COMMODORE
SUPERPET COMPUTERS

b

C'.' commodore EuperPET
Maciol BRSO00

Waterloo microCOBOL

Tutorial

and

Reference Manual

P.H.Dirksen

J.W . Welch

Copyright 1982, by the authors.

All rights reserved. No part of this publication may be reproduced or used in any
form or by any means - graphic, electronic, or mechanical, including photocopying,
recording, taping or information storage and retrieval systems - without written
permission of the authors.

Disclaimer

Waterloo Computing Systems Limited makes no representation or warranty with
respect to the adequacy of this documentation or the programs which it describes for
any particular purpose or with respect to its adequacy to produce any particular
result. In no event shall Waterloo Computing Systems Limited, its employees, its
contractors or the authors of this documentation be liable for special, direct, indirect
or consequential damages, losses, costs, charges, claims, demands, or claim for lost
profits, fees or expenses of any nature or kind.

ii

Preface

Waterloo microCOBOL is intended to be a substantial implementation of the
standard COBOL language. The language supported is suitable for both teaching
purposes and for programming many business problems.

It is intended to make available a number of different microCOBOL processors.
At the time of writing, interpreters are available for the Commodore SuperPET and
for the IBM VM/CMS operating system. Interpreters are being tested for the IBM
Personal Computer and for DEC VAX VMS systems. As well, compilers are being
developed for the systems mentioned.

This manual is presented in two parts. The first part is a collection of annotated
examples intended to introduce the reader to many of the features of microCOBOL .
In this way, a novice is presented with a staged introduction to the language. An
experienced programmer could use the examples to compare microCOBOL to other
COBOL implementations or to other languages.

The second part is a comprehensive language reference manual for Waterloo
microCOBOL. Essentially, the language supported includes level one of the
NUCLEUS, SEQUENTIAL I-O, RELATIVE I-O and TABLE HANDLING
modules described in COBOL Standards (ANSI X3.23-1974 or 1SO 1989-1978).
Parts of level two in these modules have also been implemented, including full
support for the PERFORM, STRING and UNSTRING verbs. A few items have
been omitted from level one;

(1 The I-O-CONTROL paragraph in the ENVIRONMENT DIVISION is
not supported.

@) The DELETE statement in RELATIVE 1-O is not supported.
(3 Paragraph and section names must contain at least one alphabetic character.

4) Continuation of a line is not supported. Syntactic units, such as data names
or literals cannot be split across lines.

No support is provided for tape hardware.
P. H. Dirksen
I. W. Welch

April 1982

it

Acknowledgement

The design and implementation of the Waterloo microCOBOL processors is based
upon ideas evolved over the past decade in a number of organizations. All members
of the Computer Systems Group (University of Waterloo), the Waterloo Foundation
for the Advancement of Computing, and Waterloo Computing Systems, Ltd. have
made a substantial contribution to its development. The actual design and
programming of the system directly involved the following people: James Bruyn,
Keith Campbell, Martin Leistner, Lyle Resnick, Liz Ruest, Jack Schueler, David
Till and Jim Welch. Sharon Haydamak was responsible for the production of this
manuscript.

Acknowledgement: American National Standards Institute

Portions of this manual have been reproduced from "American National
Standard Programming Language COBOL" (X3.23-1974). We are indebted to the
unnamed auathors for this excellent technical document. The following paragraphs
provide acknowledgement, as requested in the standard.

COBOL is an industry language and is not the property of any company or group
of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
CODASYL Programming Language Committee as to the accuracy and functioning
of the programming system and language. Moreover, no responsibility is assumed
by any contributor, or by the committee, in connection therewith.

The authors and copyright holders of the copyrighted material used herein

FLOW-MATIC (rademark of Sperry Rand Corporation), Programming for the
UNIVAC T and 11, Data Automation Systems copyrighted 1958, 1959, by
Sperry Rand Corporation; IBM Commercial Translator Form No. F 28-8013,
copyrighted 1959 by IBM; FACT, DSI 27A5260-1760, copyrighted 1960 by
Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in the

COBOL specifications. Such authorization extends to the reproduction and use of
COBOL specifications in programming manuals or similar publications.

Table of Contents

Preface il
Acknowledgement Lo iv
Acknowledgement: American National Standards Institute iv
l. Tutorial Examples _ .. 3
1.1 TIntroduction 3
1.2 Introductory Examples. 4
1.2.1 A Minimum Program., 4
1.2.2 Display aname. L, 6
1.2.3 Accept Data from the Terminal. 9
1.2.4 The Perform Verb. 12
1.2.5 The Unti] Clause. 15
1.2.6 Read a Number of Fields from the Terminal. 18
1.2.7 Define a Simple Data Structure. 22
1.2.8 Create an Output Data Structure. 25
1.2.9 Produce a Simple Report. e 29
1.3 Reading and Writing Files. 33
1.3.1 Getting Prepared To Use Files.33
1.3.2 Create a Simple Fite., 36
1.3.3 Readand Printa File. 40
1.3.4 A Standard Method for Handling End of File. 43
1.3.5 At End and High-values. 45
1.3.6 Use the File Provided with the System. 48
1.3.7 Print a Report Using the Student File. 52
1.3.8 Inputting a File Name.58
1.3.9 Printer Control Characters. 64
L4 Selection. L. 70
1.4.1 Selection Using the If Verb. 70
1.4.2 Another Versionof If. 74
1.4.3 The Else Option. 78
1.4.4 Multiple Choice., 82
1.4.5 lLogical Operators - And and Or. 88
1.4.6 Combined Use of AndandOr 91
1.5 Arithmetic. 95
1.5.1 Integer Arithmetic 95
1.5.2 Decimal Places 98
1.5.3 Negative Numbers 102
1.5.4 Expressions and the Compute Verb. 105
1.6 Printing and Editing Numeric Values. 108
1.6.1 Decimals in Output. 108
1.6.2 Suppress Leading Zeros and Printing Minus Signs, 111
1.6.3 Dollar Signs, Commas, and CR. 114

Table of Contents

1.6.4 Combining Edit Characters 116
1.7 Two Examples Using Files and Arithmetic. 118
1.7.1 Student AVerageso e 118
1.7.2 School Algebra Averages. 123
1.8 Subscripted Data-names.« ..o 127
1.8.1 Subscripted Data-pames. 127
1.8.2 Perform Varying. oo 132
1.8.3 The Redefines Clause with Subscripted Data-names. 137
1.8.4 Tables with Two Subscripts. 141
1.9 Relative Files o oo 146
1.9.1 Create a Relative File. 146
1.9.2 Read a Relative File. 149
1.9.3 Create a Relative File with an Index. 153
1.9.4 Extract Records from a Relative File. 156
1.10 Miscellaneous.o e e e 161
1.10.1 Create the Student File. 161

2. Structure of @ COBOL Program 167
2.1 OVEIVIEW e e e e e e e e e e 167
2.2 Divisions - . e e e e e 168
2.3 Columns in a COBOL Program 169
2.4 COBOL NAMES it i e 169
2.5 Comment Statements e e e 170
2.6 Figurative Constants 171
3. IDENTIFICATION DIVISION 173
3.1 OVEIVIEW o . e e e e e e e e e e e e 173
3.2 PROGRAM-ID o i it v e o e e e 174
3.3 AUTHOR o i e s 174
3.4 INSTALLATION o it e 174
3.5 DATE-WRITTEN e e 174
3.6 DATE-COMPILED o 175
3.7 .SECURITY o o e 175
4, ENVIRONMENT DIVISION 177
4.1 OVEIVIEW L o e e e e e e e e e 177
4.2 CONFIGURATION SECTION 177
4.2.1 SOURCE-COMPUTER 178
42,2 OBJECT-COMPUTER 178
4.2.3 SPECIAL-NAMES 179

vi

Table of Contents

4.3 INPUT-OUTPUT Section v v v v vt 179
4.3.1 FILE-CONTROL 180
4.3.1.1 SELECT Clause 180

5. DATA DIVISION, 183
51 Overview o L e e, 183
52 FILE SECTION o e s 183
521 FD 184
5.2.1.1 BLOCK CONTAINS 185
5.2.1.2 RECORD CONTAINS 185
5.2.1.3 LABEL 185
52.1.4 VALUEOF 185
5215 DATA 186
5216 CODE SET 186
5.2.2 Record Descriptions 186
5.3 WORKING-STORAGE SECTION 187
5.4 Data Description 187
5.4,1 Level Numbers and Records 187
5.4.2 Qualification 188
543 PICTURE Strings 190
5.4.4 Describing DataTtems 201
54.4.1 BLANK WHENZERO 202
5442 JUSTIFIED 203
5443 OCCURS Clause 203
5444 PICTURE Clause 203
5.445 REDEFINES 204
5446 SIGN 205
5447 SYNCHRONIZED 206
5448 USAGE, 206
5.44.9 VALUE 207
5.45 66Level Data Items 208
546 88Level Dataltems, 209
6. PROCEDURE DIVISION 211
6.1 Overview 211
6.2 Declaratives 213
63 Common Terms 214
6.3.1 Arithmetic Expressions 214
6.3.2 Conditional Expressions " 216
6.3.2.1 Simple Conditions 216
6.3.2.1.1 Relation Condition 217

vii

Table of Contents

6.3.2.1.1.1 Comparison of Numeric Operands
6.3.2.1.1.2 Comparison of Nonnumeric Operands
6.3.2.1.2 Class Condition
6.3.2.1.3 Condition-Name Condition (Conditions Variable} . . .
6.3.2.1.4 Sign Condition
6.3.2.2 Complex Conditions
6.3.2.2.1 Negated Simple Conditions

6.3.2.2.3 Abbreviated Combined Relation Conditions
6.3.2.2.4 Condition Evaluation Rules
6.4 CORRESPONDING Items
6.5 Undefined Values

7. Interacting with the Terminal
Tl Overview L L. Lo e e
7.2 ACCEPT Statement,
7.3 DISPLAY Statement

8. MOVE Statemento

9. Arithmetic Statements oo
9.1 Overview S
92 Common Terms

9.2.1 ROUNDED
922 SIZEERROR
9.2.3 Composite of Operands
9.24 ADD Statement L.
9.2.5 COMPUTE Statement
9.2.6 DIVIDE Statement
9.2.7 MULTIPLY Statement _.
9.2.8 SUBTRACT Statement

