
APL 82, W. H. Janko, W. Stucky (ed.),
APL Quote Quad, Vol. 13 No. 1,
(~) 1982 by ACM, Inc.

DESIGN CONSIDERATIONS OF A MICRO-BASED APL

J.C. Wilson
T.A. Wilkinson

Computer Systems Group
University of Waterloo

Waterloo, Ontario, Canada, N2L3Gi
(519) 885-1211 ext. 2253

Introduction

This paper discusses some of the
decisions involved in the creation of
Waterloo microAPL. It describes the goals
of the project and some of the concerns
with respect to a sucessful
implementation. An explanation of the
portable software philosophy is included
along with some details of the versions of
Waterloo microAPL presently in existence.

Background

Waterloo microAPL was created by
members of the Computer Systems Group at
the University of Waterloo, Ontario,
Canada in a period of 15 months in
1980-81. This group is a "practical-
research" oriented department of the
University and has for years been involved
in the production of computer software for
use in the field of education. Examples
of the group's work include WATFOR,
WATFIV, WATBOL and other popular language
processors. More recently, much energy
has been directed towards educational
applications in the field of
microcomputers.

It was evident from the beginning of
this activity that the microcomputer field
was changing rapidly and that new products
were evolving every day. To keep up with
this rapid change, software would have to
be developed very quickly and accurately.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-078-8/82/007/0380 $00.75

As a result we became involved in the
science of software portability, a
technique whereby software could be moved
from one machine to another with less cost
and greater speed than that required to
completely rewrite the component programs.
This technology also results in a high
degree of compatibility of software across
various machines and can be applied to
computers ranging from micro's to maxi's.

Using a language called WSL (the
Waterloo Systems Language), the group
created a family of processors. This
family includes interactive interpreters
for the languages APL, BASIC, COBOL,
FORTRAN and Pascal and is known as
Waterloo microSystems. The remainder of
this paper is about the APL project.

Goals

The Waterloo microAPL project was
designed to create a standard and complete
implementation of APL that would run on a
number of different computers ranging from
microcomputers to large mainframe
machines. All the standard primitive
functions were to be included as well as
the common set of systems variables and
functions. A useful complement of file-
handling facilities were designed in order
to store data external to the workspace
and to make it available to the other
language processors in the Waterloo
microSystems family. It was also
considered important to support the
hardware features of the various machines
in as "complete" a way as possible (e.g.,
colour graphics in some computers). A
common goal of APL and the other languages
in the system was to provide a useful
interface to machine language routines,
including parameter passing. This would
make it easy to call machine language
routines from the high level languages.
Performance goals were also established.
It was expected that APL would perform
"similar" to BASIC on the same hardware.

380

The plan was to use the WSL portable
implementation language to create an APL
for a 6809-based microcomputer, prototypes
of which were being developed in parallel
with the software project. (The
prototypes were based on the Commodore
8032 and eventually led to the SuperPET.)
After the team gained some experience with
the microcomputer and restricted memory
space found there, the processor would be
"ported" to the IBM VM/CMS mainframe
system. We would first produce a complete
APL processor and optimize the algorithms
for performance later.

Concerns

There were a number of concerns related
to the APL project. Even though the
Computer Systems Group had a lot of
experience in the area of language
processors and portability, there had been
no previous experience with the internals
of APL and very little experience with
microcomputers. Problems were anticipated
dealing with the memory constraints of the
small machines. Some concern existed with
respect to the WSL high-level language.
By its nature, the machine code it
generates is not as efficient as hand-
written code. This, coupled with the fact
that APL's powerful primitives sometimes
require a lot of processor time, caused
some apprehension. Most of these
concerns, however, were eventually
dispelled.

Staffing

The project was to be attempted by a
team of two senior designer/supervisors
and five undergraduate student employees.
At most, two students were active on the
project at any given time since they
alternated this effort with their academic
programmes. One of the students was
assigned as the "language feature"
specialist while the other was given the
responsibility of handling systems
functions and operating system interfaces.
None of the students were familiar with
the APL language before the beginning of
the project.

Method

Waterloo microAPL was written in WSL in
small individually compiled modules which
were combined using a linker facility.
This technique allows re-packaging to take
advantage of specific segmentation and
overlay facilities provided by the various
computers, particularly those with small
address spaces. Compilations and linking
were done using a WSL cross-compiler
running on a PDP-ii under the RSTS/E
operating system. The resulting 6809
processor module was down-line loaded to

the Commodore SuperPET via a 9600 baud
RS232C asynchronous line where it was
tested and debugged.

Memory was viewed as being divided into
four basic areas:

The WSL function library and
associated system routines
including the file interface and
a floating point emulator. This
was used by all the language
processors.

2 The APL language processor.

3 The APL user workspace.

"Free Space" to contain user's
machine language routines
callable from APL. When
required, this is taken from the
workspace.

