE PARITY
E0D6 0745 RET

SYMBOL TABLE

RS E022 CLEAR E090 CLER1 E099 CR E028 DATA E09B DELAY E079
DUNIT E0C4 ERASE E05F FOUND E0A0 GETIT E084 KBD E0D4 LESS E098
LINOV E034 NEWSP E0D4 NFLAG 00AA SCREEN CFFF SCROL E04E SPEED E06B
STAT 00D5 STATS E0D6 STRT E000 VDMP E0D2 WAIT E0A6 WAIT2 E0A9
REVISIONS LIST

IA-1100 Video Display Board

Rev. 0 Initial Release

Rev. A The board has been improved with the addition of a 50/60 Hz jumper option and a composite video jack.
PARTS LIST

INTEGRATED CIRCUITS

U1 .. 7406
U2, U17 ... 74LS20
U3, U10 .. 74LS74
U4 .. 74LS86
U5 .. 74166 or 74LS166
U6 .. 4049
U7 ... 74LS04
U8, U16 ... 74LS221
U9, U14 .. 74LS00
U11, U18, U25, U26, U27, U28 74LS163
U12 .. 6571A or 6574 (Motorola)
U13 .. 74LS10
U15 .. 74LS32
U19, U24, U29, U30, U35 74LS367
U20, U21, U22, U23, U31, U32, U33, U34 .. 21F02 (250ns - 2102)
U37 ... 8131

CAPACITORS

C1, C7001 uf (1000 pf) ceramic
C2 ... 10 pf ceramic
C3, C4, C14, C15, C16 10 uf electrolytic
C5, C6, C201 uf ceramic
C8, C10, C11, C12, C18, C19, C2101 to .1 uf ceramic
C9 ... 100 uf electrolytic
C17 .. 470 pf ceramic
C22 .. 1 to 10 uf electrolytic

All capacitors should have a working voltage of 15 volts or higher.
PARTS LIST CONTINUED

RESISTORS

R1, R2. .. 300 ohms, .25 watts
UR1. .. 4.7k ohms, DIP res. pac
R3, R4, R14, R23. 4.7k ohms, .25 watts
R5, R13. .. 2.7k ohms, .25 watts
R15, R22. .. 10k ohms, .25 watts
R16. .. 100 ohms, .5 watts
R17. .. 330 ohms, .25 watts
R18. .. 270 ohms, .25 watts
R19. .. 75 ohms, .25 watts
R20. .. 1000 ohms, .5 watts
R21. .. 5.6 meg. ohms, .25 watts
VR1, VR2. .. 50K ohm trimpot

Note: R6 - R12 have been replaced by UR1.

MISCELLANEOUS PARTS

D1, D2. .. 7805 (LM340T-5)

Y1. .. 13,478 or 12,636 series

D1. .. 12 volt zener diode, 1 watt
D2. .. 3.3 volt zener diode, 1 watt

1 SPST eight position DIP switch
25 sixteen-pin IC sockets
11 fourteen-pin IC sockets
1 twenty-four pin IC socket
1 video output cable with male RCA connector
1 RCA phono jack (female receptor)
(such as IEM DJP5116-1 or S'K Electronics SQ 3021)
USER'S CRITIQUE

To make this manual more useful to you, our customer, we will appreciate your comments and recommendations on any improvements to this manual you feel are needed. After using this manual, please take the first opportunity to complete this questionnaire and return it, postpaid, to the factory where your comments will be given every consideration. Thank you.

MANUAL ORGANIZATION
Was the Table of Contents detailed enough and useful?
☐ Yes, ☐ No, ☐ Comment

Were the manual sections well organized?
☐ Yes, ☐ No, ☐ Comment

GRAPHICS
How would you rate the quality of the photos, diagrams, etc.?
☐ Excellent, ☐ Adequate, ☐ Poor

Were there enough illustrations throughout the manual?
☐ Yes, ☐ No, ☐ Comment

Were the tables clear and easy to follow?
☐ Yes, ☐ No, ☐ Comment

TEXT
How would you rate the quality of the technical writing?
☐ Excellent, ☐ Adequate, ☐ Poor

If there are particular paragraphs, instructions, etc., you feel need clarification or rewriting, please identify them and add your comments.

GENERAL COMMENTS

Respondent ____________________________ Title __________________
Company ________________________________
Address ________________________________
City/State/Zip ___________________________

NO POSTAGE NECESSARY IF MAILED IN U.S.A.

Fold on the two lines on reverse side, staple or tape, and mail