10. Sections and Paragraphs oL oo
10.1T Overview oo
10.2 Procedure Names
10.3 ALTER Statement« .« oo
10.4 EXIT Statement
10.5 GO Statement Ce
10.6 PERFORM Statement

229
229
229
230

231

235
235
235
235
236
236
237
238
239
241
242

Table of Contents

10.7 STOP Statement 252
IO IF Statement L L 233
11.1 Overview o 253
1.2 Simple IF . 0 . 000 L 254
I1.3 ELSE Clause 255
11.4 Nested IF 256
11.5 Multiple Choice 258
12, Sequential Files 261
12.1 Introduction to Files L. ... 261
12.2 ENVIRONMENT DIVISION 262
12.3 DATA DIVISION 263
12.4 PROCEDURE DIVISION 263
12.4.1 CLOSE Statement 263
12.4.2 OPEN Statement 264
12.4.3 READ Statement 268
12.4.4 REWRITE Statcment 266
12.4.5 USE Statement 266
12.4.6 WRITE Statement 267

13. Relative Files 271
13.1 Overview 271
13.2 ENVIRONMENT DIVISION 271
13.3 DATA DIVISION 272
(3.4 PROCEDURE DIVISION 272

13.4.1 CLOSE Statement 272
13.4.2 OPEN Statement . , 273
13.4.3 READ Statement 274
13.4.4 REWRITE Statement 276
13.4.5 USE Statement, 277
13.4.6 WRITE Statement _.... 278

Y4, Tables . . o oL L 28]
14.1 Overview 281
14,2 OCCURS 283
14.3 Indexingo 284
14.4 SET Statement 285

Table of Contents

15. String Manipulationo L L 289
15.1 Overview e e 289
15.2 INSPECT Statement, 290
153 STRING Statement 293
15.4 UNSTRING Statement 295
15.5 Formatting Example 297

16, Interactive Debugger L. 301
16.1 Overview 301
16.2 Continue (¢) Command 30
16.3 Execute (e} Command, 302
16.4 Quit (@) Command 303
16.5 Step (s) Command, 303
16.6 Where-am-I (w) Command 303
167 ENTER DEBUGGING 303

17. CALL Statement 305

18. System Dependencies: 307
18.1 Overview 307
18.2 Portability 308

18.2.1 File Names 308
18.2.2 Useof Files, 308
1823 Code Set 308
18.3 Commodore SuperPET 309
18.3.1 Code Set 309
18.3.2 Date Support 309
1833 Files 309
18.3.4 Listing Files, .. 310
i8.3.5 Call Interface 311
8.4 VM/CMS 313
18.4.1 Code Set 313
1842 Files, I 313
1843 Listing Files 313
1844 Call Interface 314

A. Language Skeleton 317

A1 IDENTIFICATION DIVISION. 317
A1l Skeleton L 317
X

Table of Contents

A.2 ENVIRONMENT DIVISION 318
AZ21 Skeleton oL L s 318
A.2.2 SELECT Clause 319

A3 DATA DIVISION, 319
A31 Skeleton 319
A32 FDentry e e e e 320
A.3.3 Data-description entry: Level 66 320
A.3.4 Data-description entry: Level 88 320
A.3.5 Data-description entry: Levels 01-49 321

A4 PROCEDURE DIVISION 322
A4l Skeleton oL Lo L 322
A4.2 Procedure Body L 322
Ad43 Statements Lo oL e 323

B. Reserved Words 333
Index 336
Xi

Waterloo microCOBOL

Tutorial Examples

Much of the material in the tutorial portion of this text is the result of experience
accumulated over many years of presenting courses on the subject of file processing
at University of Waterloo. In particular, the authors wish to acknowledge the work
done in the following text.

An Introduction to COBOL with WATBOL.,

A Structured Programming Approach
D.D.Cowan, P.H Dirksen, and J.W.Graham,
WATFAC Publications,

Box 803,
Waterloo, Ontaric, Canada.

Waterloo Computing Systems Newsletter

The software described in this manual was implemeéented by Waterloo
Computing Systems Limited. From time-to-time enhancements to this system or
completely new systems will become available.

A newsletter is published periodically to inform users of recent developments in
Waterloo software. This publication is the most direct means of communicating up-
to-date information to the various users. Details regarding subscriptions to this
newsletter may be obtained by writing:

Waterloo Computing Systems Newsletter
Box 943,

Waterloo, Ontario, Canada

N2J 4C3

Chapter 1

Tutorial Examples

1.1 Introduction

The following tutorial is a sequence of examples meant to introduce the reader to
the "flavour” of Waterloo microCOBOL.. They do not present a complete or rigorous
treatment of any topic, as this detailed information is available in the reference
manual in the latter part of this document. This tutorial could be useful in the
following situations:

() Someone already familiar with COBOL can determine some of the major
differences between Waterloo microCOBOL and the dialect already
known.

(2) Teachers may find the examples useful as a progressive introduction of

the material to their students.

(3 People who already know some other language can get an appreciation
for Waterloo microCOBOL before reading the reference manual.

(4) Complete novices could run the various programs, and possibly learn
some of the material by exploring the various language features in
conjunction with the reference material.

In order that the examples be fully appreciated, it is important that they be entered
into the computer and executed.

Chapter 1

1.2 Introductory Examples.

1.2.1 A Minimum Program.

Every COBOL program requires a certain number of basic statements. These are
presented in this example.

identification division.
program-id. EXAMPLE-1.
environment division,
configuration section.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.
data division,

procedure division.

Notes

(1)

(2

(3)

4

stop run.

COBOL is a programming language which was first developed in the
early 1960s to be used to solve business data processing problems.
COBOL in fact stands for COmmon Business Oriented Language.

In order to run any COBOL program a number of statements are
required. These statements must be present for the program to work
properly.

Example 1 contains these basic necessary statements. All future
examples will also contain these statements with some possible slight
modifications and additions.

Hint The reader should enter these lines exactly as they appear. This
set of statements can then be saved in a file. Thus they need not
be entered for each program but instead can be retrieved using
the get command. In future examples, this file will be referred
to as "texta’. The following notes should be read before one
enters the above lines.

COBOL statements are usually entered beginning in either column 2 or
column 6.

Tutorial Examples 5

(5) The first seven statements in this example are entered in column 2 while
the last statement is entered in column 6.

(6) Column 2 is called margin A and to column 6 is called margin B.

(" Each line ends with a period.

(8) Users who have used COBOL before will notice that the programs are
entered in lower case letters. Waterloo microCOBOL permits the use of
both upper and lower case letters; the rules when upper and lower case
letters are both used are described in the reference munual.

(9 If the reader wishes to know more about these statements, he should

refer to the reference manual portion of this text. As more examples are
presented, these statements will be described in more detail. However,
the following notes about these statements arc appropriate.

Notes

(1 A COBOL program consists of four divisions. These are the
identification division, the environment division, the data
division and the procedure division. Note that each of these
appears once in this example.

(2) The use of 'EXAMPLE-1" as a program-id is for
documentation purposes only.

3 Users will recognize 'CBM-SuperPET’ as the name of a
computer, If programs are run on a different system, it is not
necessary to change this name as it is only used for
documentation purposes.

6 Chapter 1

1.2.2 Display a name.

One of the first things we want to do in a program is to display information. This
program demonstrates one simple way to accomplish this.

*

* Display a Name on the Terminal.
%
identification division.
program-id. EXAMPLE-2.
environment division.
configuration section.
source-computer. CBM-SuperPET.
obiect-computer. CBM-SuperPET.
data division.
procedure division.
display "James’.
stop run.

Sample Program Execution

run

Execution begins...
James

...Execution ends.

Notes

(N In this example and all future examples the output produced by the
program is displayed following the program. A line appearing in italics
represents a line entered by the user; non-italicized lines have been
displayed by the COBOL processor. When a program is run, at least two
lines are displayed, namely that the program has started and that the
program has stopped. This is indicated by the lines

Execution begins. ..
and

...Execution ends.

Tutorial Examples 7

(2)

(3)

{4

(5)
(6)

(7N

(8)
9

(10)

The line containing the name
James

is displayed between the above two lines. It is the output produced by
the program, Any output will always appear between these two lines.

Three lines have been inserted at the beginning of the program. These
lines, containing an * (asterisk) in column 1, are called comments.
Comments have no effect on the program; they are used for
documentation purposes only. Comment lines may be entered anywhere
in the program.

The line
display 'James’.

has been inserted in the procedure division portion of the program. When
the program is run, this causes the line containing the name James to be
displayed.

The characters to be displayed are enclosed by quotation marks.

The procedure division now contains two statements which are more
commonly referred to as semrences. Each sentence begins with a verb
which indicates the desired action to be performed. Each sentence ends
with a period.

The display verb causes the string of characters to be displayed on the
screen.

The stop verb indicates that no more actions are required.

The program-id line has been used to give a different name to this
program. It is used for documentation purposes only.

It is important to note that every program processed goes through two
distinct phases, one following the other in time. First the program is read
by the system to determine cerlain types of errors, in particular syntax or
grammar errors are detected. Then the system actually begins executing
the statements.

(11}

Chapter 1

This program could be easily entered by using the following steps:

i) Use the get command to load a copy of the previous program.
ii) Add the three comment lines at the top of the program.

iii} Add the display statement.

Use of this technique results in less time to enter the program and also
reduces "entry” errors. As we will see in future examples, it is often

easier to modify an existing program than to enter completely a new
program.

Tutorial Examples 9

1.2.3 Accept Data from the Terminal.

Another common requirement is to input some information into a program. This
program accepts some data and then displays it on the screen.

#

* Accept Data from the Terminal.

*
identification division.
program-id. EXAMPLE-3.
environment division.
configuration section.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.
data division.

working-storage section.

procedure division.
display "Enter a name of 5 characters’.
accept name.
display name.
stop run.

Sample Program Execution

run

Execution begins...

Enter a name of 5 characters
James

James

...Execution ends.

Notes

(1 When this program is run, a line is displayed asking that a name
containing exactly 5 characters be entered. The next line, which appears
In italics, is the response entered by the user, namely the name James.
The following line is the output produced by the program. In this and all
future examples, all lines entered by the user are displayed in italics.