Cleverness was not a goal in the internal
design of the processor. The intention
was to keep it simple, get it done quickly
with few errors, and optimize it later.
This optimization was viewed as an ongoing
process involving improvements to the WSL
code-generator routines as well as changes
to the actual algorithms used in the APL
processor.

The 100 modules in the APL processor
comprise about 600 routines, averaging
about 50 lines of WSL source code each.
The resulting 30,000 lines were debugged
and tested in approximately 3 man-years.

The main reference document used in the
project was the Falkoff/Orth ACM APL
Standard [i]. It is certain that the
project could not have been completed
under the circumstances described here
without this reference. Points which were
considered ambiguous or inconsistent were
usually settled by referring to Sharp APL
or to IBM VS APL.

Two other references were followed
closely: Jenkins' paper [2] describing
the IBM implementation of quad-divide, and
L. J. Woodrum's paper [3] on the grade
(i.e., sorting) functions.

Final testing was accomplished in
parallel with the latter stages of the
development process. A number of very
bright high-school students were employed
and given specific projects to be
completed using APL. They proved very
adept at finding (and sometimes even
fixing) bugs.

381

Results:

Two versions of Waterloo microAPL have
been created and a third is almost
complete at the time of writing (Jan
1982). They are described below:

Commodore SuperPET:

Waterloo microAPL was implemented
first on this computer. It is a
6809-based machine which has read-
only memory (ROM) and two kinds of
random-access memory (RAM). The
WSL function library and system
routines reside permanently in the
22KB (kilobytes) of ROM. When the
machine is turned on, a menu is
presented allowing the user to
select from a number of language
processors and applications. If
APL is chosen, the processor is
loaded into the machine's 64KB of
"bank-switched" RAM. This is a
specially configured set of sixteen
4KB "pages" which implement a
hardware segmentation and overlay
facility. This allows the entire
APL processor to exist using only
4KB of the 6809's address space.
In addition, about 4KB of the
machine's "normal" RAM is used for
the data areas of the APL
processor, leaving room for a 28KB
APL workspace.

The Commodore SuperPET supports
the IEEE-488 bus which accesses
disk drives, printers and other
devices. As well, there is an
RS232C asynchronous line which can
be used to control serial devices
or to connect the SuperPET to other
computers. Waterloo microAPL
supports these devices through its
file system which includes a
powerful host-communication
facility used in conjunction with a
special HOSTCM program running on a
host computer. The SuperPET screen
and keyboard support the entire APL
character set including overstrikes
(but not the underscored alphabet),
and all the keys on the keyboard
repeat if held down.

IBM VM/CMS

The second implementation of
Waterloo microAPL was on an IBM
4341 running VM/CMS. MicroAPL is
simply executed as a program under
CMS and the entire processor,
workspace and WSL library reside in
the memory of the virtual machine.
The standard system file interface
is used, providing access to all
CMS files.

The VM/CMS microAPL processor is
164KB of 4300 native machine code.
This includes the data area
required by the processor. An
additional 138KB is required by
CMS. The workspace size is
governed by the size of the virtual
machine. For example, a workspace
of 210KB is obtained by setting the
virtual machine size to
164+138+210=512KB.

Access to VM/CMS microAPL is
through standard VM/CMS terminals
such as 3270's, 3278's, etc. and
"dumb" APL/ASCII terminals. No
comprehensive performance tests or
comparisons have been done.

IBM Personal Computer

The most recent effort is to "port"
the Waterloo microAPL processor to
the new IBM Personal Computer.
This machine is based on the Intel
8088 microprocessor. It was
decided to leave the standard IBM
ROM set intact and put the entire
APL processor, workspace and WSL
library in RAM. A workspace as
large as 59KB can be obtained. The
systems function routines in the
existing ROM set will be used as
much as possible.

The APL character set is
obtained by using the software-
controllable character set
associated with the colour monitor.
Obtaining APL characters with the
monochrome monitor requires
replacing the character generator
ROM. This has been done
successfully as an experiment but
there is as yet no commercially
available APL ROM for the
monochrome monitor.

Summary

The group is pleased with the results
obtained from this project. Most of the
concerns were successfully addressed and
solved and an APL processor was produced
which could be "ported" with relative ease
from one machine to another using the WSL
technology. A manual was written which
includes a short tutorial on the system as
well as a comprehensive reference for the
APL language.

Future plans include refining and
extending the set of system functions,
optimizing the performance and "porting"
the processor to other computers.

382

References:

[1] A.D. Falkoff and D.L. Orth,
"Development of an APL Standard",
APL79 Conference Proceedings, ACM,
New York, 1979.

[2] M.A. Jenkins, "The Solution of
Linear Systems of Equations and
Linear Least Squares Problems in
APL", IBM New York Scientific
Center Technical Report No.,
320-2989, June, 1970.

[3] L.J. Woodrum, "Internal Sorting
with Minimal Comparing", IBM
Systems Journal, No 3, 1969.

383