10

(2)

(3)

4
(5

(6)

o)

(8

9

Chapter |

The data read from the terminal is placed in working-storage section of
the data division. Working storage can be thought of a large piece of
paper within the computer. Information is "written” or placed into
working storage.

For this particular example, working storage consists of an area large
enough to contain a 5-character string which will be called "name”. It is
defined as follows:

working-storage section.
01 name picture XXxxx.

The 01 is a level number and is entered in margin A. "Name” is the name
of the area and is entered in margin B. The picture clause defines the
characteristics of the area. In this case, an area capable of holding 5
consecutive characters is defined by using five x's.

Level numbers will be explained more fully in future examples.

"Name” is referred 1o as a data-name and is chosen by the programmer.
The rules for choosing such names are described in a later note.

The accept verb is used to input the desired string of characters,
specifying it should be placed in working-storage in the area called
"name” .

The accept verb takes the characters that are entered and places them in
the area called "name”. If more than 5 characters are entered the left-
most 5 characters are placed in "name”. If less than 5 characters are
entered, the characters are placed left-justified in "name”. The remaining
characters are left unchanged. Thus the user should enter blanks or
spaces if the name contains less than 5 characters. The next example
shows another way of accepting variable length names.

Blank lines are inserted before and after the working-storage section to
make the program easier to read.

A data-name consists of not more than thirty characters chosen from the
letters, the digits, and the hyphen; it must contain at least one letter, The
hyphen may be used anywhere except at the beginning or end.

Tutorial Examples 11

{10y COBOL reserves a number of words for its own use. These are called
reserved words. For example, all COBOL verbs are reserved words as
are most of the words in "texta”. COBQOL's reserved words are listed in
the reference section of this text (see RESERVED WORDS).

(11) A data-name cannot be a COBOL reserved word. For example, it is not
possible to use the data-name “input” instead of "name” since “input” is a
reserved word. However, it is possible to use “input-place”.

12 Chapter 1

1.2.4 The Perform Verb.

Programs can be written in such a way that they are easier to read and
understand. This clanty is achieved by organizing the program into modules or
parts.

*

* Introduce Perform Verb.
&=
identification division.
program-id. EXAMPLE-4,
environment division.
configuration section.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.
data division.

working-storage section.

procedure division.
perform get-name.
perform display-name.
stop run.

get-name.
display 'Enter a name up to 5 characters’.
move spaces to name.
accept name.

display-name.
display name.

Sample Program Execution

FUR

Execution begins...

Enter a name up to 5 characters
Jim

Jim

...Execution ends.

Tutorial Examples 13
Notes

H This program is a slight modification of the previous example. The
procedure division is organized differently.

(2) The two actions of accepting the name to be read and displaying the
name have been separated into {wo distinct parts or modules.

3) In COBOL, these parts are called paragraphs; each paragraph is
identified by a paragraph-name. The paragraph-name is entered in
margin A and the paragraphs are placed following the stop run.

(4) Paragraph-names are formed in the same way as data-names. When a
paragraph-name is used to signify the beginning of a paragraph, it must
be followed by a period.

(5) Blank lines have been inserted to make it easier to identify the
paragraphs.

(6) The perform verb in the sentence

perform get-name
acts exactly as one would expect, namely it causes the sentences in the
paragraph named "get-name” to be executed.

(7 When the “get-name” paragraph is completed, control passes to the
sentence following the

perform get-name
namely the
perform display-name.

(8) The two performs cause the two paragraphs to be executed in the
appropriate sequence.

) The two paragraphs can be placed in any order following the stop run.

Of course, the two performs must be placed in the correct sequence in
order for the program to function properly.

14

(10

Chapter 1

A new sentence
meve spaces to name

has been inserted before the accept sentence. This will cause five spaces
or blank characters to be placed in “name”. We can now enter a name of
any length up to 5 characters. The move verb will be described in more
detail in a future example.

Tutorial Examples 15

1.2.5 The Until Clause.

One of the most important features of computers is to perform certain tasks a
number of times. This program introduces one method of doing such tasks
repetitively until a signal is encountered to stop the process.

*

* Perform Verb with Until Clause.
*
identification division.
program-id. EXAMPLE-3.
environment division.
configuration section.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.
data division.

working-storage section.

procedure division.
perform get-name.
perform process-name
until name = 'stop ’.
stop run.

get-name.
display 'Enter a name up to 5 characters’.
move spaces to name.
accept name.

process-name.
display name.
perform get-name.

l6

Chapter 1

Sample Program Execution

run

Execution begins...
Enter a name up to 5 characters

James
James

Enter a name up to 5 characters

Jim
Jim

Enter a name up to 5 characters

Mary
Mary

Enter a name up to 5 characters

stop

...Execution ends.

(n

(2)

3

(4)

This program asks the user to enter a name. After the name is displayed,
the program asks that another name be entered, This process continues
until the characters "stop ' are entered at which time the program
terminates.

The program is written to accept and then display an unknown number of
names. The two actions of displaying and reading the name, are placed
in a paragraph called "process-name”.

The "process-name” paragraph makes use of the previously written
paragraph "get-name”, which displays the prompt message and then
reads a name. Paragraphs can contain performs of other paragraphs.

The program now works as follows:
i) An initial name is read using the "get-name” paragraph.

i) The "process-name” paragraph is then performed. This causes
the name to be displayed and another name to be read.

iii) Control returns to the perform-until sentence which determines
if the newly entered string is 'stop ’. If not, the "process-name”
paragraph is executed again. If the name is 'stop ', control
passes to the sentence following the perform-until.

Tutorial Examples 17
(5 We refer to
name = 'stop

(6)

(N

(8)

as a condition, in this case the equals condition. The condition compares
the value of "name” with the characters ‘stop ’. If they are equal the value
of the condition is true; otherwise it is false. A more general form of
condition is discussed in a later section.

While the clause
until name = ’stop ’

could have been entered on the same line as the perform, it has been
entered as a separate line and indented to make the program more
readable.

A COBOL sentence can be written on more than one line. Sometimes
this occurs because a line is too long but more often it is done to improve
readability. The continued line is usuaily indented in order that the
continuation can be clearly seen,

The condition could have been written as
name = 'stop’

In this case, the blank character has been omitted from the end of the
string. Before comparing two fields COBOL checks that the two strings
have the same length. If one string is shorter, it is padded on the right
with blank characters to make it the same length as the longer string.
Thus ’stop” would be set to "stop ' before the comparison is done.

18 Chapter 1

1.2.6 Read a Number of Fields from the Terminal.

On many occasions we wish to enter a number of items of information about a
particular persen or thing. For example, we might wish to also enter such items as
sex, age, etc.

*

* Read a Number of Fields from the Terminal.
*

identification division.

program-id. EXAMPLE-6.

environment division,

configuration section.

source-computer. CBM-SuperPET.

object-computer. CBM-SuperPET.

data division.

working-storage section.

01 student-no pic XxXX.
0@ name pic XXXXxX.
01 age pic xx.

01 sex pic x.

procedure division.
perform get-id.
perform process-student-data
until student-no = 9999,
stop run.

process-student-data.
perform get-name.
perform get-age.
perform get-sex.
display student-no name age sex.
perform get-id.

get-id.
display 'Enter student number (9999 to stop)’.
move spaces to student-no.
accept student-no.

Tutorial Examples

get-name.
display 'Enter name'.
move spaces to name.
accept name.

get-age.
display 'Enter age’.
maove spaces to age.
accept age.

get-sex.
display "Enter sex (M or F)'.
accept sex.

Sample Program Execution

run
Execution begins...

Enter student number (9999 to stop)
1234

Enter name

James

Enter age

15

Enter sex (M or F)

M

1234James 15M

Enter student number (9999 to stop)
2345

Enter name

Marie

Enter age

15

Enter sex (M or F)

F

2345Marie 1 5F

Enter student number (3999 to stop)
9999

...Execution ends.

19

20

Notes

ey

(2)

(3)

(4)

(5)

(6)

Chapter 1

This program prompts the user to enter 4 quantities, namely a student
number, name, age, and sex and then displays this data on the terminal.
This sequence is repeated until the student number '9999' is entered.

Three lines have been added to the working-storage section to define the
areas for the three new items of data. The new data-names are “student-

Hoon

number”, "age” and "sex” and they have a size of 4, 2 and 1 characters
respectively.

The reserved word picture is used quite frequently in COBOL
programs. To save time and space, a short form, pic can be used.

This program uses the student number ‘9999’ to terminate processing
instead of the name ‘stop’ as in the previous example, Thus

perform get-id
is used at the start of the procedure division instead of

perform get-name.
The "process-name” paragraph has been replaced by the paragraph called
"process-student-data”. It causes the number, age, and sex to be read,
displays the appropriate line and then reads the next student number. The

sentence

perform process-student-data
until student-number = 9999’

controls the reading and displaying of the student data.
The sentence
display student-no name age sex.

displays the line on the terminal. The data-names in this sentence are
separated by a blank.

Tutorial Examples 21

(7)

(8)

(9}

(10

For each record read, a line is displayed. It is somewhat disturbing that
there are no spaces between the four items of output. This can be
remedied by using

display student-no * ' name ’ ' age ' ' sex.

which inserts the blank character between each item.

The sentenice which displays the student data could be replaced by the
two sentences

display student-no.
display name ' ' age '’ sex.

which would cause two lines to be displayed for each student.

More blanks could be placed between any of the items on the output line
by increasing the number of spaces between the quotes.

display student-no © " mame ...
would place 4 spaces between the number and the name.

The four data items are quite often referred to as fields.

22 Chapter 1

1.2.7 Define a Simple Data Structure.

In many cases it is more convenient to represent and deal with a number of data
items or fields as a single entity. This collection of information abhout a particular
person or thing is called a record.

&

* Read a Number of Fields from the Terminal.
*

identification division.

program-id. EXAMPLE-7.
environment division.
configuration section.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.

data division.
working-storage section.

01 student-data:

02 student-no pic XXXX.
02 name pic XXxxx.
02 age pic xx.
02 sex pic x.

procedure division.
perform get-id.
perform process-student-data
until student-no = '9999'.
stop run.

process-student-data,
perform get-name.
perform get-age.
perform get-sex.
display student-data.
perform get-id.

get-id.
display "Enter student number (9999 to stop)’.
move spaces to student-no.
accept student-no.

Tutorial Examples

get-name.
display 'Enter name’.
move spaces to name.
accept name.

get-age.
display 'Enter age’.
move spaces to age.
accept age.

get-sex.
display 'Enter sex (M or F)'.
accept sex.

Sample Program Execution

run

Execution begins...

Enter student number (9999 to stop)
4321

Enter name

Fred

Enter age

16

Enter sex (M or F)

M

4321Fred 16M

Enter student number (9999 to stop)
6543

Enter name

Bev

Enter age

4

Enter sex (M or F)

F

6543Bev 14F

Enter student number {9999 to stop)
9999

...Execution ends.

23

24

Notes

(D

(2)

(3

4)
(5)

(6)

(N

Chapter 1

This program is another version of the previous example which creates a
data-structure containing the four fields.

The data structure is defined as follows:

01 student-data.

02 student-no pic XxxX.
02 name PIC XXXXX.
02 age pic xx.

02 sex pic x.

A new Ol-level data-name is introduced, namely “student-data”. The
four Ol-level items from the previous example have been changed to
02-level items and have been entered in margin B.

The data structure can be described as follows:

i) The four data-items can be considered as a collection of
information about a particular student. This collection is called
a record and the Ol-level data-name permits the program to
refer to the entire record.

it) The original four data-items have the same data-names and the
same sizes as before but they now have been defined with
02-level numbers. They can be used in the same way as they
were used in previous examples.

The 01-level item ends in a period.

The O1-leve] item does not have a picture clause if it is subdivided into
02-level items.

The 01-level item in this example is considered to have 12 characters i.e.
the sum of the sizes of the fields at the 02-level.

The user should again note that some or all ot the output fields are not
separated by blanks. A future example will remedy this situation.

Tutorial Examples 25

1.2.8 Create an Output Data Structure.

Often when displaying a number of fields, we want to setup or format the line
with appropriate spacing and then to refer to the line as an output record. An output
data structure is defined and used in this example to allow more flexibility on output.

*

* Create an Output Data Structure.
®

identification division.
program-id. EXAMPLE-8.
environment division.
configuration section.
source-computer. CBM-SuperPET.
object-computer, CBM-SuperPET,

data division.
working-storage section.

01 student-data.

02 student-no plc xxxx.
02 name pic xxxxx.
02 age pic xx.

02 sex pic x.

01 display-record.

02 out-student-no pic XXXX.

02 filler pic xxx value is spaces.
02 out-name pic XXXXX.

02 filler pic xxx value is spaces.
02 out-age pic XX.

02 filler pic xxx value is spaces.
02 out-sex pic x.

procedure division.
perform get-id.
perform process-student-data
until student-no = '9999’,
stop run,

26

Chapter 1

process-student-data.
perform get-name.
perform get-age.
perform get-sex.
perform edit-and-display-record.
perform get-id.

get-id.
display 'Enter student number (9999 to stop)’.
move spaces to student-no.
accept student-no.

get-name.
display 'Enter name’.
move spaces to name.
accept name.

get-age.
display 'Enter age’.
move spaces to age.
accept age.

get-sex.
display 'Enter sex (M or FY'.
accept sex.

edit-and-display-record.
move student-no to out-student-no.
move name to out-name.
move age to out-age.
move sex to out-sex.
display display-record.

Tutorial Examples 27

Sample Program Execution

run
Execution begins...

Enter student number (9999 to stop)
5555

Enter name

Eliza

Enter age

15

Enter sex (M or F)

F

5555 Eliza 15 F

Enter student number (9999 to stop)
1111

Enter name

Paul

Enter age

14

Enter sex (M or F)

M

1111 Paul 14 M

Enter student number (9999 to stop)
9999

...Execution ends.

Notes

) Each student record is read and then displayed with each field separated
by at least three spaces.

(2) A new data structure called "display-record” is defined. It contains four
fields with the newly defined data-names "out-student-no”, "out-name”,
"out-age”, and "out-sex”. These will be used to contain the four fields for

output.

€)) Each of these fields is separated by a field which is called filler. Filler is
a COBOL reserved word and is used to "fill” or insert space in a record.
The picture clause indicates how much space is to be inserted.

(4 The value is clause specifies the particular character or characters we
wish to insert in the field. In this case, the COBOL reserved word spaces
indicates that the field is to contain spaces or blanks.

28

&)

(6

¢)

(8

Chapter 1

H the value is clause is omitted in the filler, the field is said to be
undefined. If such a field were displayed, it would contain one or more
question marks (77).

The move verb is used to move an item from one place in working-
storage to another. Thus

move student-no to out-student-no.

causes the 4-character number to be moved from "student-data” to "out-
student-no” in "display-record”.

There is no difficulty with moving data from one tield to another if the
fields are the same size. However, it the receiving field is larger than the
sending field, the data is inserted left-justified and an appropriate
number of blanks are inserted on the right. The first two lines of the
display record could be replaced by

02 out-student-no pic XXXXXXX.

and the output would be the same since the four character name would be
moved to the left-most four positions and blanks would be inserted in the
remaining three positions.

If the receiving field is smaller than the sending field, the data again is
inserted left-justified. However, the 'extra’ characters on the right are
truncated.

Tutorial Examples

1.2.9 Produce a Simple Report.

29

Definition of picture clauses can made simpler especially when ‘long’ fields are

required.

*

* Read a Number of Fields from the Terminal
* and Print a Small Report.
&
identification division.
program-id. EXAMPLE-9.
environment division.
configuration section.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.

data division.
working-storage section.

01 student-data.

02 student-no pic XXXX.
02 name pic XXXXX.
02 age pic xx.

02 sex pic X.

01 heading-line.

02 filler pic x(12) value is 'Student Data’.

01 first-line.

02 filler pic x(8) value is 'number ’.

02 out-student-no pic XXXX.

01 second-line.

02 filler pic x(5} value is ‘name’.

02 out-name pic x(5).

01 third-line.

02 filler pic x(4) value is ‘age '.
02 out-age pic xx.

02 filler pic x(5) value is ' sex '.
02 out-sex pic x.

30

procedure division.
perform get-id.
perform process-student-data
until student-no = '9999’.
stop run.

process-student-data.
perform get-name.
perform get-age.
perform get-sex.
perform edit-and-display-record.
perform get-id.

get-id.
display 'Enter student number (9999 to stop)’.
move spaces to student-no.
accept student-no.

get-name.
display 'Enter name’.
move spaces to name.
accept name.

get-age.
display ‘Enter age’.
move spaces {o age.
accept age.

get-sex.
display 'Enter sex (M or F)'.
accept sex.

edit-and-display-record.
move student-no to out-student-no.
move name {o out-name.
move age to out-age.
move sex to out-sex.
display heading-line.
display first-line.
display second-line.
display third-line.

Chapter 1

Tutorial Examples

Sample Program Execution

run

Execution begins. ..

Enter student number (9999 to stop)
9876

Enter name

Bob

Enter age

17

Enter sex (M or F)

M

Student Data

number 9876

name Bob

age 17 sex M

Enter student number (9999 to stop})
5786

Enter name

John

Enter age

16

Enter sex (M or F)

M

Student Data

number 5786

name John

age 16 sex M

Enter student number (9999 to stop)
9999

...Execution ends.

31

32

Nores

(1

(2)
(3)

(4)

Chapter 1

The example contains most of the material that has been presented in the

previous examples. The program prompts for a number, name, age, and

sex and displays a small report for each student.

A heading is placed at the beginning of each student report.

The "heading-line” defines a field of 12 characters by using the clause
02 filler pic x(12} value is 'Student Data’.

which is equivalent to

02 filler pic xxxxxxxxxxxx value is 'Student Data’.

The former method of defining pictures is often more convenient than
the latter.

Both methods of defining pictures can be used in a particular data-
structure definition.

Tutorial Examples 33

1.3 Reading and Writing Files.

1.3.1 Getting Prepared To Use Files.

In each of the previous examples the user has been required to re-enter the
student data - a somewhat tiring and boring situation. It would be preferable if the
data could be entered once and then saved away for future use. (We have already
done something similar when we saved our programs away for future use.) A
collection of records, in this case the student records, is referred to as a file. This
example shows how a file is defined. The next example uses the file.

*

* Define a File to Hold the Student Records.
®

identification division.

program-id. EXAMPLE-10.

environment division.

configuration section.

source-computer. CBM-SuperPET.

object-computer. CBM-SuperPET.

input-output section.
file-control.
select student-file
assign to "students’.

data division.
file section,
fd student-file
label records are standard.
01 student-record.
02 filler pic x(60).

working-storage section.

01 siudent-data.

02 student-no pic XXXX.
02 name PIC XXXXX.
02 age pic XX.

02 sex pic x.

34 Chapter 1

procedure division.
stop run,

Sample Program Execution

run
Execution begins. ..
...Execution ends.

Notes

€] COBOL. requires certain information in order to handle a file. A number
of new statements are introduced in this example in order to define a file.

(2) The lines

input-output section.
file-control.
select student-file
assign to 'students’.

are placed in the environment division. They specify the file-name used
by the program, “student-file", as well as the system-name of the file,
"students”,

(3} The data division has been modified to include the lines:

file section.
fd student-file

label records are standard.
01 student-record.

02 pic x(60).

This section is used to describe some of the attributes of a particular file.
It is also used to set-up an intermediate area into which data will be read
or from which data will be written.

4 The file definition, fd, defines the name of the file, namely "student-
file”. It is also necessary to tell the system how to deal with the label of
the file. In this example, we indicate that labels will handled in a
standard fashion. The reference manual expands on the concept of
labels.

Tutorial Examples 35

&)

(6}

(M

The lines

01 student-record.
02 pic x(60).

define a record-name for the file namely, “student-record” and specify
that it contains 60 characters. The purpose of this area is to act as an
input-output area to receive data from from the file or to send data to the
file.

When the record is read or written, 60 characters of information will be
transmitted.

Record-names and file-names are formed in the same way as data-
names. System-names also consist of characters chosen from the letters
and digits. The number of characters varies from system to system. Use
of "short” system-names is usually safer, especially if one wants to use
programs on a variety of systems.

Hint Since the student file will be used in many of the future
examples, it is suggested that "texta” be modified to include the
input-output and file section statements introduced in this
example.

36 Chapter 1

1.3.2 Create a Simple File,

Having defined the file in the previous example, we now accept student data and
write it into the newly defined file.

b

* Write Student Records into a Fiie.
*
identification division.
program-id. EXAMPLE-11.
environment division,
configuration section.
source-computer. CBM-SuperPET,
object-computer. CBM-SuperPET.

input-output section.
file-control.
sclect student-file
assign to 'students’.

data division.
file section.
fd student-file
label records are standard.
01 student-record.
02 filler pic x(60).

working-storage section.

01 student-data.

02 student-no pic XXXX.
02 name pic XXXXX.
02 age pic xx.

02 sex pic x.

Tutorial Examples

procedure division.
open output student-fife.
perform get-id.
perform process-student-data
until student-no = 9999’
move ‘9999’ to student-no.
write student-record from student-data.
close student-file.
stop run.

process-student-data.
perform get-name.
petform get-age.
perform get-sex.
write student-record from student-data.
perform get-id.

get-id.
display 'Enter student number (9999 to stop)’.
move spaces to student-no.
accept student-no.

get-name.
display 'Enter name'.
move spaces to name.
accept name.

get-age.
display 'Enter age’.
move spaces to age.
accept age.

get-sex.
display 'Enter sex (M or F)".
accept sex.

37

a8 Chapter 1

Sample Program Execution

run

Execution begins. ..

Enter student number (9999 to stop)
4326

Enter name

Doug

Enter age

4

Enter sex (M or F)

M.

Enter student number (9999 to stop)
3758

Enter name

Jane

Enter age

16

Enter sex M or F)

F

Enter student number (9999 to stop)
6420

Enter name

Par

Enter age

16

Enter sex (M or F}

F

Enter student number (9999 to stop)
9999

...Execution ends.

Notes

(1) The previous example defined the required file. This example will accept
data as before and write it into the file.

(2) A file must be opened before it can be used. The statement
open output student-file

in the main paragraph of the procedure division specifies that the file is
to be made available for output purposes.

Tutorial Examples 35

3)

4

(5)
(6)

)

¢

9

The program again requests the user to enter student number, name, age,
and sex.

The display verb cannot be used to write the data to the file. The
statement

write student-record from student-data

causes the record to be written to the file. In effect this statementis
saying, “"Write the record as defined in the file definition and obtain the
data from the area called student-data in working-storage.” In fact, the
data in working storage is moved to the file section and then it is written
to the file.

This process continues until the student number 9999 is entered.

Future examples will want to read the file that has been created. In order
to do this some means has to included in the file to recognize that we
have read the last record i.e. we are at the end of the file. In our previous

examples, entering 9999 accomplished this.

A special end-of-file or sentinel record containing the student number
9999 is written after the last student record is accepted from the terminal.

The statement
close student-file

releases the file indicating that the program no longer needs the file. It is
not valid to specify "output’ in a close sentence.

The description of open and close is somewhat vague and omits many
details about these two verbs. The description of the complete actions of
open and close are described in the reference manual.

40 Chapter |

1.3.3 Read and Print a File.

In the previous example we created a student file. It would seem appropriate
that we read this file and display the records to assure ourselves that they were
written correctly.

*

* Read and Print the Student Records.
ES
identification division.
program-id. EXAMPLE-12,
environment division.
configuration section.
source-computer. CBM-SuperPET,
object-computer. CBM-SuperPET.

input-output section.
file-controi.
select student-file
assign to ‘students’.

data division.
file section.
fd student-file
label records are standard.
01 student-record.
02 filler pic x(60).

working-storage section.

01 student-data.

02 student-no pic XXXX.
02 name pic XXXXX.
02 age pic XX.

02 sex pic x.

Tutorial Examples 41

procedure division.
open input student-file.
perform read-student-record.
perform process-student-data
until student-no = '9999".
close student-file.
stop run.

process-student-data.
display student-data.

perform read-student-record.

read-student-record.
read student-file into student-data.

Sample Program Execution
run
Execution begins. ..
4326Doug 14M
3758Jane 16F
6420Pat 16F

...Execution ends.

Notes

(1) This program reads the file created in the previous example and displays
each record as it appears in the file.

(2) The statement
open input student-file
specifies that the "student-file” is to be made available for input.
(3) The accept verb cannot be used to read a file. The statement
read student-file into student-data
causes a record to be read from the file and to be placed in working
storage in the area called "student-data”. In fact, the data is read into the

file section and placed in the area called "student-record”. Tt is then
moved to working storage.

42

(4)

(5)

(6)
(7N

Chapter 1

Each record read is displayed exactly as it is contained in the file i.e.
spaces may not be present between fields of the displayed record.

When the last record containing a student number of 9999 is read, the
reading and displaying process terminates.

The close sentence releases the file.

The file used in this and the previous example is referred to as a
sequential file. Writing a sequential file means that each record is written
immediately following the previous record. Reading a sequential file
means that after a record has been read, the next record is then available
to be read.

Tutorial Examples 43

1.3.4 A Standard Method for Handling End of File.

In the example in which the file was created, we had to go to extra effort to
create the sentinel record. Recognition of the end of a file is a common problem in
file processing, and it should be no surprise that there is a standard method of
dealing with the problem. If this were not the case, each program would require
different and special tests to determine when the end of file was reached.

*

* At End Clause.

*®
identification division.
program-id. EXAMPLE-13.
environment division.
configuration section.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.

input-output section.
file-control.
select student-file
assign to "students’.

data division.
file section.
fd student-file
label records are standard.
01 student-record.
02 filler pic x(60).

working-storage section.

01 swdent-data.

02 student-no pic XXXX.
02 name pic XXXXX.
02 age pic xx.

02 sex pic x.

44

Chapter 1

procedure division.

open input student-file.

perform read-student-record.

perform process-student-data
until student-no = '9999’,

close student-file.

stop run.

process-student-data.

display student-data.
perform read-student-record.

read-student-record.

read student-file into student-data
at end move ‘9999 to student-no. -

Sample Program Execution

run

Execution begins. ..
4326Doug 14M
3758Jane 16F
6420Pat 16F
...Execution ends.

Notes

(1)

(2)

3

(4)

As a matter of course, whenever a file is created, a special end of file
record is written. When examining a file, this record does not appear to
be there as it is never displayed. The end-of-file record is antomatically
written when the file being created is closed using the close verb,

This special record is recognized automatically whenever it is read by the
system. This is accomplished by adding an extra clause in the read
sentence which causes special processing when the end-of-file is read.

When the end-of-file is encountered, no record is transferred to working
storage. However, the at end clause is executed and in this case the
constant 9999 is moved to the "student-no” field. This has same effect as
reading the dummy or sentinel record. Recall that the perform-until
checks this field to determine if there are any more records.

The at end clause is executed only when the end-of-file record is read.

Tutorial Examples 45

1.3.5 At End and High-values.

Using 9999 as the signal for an end-for-file might cause some potential
problems. For example, someone might imadvertently assign a student the number
9999,

*

* At End and High-Values.

&
identification division.
program-id. EXAMPLE-14.
environment division.
configuration section.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.

input-output section.
file-control.
select student-file
assign to 'students’.

data division.
file section.
fd student-file
label records are standard.
01 student-record.
02 filler pic x(60).

working-storage section.

01 student-data.

02 student-no piC XXXX.
02 name PIC XXXXX.
02 age pic xx.

02 sex pic x.

46 Chapter 1

procedure division.
open input student-file.
perform read-student-record.
perform process-student-data
until student-no = high-values.
close student-file.
stop run.

process-student-data.
display student-data.
perform read-student-record.

read-student-record.
read student-file into student-data
at end move high-values to student-no.

Sample Program Execution

run

Execution begins. ..
4326Doug 14M
3758Jane 16F
6420Pat 16F
9999Pat 16F
...Execution ends.

Notes

(D COBOL has a special constant known as high-values which can be used
instead of 9999. In mathematical terms this quantity can be compared to
infinity, in that no larger quantity can be assigned to the field.

(2) Both the perform-until and the at end clauses have been modified to
use high-values.

&E)) When the program is run an extra line is printed, namely the sentinel
record with 9999 as the student number. Recall that this record was
inserted by the program that created the file. Note also that the name,
age, and sex are the same as the previous record. Recall that we only
changed the student number before we wrote the sentinel record. This
can be remedied by modifying the program that created the file.

Tutorial Examples 47

4

(3)

COBOL also has a constant called low-values which is the smallest
possible value.

High-values and low-values are called figurative constants. Spaces and
zero are also figurative constants.

48 Chapter 1

1.3.6 Use the File Provided with the System.

To save time and to provide some consistency, a version of the student file is
provided with the system. This section describes the file and displays an unspaced
listing of the file.

*

* Iniroduce the Student File.

*
identification division.
program-id. EXAMPLE-15.
environment division .
configuration section.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.

input-output section.
file-control.
select student-file
assign to "textfile’.

data division.
file section.
fd student-file
label records are standard.
01 student-record.
02 filler pic x(60).

working-storage section.

01 student-data.

02 student-no pic XXXX.
02 name pic x(20).
02 age pic xx.
02 sex pic x.

02 class pic x.

02 school pic x.

02 algebra pic XxX.
02 geometry pic xxx.
02 physics pic xxx.
02 chemistry pic xxx.
02 english pic XxX.

Tutorial Examples

procedure division.

open input student-file.
perform read-student-record.
perform process-student-data

until student-no = high-values.

close student-file.
Stop run.

process-student-data.

display student-data.

perform read-student-record.

read-student-record.

read student-file into student-data
at end move high-values to student-no.

Sample Program Execution

Friin

Execution Begins...
1234Smith
1236Jones
1238Winterbourne
1239Harrison
1240Graham
1242Welch
1243Dirksen
1245Cawan
1249Sullivan
1256Kitchen
1266Taylor

1268 Allen
1270Xerxes
1272Zimmerman
1375Quantas
1388Beatle
1390Cruikshank
1393Hopper
...Execution ends.

SA
TO
MS

Iw
Jw
PH
DD

MP
YO
TT

AB
FL
RA
TR
BU

14m13075100075065084
14m22076078055057078
14m31078088056067088
14mA202208706 5087068
14m21000068075067087
14m31075075076075075
14m42074085054068084
131 3305306607 7088099
15t 42044055066077088
14m43074049100097036
13f 33095083072066055
131 21098084073065059
13f 13099088077066055
131 32095085078061057
15m22066066066066066
151 11065062073076087
15 33055064077076085
15f 23045069037026035

49

50

Notes

(H

@)
3

Chapter 1

In order to make the file available, the user is requested to run the
program called "CB143". A copy of this program appears as the last
example in the tutorial section of the text.

The student file contains 18 records.

Each record in the file is 60 characters long and is composed of the
following fields:

Student Number
The student number field is 4 digits in length and contains a
4-digit number.

Name
The name field is 20 characters in length and contains both
surname and initials. The surname occupies the first 17
positions and the initials occupy the last 3 positions of this field.

Age
The age field is 2 characters in length and contains numbers in
the range 12 to 19.

Sex
The sex field is 1 character in length and contains either an M or
an F.

Class
The class field is I character in length and contains numbers in
the range 1 to 4.

School

The school field is 1 character in length and contains numbers in
the range I to 3.

Algebra, Geometry, Physics, Chemistry, and English
These five fields are all 3 digits in length and contain marks or
grades for each of the subjects. Possible grades range from 0 to
100.

Tutorial Examples 51

Space Reserved for Future Use.
The student record is defined to have 60 characters. The above
fields occupy 44 characters of the record; the remaining 16
characters are reserved for future use.

4 The system-name for the student file is "textfile”.

(3 If the user plans to use the student file, it is suggested that the definition
for "student-data” be entered as a get file.

52 Chapter 1

1.3.7 Print a Report Using the Student Fiie.

In all the examples presented to this point, we have used the display verb for
producing output to the screen. It is more traditional in COBOL to define a special
file for screen output and to use the write verb for displaying records.

*

* Print a Report Using the Student File.
*
identification division.
program-id. EXAMPLE-16.
environment division.
configuration section.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.

input-output section
file-contral.
select student-file
assign to "textfile’.
select screen
assign to 'terminal’.

data division.

file section.
fd student-file

label records are standard.
01 student-record.

02 filler pic x(60).

fd screen

label records are standard.
01 display-record.

02 filler pic x(80).

Tutorial Examples

working-storage section.

01 student-data.
02 student-no
02 name.

03surname
03initials
02 age
02 sex
02 class
02 school
02 algebra
02 geometry
02 physics
02 chemistry
02 english

01 report-heading,
02 filler
02 filler
02 filler

01 first-line.
02 out-student-no
02 filler
02 out-initials
02 filler
02 out-surname

01 second-line,

02 filler

02 out-algebra
02 filler

02 out-geometry
02 filler

02 out-physics
02 filler

02 out-chemistry
02 filler

02 out-english

01 Dblank-line

pic
pic
pic

pic XXXX.

pic x(17).
pic XXX.
pic xx,
pic x.
pic x.
pic x.
pic XXX.
pic xxx.
pic XXX.
pic xxx.
pic XxX.

x(20) value is spaces.

x(20) value is 'Student Reports’.

x(40) value is spaces.

pic x(4).

pic x(10) value is spaces.

pic xxx.
pic x value is spaces.
pic x(17).

pic x(5) value is ' alg’.

pic xxx.

pic x(5) value is ' gmt’.
pic XXX.

pic x(5) value is ' phy'.
pic xxx.

pic x(5) value is ' chm’'.
pic xxx.

r

pic x(5) value is ' eng’.
pic XXX,

pic x(80) value is spaces.

53

Chapter 1

procedure division.
open input student-file.
open output screen.
write display-record from report-heading.
write display-record from blank-line.
perform read-student-record.
perform process-student-data
until student-no = high-values.
close student-file
screen.
stop run.

process-student-data.
perform display-student-data.
perform read-student-record.

display-student-data.
move student-no to out-student-no.
move initials to out-initials.
move surname to oui-surname.
write display-record from first-line.
move algebra to out-algebra.
move geometry to out-geometry.
move physics to out-physics.
move chemistry to out-chemistry.
move english to out-english.
write display-record from second-line.
write display-record from blank-line.

read-student-record.
read student-file into student-data
at end move high-values to student-no.

Tutorial Examples

Sample Program Execution

run
Execution begins. ..
Student Reports

1234 SA Smith
alg 075 gmt 100 phy 075 chm 065 eng 084

1236 TO Jones
alg 076 gmt 078 phy 055 chm 057 eng 078

1238 MS Winterbourne
alg 078 gmt 088 phy 056 chm 067 eng 088

1239 K Harrison
alg 022 gmt 087 phy 065 chm 087 eng 068

1240 JW Graham
alg 000 gmt 068 phy 075 chm 067 eng 087

1242 JW Welch
alg 075 gmt 075 phy 076 chm 075 eng 075

1243 PH Dirksen
alg 074 gmt 085 phy 054 chm 068 eng 084

1245 DD Cowan
alg 055 gmt 066 phy 077 chm 088 eng 099

1249 J Sullivan
alg 044 gmt 055 phy 066 chm (77 eng 088

1256 MP Kitchen
alg 074 gmt 049 phy 100 chm 0597 eng 036

1266 YO Taylor
alg 095 gmt 083 phy 072 chm 066 eng 055

1268 TT Allen
alg 098 gmt 084 phy 073 chm 065 eng 059

1270 X Xerxes

55

56

Chapter 1

alg 099 gmt 088 phy 077 chm 066 eng 055

1272

AB Zimmerman

alg 095 gmt 085 phy 078 chm 061 eng 057

1375

FL Quantas

alg 066 gmt 066 phy 066 chm 066 eng 066

1388

RA Beatle

alg 065 gmt 062 phy 073 chm 076 eng 087

1390

TR Cruikshank

alg 055 gmt 064 phy 077 chm 076 eng 085

1393

BU Hopper

alg 045 gmt 069 phy 037 chm 026 eng 035

...Execution ends.

Notes

(D

)

(3

(4)

This example displays a report using the student file described in the
previous example. The report consists of a heading followed by two lines
for sach student containing selected fields of the file. A blank line is
displayed between each student report.

While use of the display verb is appropriate to display records, it is more
traditional to use the write verb. This, of course, requires the proper file
definition. The file-name is called "screen” and the record-name defined
in the file section is called "display-record”. An area of 80 characters is
defined since most screens can contain an 80 character line. However, it
should be noted that some systems because of their hardware design will
cause an additional line containing blanks to be printed if the 80th
character is not a blank.

The file "screen” is opened and closed in the appropriate places in the
program.

Records are displayed using the write verb in the form

write display-record from ...

(5)

(6)

(7

(&)

9

Tutorial Examples 57

A record containing spaces is defined in working storage and is used to
display blank lines.

The name field of the student record consists of a 17 character sumarne
followed by 3 characters for the initials. In this example we wish to
display the initials before the surname. In order to do this we must define
two fields for the name.

COBOL permits us to subdivide a field further by introducing new level
numbers and by using new data-names. The field "name” is divided into
two fields "surname” and "initials” as follows:

02 name.
03 surname pic x(17).
03 initials pic xxx.

The picture clause has been removed from the 02-level item and two
new items are defined at the (3-level; these new items are clementary
items. Now the name can be referred to by using "name” or by using
"surname” and/or "initials”.

The 03-level number items have been indented to improve readability.

COBOL permits us to use up to 49 levels; the reference manual describes
the rules of how these can be used.

38 Chapter 1

1.3.8 Inputting a File Name.

We often want to change the system-name in a program. For example instead of
directing output to the terminal, we might wish to display it on the printer. This
example shows how this could be accomplished under program control.

*

* Input a File Name.

*
identification division.
program-id. EXAMPLE-17.
environment division.
configuration section.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.

input-output section.
file-control.
select student-file
assign to 'textfile’.
select screen
assign to .

data division.

file section.
fd student-file

label records are standard.
01 student-record.

02 filler pic x(60}.

fd screen
label records are standard
value of '’ is output-file-name.
01 display-record.
02 filler pic x(B0).

working-storage section.

01 output-file-name pic x(12).

Tutorial Examples

01 student-data.
02 student-no
02 name
02 age
02 sex
02 class
02 school
02 algebra
02 geometry
02 physics
02 chemistry
02 english

01 report-heading.
02 filler
02 filler
02 filler

01 first-line.
02 out-student-no
02 filler
02 out-name

01 second-line.

02 filler

02 out-algebra
02 filler

02 out-geometry
02 filler

02 out-physics
02 filler

02 out-chemistry
02 filler

02 out-english

01 blank-line

pic XXXX.
pic x(20).
pic xx.
pic x.
pic x.
pic x.
pic xXxx.
pic XXX.
pic xxx.
pic xxx.
pic xxx.

pic x(20) value is spaces.
pic x(20) value is 'Student Reports’.
pic x(40) value is spaces.

pic x(4).
pic x(10) value is spaces.
pic x(20).

pic x(5) value is ' alg’.
pic xxx.
pic x{5) value is ' gmt’.
pic xxx.
pic x(5) value is " phy'.
pic xxx.
pic x(5) value is ' chm’.
pic xxx.
pic x(5) value is ' eng’.
pic XXX.

pic x(80) value is spaces.

59

Chapter |

procedure division.
display 'enter output file name - terminal or printer’.
move spaces to output-file-name.
accept output-file-name.
open input student-file.
open output screen.
write display-record from report-heading.
write display-record from blank-line.
perform read-student-record.
perform process-student-data
until student-no = high-values.
close student-file
screen.
stop run.

process-student-data.
perform display-student-data.
perform read-student-record.

display-student-data.
move student-no to out-student-no.
move name to out-name.
write display-record from first-line.
move algebra to out-algebra.
move geometry to out-geometry.
move physics to out-physics.
move chemistry to out-chemistry.
move english to out-english.
write display-record from second-line.
write display-record from blank-line.

read-student-record.
read student-file into student-data
at end move high-values to student-no,

Tutorial Examples

Sample Program Execution

run
Execution begins. ..
enter output file name - terminal or printer
printer

Student Reports

234 Smith SA
alg 075 gmt 100 phy 075 chm 065 eng 084

236 Jones TO
alg 076 gmt 078 phy 055 chm 037 eng 078

238 Winterbourne ~ MS
alg 078 gmt 088 phy 056 chm 067 eng 088

239 Harrison K
alg 022 gmt 087 phy 065 chm 087 eng 068

240 Graham Jw
alg 000 gmt 068 phy 075 chm 067 eng 087

242 Welch Jw
alg 075 gmt 075 phy 076 chm 075 eng 075

243 Dirksen PH
alg 074 gmt 085 phy 054 chm 068 eng 084

245 Cowan DD
alg 055 gmt 066 phy 077 chm 088 ¢ng 099

249 Sullivan I
alg 044 gmt 055 phy 066 chm 077 eng 088

256 Kitchen MP
alg 074 gmt 049 phy 100 chm 097 eng 036

266 Taylor YO
alg 095 gmt 083 phy 072 chm 066 eng 0355

268 Allen TT
alg 098 gmt 084 phy (073 chm 065 eng 039

62

Chapter 1

270 Xerxes X
alg 099 gmt 088 phy 077 chm 066 eng 055

272 Zimmerman AB
alg 095 gmt 085 phy 078 chm 061 eng 057

375 Quantas FL
alg 066 gmt 066 phy 066 chm 066 eng 066

388 Beatle RA
alg 065 gmt 062 phy 073 chm (76 eng 087

390 Cruikshank TR
alg 055 gmt 064 phy 077 chm 076 eng 085

393 Hopper BU
alg 045 gmt 069 phy 037 chm 026 eng 035

...Execution ends.

Notes

(1

(2)

(3)

(4)

This example prompts the user to enter the system-name, either
"terminal” or “printer”, and then displays a report similar to the previous
example on the chosen device.
Before running this example, the user should check local installation
rules of printing. These will vary from system to system and from
location to location.
The assign clause for the "screen” has been changed to

assign screen to '’
i.e. the system-name has been made a null string.
A new clause has been added to the fd statement, namely

value of "' is output-file-name.

where "output-file-name” is a data-name which is defined in working
storage. The period has been placed following the new clause.

Tutorial Examples 63

(5)

(6)

Before the file is opened, the user is prompted to enter the proper output
system-name, either "printer” or “terminal”. If “terminal” is entered, the
program functions exactly the same as the previous example. However,
if "printer” is entered, the output will appear on the line-printer.

On examining the output produced on the printer, the user may be
somewhat surprised at the results. The style and format of the output
will depend on the type of system and printer that are used. One possible
result will be that the first character of each line will not be printed. A
second result may be that the vertical spacing of the output seems
somewhat bizarre. The next example will try to correct these unusual
results.

64 Chapter 1

1.3.9 Printer Control Characters.

In the previous example, the first character of each line was not displayed when
the output was directed to the printer. Engineers have designed many printers so
that the first print position is a code which provides the printer with information
about vertical spacing. This position is not printed and must be supplied by the
programmer. This special character is often referred to as the print-control-
character.

*

* Print a Report on the Printer.

%
identification division.
program-id. EXAMPLE-18.
environment division.
configuration section.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.

input-output section.
file-control.
select student-file
assign to "textfile’.
select screen
assign to .

data division.

file section.
fd student-file

label records are standard.
0l student-record.

02 filler pic x(60).

fd screen
label records are standard
value of '’ is output-file-name.
01 display-record.
02 filler pic x{80).

working-storage section.

01 output-file-name pic x{12).

Tutorial Examples

01

01

D!

01

01

student-data.
02 student-no
02 name

02 age

02 sex

02 class

02 school

02 algebra
02 geometry
02 physics
02 chemistry
02 english

report-heading.
02 filler
02 filler
02 filler
02 filler

first-line.

02 filler

02 out-student-no
02 filler

02 out-name

second-line.

02 filler

02 filler

02 out-algebra
02 filler

(02 out-geometry
02 filler

02 out-physics
02 filler

02 out-chemistry
02 filler

02 out-english

blank-line

65

pic XxxX.
pic x(20).
pic xx.
pic X.
pic x.
pic x.
pic XXX.
pic xxx.
pic xXxx.
pic xxx.
pic XxX.

pic x value is spaces.

pic x(20) value is spaces.

pic x(20) value is 'Student Reports’.
pic x(39) value is spaces.

pic x value is spaces.
pic x(4).

pic x(10) vaiue is spaces.
pic x(20).

pic x value is spaces.
pic x(5) value is ' alg’.
pic xxx.

pic x(5) value is
pic xxx.

pic x(5) value is
pic XXX.

pic x(5} value is ' chm’.
pic XXX.

pic x(5) value is ' eng’.
pic xxX.

!

gmt’.

r ¥’

phy’.

pic x(80) value is spaces.

Chapter 1

procedure division.
display 'enter output file name - terminal or printer’.
move spaces to output-file-name.
accept output-file-name.
open input student-file.
open output screen.
write display-record from report-heading
after advancing 1 lines.
write display-record from blank-line
after advancing 1 lines.
perform read-student-record.
perform process-student-data
until student-no = high-values.
close student-file
screen,
stop run.

process-student-data.
perform display-student-data.
perform read-student-record.

display-student-data.

move student-no to out-student-no.

move name to out-name.

write display-record from first-line
after advancing 1 lines.

move algebra to out-algebra.

move geometry to out-geometry.

move physics to out-physics.

move chemistry to out-chemistry.

move english to out-english.

write display-record from second-line
after advancing 1 lines

write display-record from blank-line
after advancing 1 lines.

read-student-record.
read student-file into student-data
at end move high-values to student-no.

Tutorial Examples

Sample Program Execution

run
Execution begins. ..
enter output file name - terminal or printer
printer
Student Reports

1234 Smith SA
alg 075 gmt 100 phy 075 chm 065 eng 084

1236 Jones TO
alg 076 gmt 078 phy 0355 chm 057 eng 073

1238 Winterbourne =~ MS
alg 078 gmt 088 phy 056 chm 067 eng 088

1239 Harrison K
alg 022 gmt 087 phy 065 chm 087 eng 068

1240 Graham W
alg 000 gmt 068 phy 075 chm 067 eng 087

1242 Welch W
alg 075 gmt 075 phy 076 chm 075 eng 075

1243 Dirksen PH
alg 074 gmt 085 phy 054 chm 068 eng 084

1245 Cowan DD
alg 055 gmt 066 phy 077 chm 088 eng 099

1249 Sullivan J
alg 044 gmt 055 phy 066 chm 077 eng 088

1256 Kitchen MP
alg 074 gmt 049 phy 100 chm 097 eng 036

1266 Taylor YO
alg 095 gmt 083 phy 072 chm 066 eng 055

1268 Allen TT
alg 098 gmt 084 phy 073 chm 065 eng 059

&7

68 Chapter 1

1270 Xerxes X

alg 099 gmt 088 phy 077 chm 066 eng 055

1272 Zimmerman AB

alg 095 gmt 085 phy 078 chm 061 eng 057
1375 Quantas FL

alg 066 gmt 066 phy 066 chm 066 eng 066
1388 Beatle RA

alg 065 gmt 062 phy 073 chm 076 eng 087
1390} Cruikshank TR

alg 055 gmt 064 phy 077 chm 076 eng 083
1393 Hopper BuU

alg 045 gmt 069 phy 037 chm 026 eng 035
...Execution ends.

Notes

(1) COBOL provides us with a number of ways of handiing the print-
control-character. This example shows one method; others are described
in the reference manual.

(2) Another field is added to each of the record definitions for lines to be
displayed. In each case, a fieid of one character is defined as the first
character in the record. It is initialized to contain the blank character.

(3) Now when the program is run, the report is printed with “proper” spacing
and containing all the desired characters.

(4 The use of the "blank” as the print-control-character indicates that we
wish to do "single” spacing. Other characters are used for "double” and
"triple” spacing. Another character is used to space the printer to the top
of the page. These characters depend on the type of system and printer
being used and are described in the reference manual.

(&) When this program is run with output directed to the screen, a blank

character may be displayed at the start of each line. This means that for
some screens, we will be limited to 79 characters.

Tutorial Examples 69

(6)

If the user plans to use both the terminal and the printer interchangeably
in programs, it will be wise to plan for the use of the print-control-
character. The remainder of the examples in this tutorial deal with
output directed to the terminal.

70 Chapter 1

1.4 Selection.

1.4.1 Selection Using the If Verb.

In previous examples which used the student file, we always displayed a line for
each record in the file. Clearly on occasion we wish to display a sub-set or selection
of lines from the file. The if verb gives us a way to make decisions in our COBOL
programs and in particular to select and display certain records.

*

*If Sentence.

*
identification division.
program-id, EXAMPLE-19.
environment division.
configuration section.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.

input-output section.
file-control.
select student-file
assign to ‘textfile’.
select screen
assign to "terminal’.

data division.

file section.
fd student-file

label records are standard.
01 student-record.

02 filler pic x(60).

fd screen

label records are standard.
01 display-record.

02 filler pic x(80).

Tutorial Examples

working-storage section,

01

01

01

01

student-data.

02 student-no pic XxxX.

02 name pic x(20).

02 age pic xx.

02 sex pic x.

02 class pic x.

02 school pic x.

02 algebra pic xxx.

02 geometry pic xxx.

02 physics pic xxx.

02 chemistry pic xxx.

02 english pic xxx.

report-heading.

02 filler pic x(20) value is spaces.

02 filler pic x(25) value is "Algebra Report’.
02 filler pic x(40) value is spaces.
display-line.

02 out-student-no pic x(4}.

02 filler pic x(10) value is spaces.
02 out-name pic x(20).

02 filler pic x(5) value is spaces.
02 out-algebra pic xxx.

blank-line pic x(80) value is spaces.

procedure division.

open input student-file.
open output screen.
write display-record from report-heading,
write display-record from blank-line.
perform read-student-record.
perform process-student-data

until student-no = high-values.
close student-file

screen.

stop run.

71

72

process-student-data.

if algebra > '049’
perform display-student-data.
perform read-student-record.

display-student-data.

move student-no to out-student-no,
move name to out-name.

move algebra to out-algebra.

write display-record from dispiay-line.

read-student-record.

read student-file into student-data

at end move high-values to student-no.

Sample Program Execution

run

Execution begins. ..

1234
1236
1238
1242
1243
1245
1256
1266
1268
1270
1272
1375
1388
1390

Algebra Report

Smith SA
Jones TO
Winterbourne MS
Welch Iw
Dirksen PH
Cowan DD
Kitchen MP
Taylor YO
Allen TT
Xerxes X

Zimmerman AB
Quantas FL
Beatle RA
Cruikshank TR

...Execution ends.

Notes

(1)

075
076
078
075
074
055
074
095
098
099
095
066
065
055

Chapter 1

This example produces a report containing the student number, name,
and algebra mark of those students whose algebra mark is 50 or greater.

Tutorial Examples

2

(3)

(4}

(3

(6)

(7

This can be accomplished by changing the "process-student-data”
paragraph as follows:

process-student-data.
if algebra > '049’
perform display-student-data.
petform read-student-record.

Note that we have infroduced a new COBOL verb, namely if. When the
if sentence is encountered during execution, the condition

algebra > ‘049’

is evaluated. If the condition is frue, the paragraph "display-student-
data” is executed. If the condition is false, control proceeds to the next
sentence, and another record is read.

The if sentence always contains a condition. These conditions are
similar to those used with the perform-until sentence.

The symbols ‘>’ and "=’ used in conditions in this example are called
relational operators. Actually there is a third one namely, '<<', The
word not can be included with each of the three conditions as follows:

not =
not <<
not >

giving a total of six relational operators. it is also possible to use equal
or even equals instead of '='. A complete list of alternatives can be
found in the reference manual.

The if sentence ends with a period. It is important to note that there is
only one period, and this period terminates the sentence. The
importance of this will become evident in the next example.

The reader might be tempted to omit the O(zero} from the '049" portion
of the condition and write it as ‘49’ or even ' 49'. If the program were
run, it would be unlikely that one would obtain the correct resutts. Thus,
it is usually necessary to include the O(zero) in the '049'. The reader is
referred to the reference manual to determine the reason for this.

The perform portion of the if is indented for easier readability.

74 Chapter 1

1.4.2 Another Version of If.

It is sometimes convenient to group a number of COBOL statements as a single
entity. This example demonstrates how this can be done.

*

*If Sentence (Anothér way).
*®
identification division,
program-id. EXAMPLE-20,
environment division.
configuration section.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.

input-output section.
file-control.
select student-file
assign to 'textfile’.
select screen
assign to 'terminal’,

data division,

file section.
fd student-file

label records are standard.
01 student-record.

02 filler pic x{60}.

fd screen

label records are standard.
01 display-record.

02 filler pic x(80).

Tutorial Examples

working-storage section.

01

01

01

01

student-data.

02 student-no piC XXXX.

02 name pic x(20).

02 age pic XxX.

02 sex pic X.

02 class pic x.

02 school pic X.

02 algebra pic xxx.

02 geometry pic Xxx.

02 physics pic Xxx.

02 chemistry pic xxx.

02 english pic XXX.

report-heading.

02 filler pic x(20) value is spaces.

02 filler pic x(25) value is 'Algebra Report’.
02 filler pic x(40) value is spaces.
display-line.

02 out-student-no pic x(4).

02 filler pic x(10) value is spaces.
02 out-name pic x(20).

02 filler pic x(5) value is spaces.
02 out-algebra pic XXX.

blank-line pic x(80) value is spaces.

procedure division.

open input student-file.
open output screen.
write display-record from report-heading.
write display-record from blank-line.
perform read-student-record.
perform process-student-data

until student-no = high-values.
close student-file

screen.

stop run.

75

76 Chapter 1
process-student-data.
perform display-student-data.
perform read-student-record.
display-student-data.
if algebra > 049’
move student-no to out-student-no
move name (o out-name
move algebra to out-algebra
write display-record from display-line.
read-student-record.
read student-file into student-data
at end move high-values to student-no.
Sample Program Execution
run
Execution begins. ..
Algebra Report
1234 Smith SA 075
1236 Jones TO 076
1238 Winterbourne MS 078
1242 Welch Jw 075
1243 Dirksen PH 074
1245 Cowan DD 055
1256 Kitchen MP 074
1266 Taylor YO 095
1268 Allen TT 098
1270 Xerxes X 099
1272 Zimmerman AB 095
1375 Quantas FL 066
1388 Beatle RA 065
1390 Cruikshank TR 055
...Execution ends.
Notes
(1) This example is another version of the previous example. It presents the

concept of the range of the if and shows how a series of COBOL

statements can be executed when the condition is true,

Tutorial Examples T

(2)

(3)

(4)

(5}

6)

The if sentence has been moved to the "display-student-data” paragraph.
The periods have been removed from each of the sentences except the
last in this paragraph. The if is followed by the four statements and is
terminated by a period to form the if sentence. The statements in the
range of the if are executed if the condition is true.

All statements in the range of the if are indented for readability.

The importance of the period cannot be over-emphasized. It terminates
the if and no other pertods should be placed in the range of the if.

The word statement has been and will be used to refer to a COBOL
sentence without a period.

While the versions of the if in this and the previous example both
function properly, it is suggested that one avoid, if possible, "large” if
sentences.

78 Chapter 1

1.4.3 The Else Option,

In the previous two examples, we did not require a line to be displayed if the
algebra mark was less than 50. It is sometimes the case that we wish to perform one
action if a condition is true and an alternative action if the condition is false; for
example, one action if the mark is less than 50 and another if the mark is greater or
equal to 50.

*

* Else Option.

*
identification division.
program-id. EXAMPLE-21.
environment division.
configuration section.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.

input-output section.
file-control.
select student-file
assign to "textfile’.
select screen
assign to 'terminal’.

data division.

file section.
fd student-file

label records are standard.
0t student-record.

02 filler pic x(60).

fd screen

label records are standard.
01 display-record.

02 filler pic x(80).

Tutorial Examples

working-storage section.

79

01 student-data.
02 student-no pic XXXX.
02 name pic x(20).
02 age pic xx.
02 sex pic x.
02 class pic x.
02 school pic x.
02 algebra pic xXX.
02 geometry pic xxx.
02 physics pic xxx.
02 chemistry pic xxx.
02 english pic xxx.
01 report-heading.
02 filler pic x(20) value is spaces.
02 filler pic x{20) value is 'Pass - Fail Report’.
02 filler pic x(40) value is spaces.
01 display-line.
02 out-student-no pic x(4).
02 filler pic x(10) value is spaces.
02 out-name pic x(20).
02 fiiler pic x(5) value is spaces.
02 out-algebra pic xxx.
02 filler pic x(5) value is spaces.
02 pass-fail pic x(10).

01 blank-line pic x(80) value is spaces.
procedure division.
open input student-file.
open output screen.
write display-record from report-heading.
write display-record from blank-line.
perform read-student-record.
perform process-student-data
until student-no = high-values.
close student-file
screen.
stop run.

30

process-student-data.

perform display-student-data.
perform read-student-record.

display-student-data.
it algebra < ‘050’

else

move 'failed” to pass-fail

move 'passed’ to pass-fail.

move student-no to out-student-no.

move name to out-name.
move algebra to out-algebra.
write display-record from display-line.

read-student-record.

read student-file into student-data
at end move high-values to student-no.

Sample Program Execution

run

Execution begins. ..

1234
1236
1238
1239
1240
1242
1243
1245
1249
1256
1266
1268
1270
1272
1375
1388
1390
1393

Pass - Fail Report

Smith

Jones
Winterbourne
Harrison
Graham
Welch
Dirksen
Cowan
Sullivan
Kitchen
Taylor
Alilen
Xerxes
Zimmerman
Quantas
Beatle
Cruikshank
Hopper

...Execution ends.

SA
TO
MS
K
Iw
Jw
PH
bD
]
MP
YO
TT
X
AB
FL
RA
TR
BU

075
076
078
022
000
075
074
055
044
074
095
098
099
095
066
065
033
045

passed
passed
passed
failed

failed

passed
passed
passed
failed

passed
passed
passed
passed
passed
passed
passed
passed
failed

Chapter 1

Tuterial Examples 81
Notes
(H In this example a report is produced displaying student number, name,

(2)

(3)

(4)

3

and algebra mark for all students as well as a field indicating if the
student passed or failed aigebra.

A new field has been included in "display-line” to contain the pass-fail
indication.

The "display-student-data” paragraph has been altered to include the
sentence

if algebra < '050/

move 'failed’ to pass-fail
else

move 'passed’ to pass-fail.

The condition is tested and if it is true, 'failed’ is moved to the display
record; if it is false, "passed’ is moved. We refer to the two actions as
being contained in the frrue range and false range of the if sentence. The
true range ends with the else and the false range ends with the period.

The else is placed on a separate line and both the true and false ranges are
indented for readability,

82 Chapter 1

1.4.4 Multiple Choice.

In the previous example we caused either "passed” or "failed” to be displayed in
the record. This can be thought of as two cases. However, many situations arise
where more than two cases are involved.

*®

* Multipie Choice.

*
identification division.
program-id. EXAMPLE-22,
environment division.
configuration section,
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.

input-output section.
file-control.
select student-file
assign to 'textfile’.
select screen
assign to "terminal’.

data division.

file section.
fd student-file

label records are standard.
01 student-record.

02 filler pic x(60).

fd screen
. label records are standard.
01 display-record.

02 filler pic x(80).

Tutorial Examples

working-storage section.

01

01

01

01

student-data.
02 student-no
02 name

02 age

02 sex

02 class

02 school

02 algebra
02 geometry
02 physics
02 chemistry
02 english

report-heading.
02 filler
02 filler
02 filler

first-line.

02 out-student-no
02 filler

02 out-name

02 filler

02 out-algebra
02 filler

02 grade

blank-line

procedure division.

open input student-file.
open output screen.

pic xxxx.
pic x(20).
pic xx.
pic x.

pic x.
pic x.
pic XXX.
pic XXX.
pic xxx.
pic XXX,
pic XXX.

pic x(20) value is spaces.
pic x(25) value is ‘Letter - Grade Report’.
pic x(35) value is spaces.

pic x{(4).

pic x(10) value is spaces.
pic x(20).

pic x(5) value is spaces.
pic Xxx.

pic x(5) value is spaces.
pic x.

pic x(80) value is spaces.

write display-record from report-heading.
write display-record from blank-line.
perform read-student-record.
perform process-student-data

until student-no = high-values.

close student-file
screen.
stop run.

83

84

process-student-data.
perform display-student-data.
perform read-student-record.

display-student-data.
if algebra < ‘050"
move 'F' to grade
else if algebra < '060’
move ‘D’ to grade
else if algebra < ‘066
move 'C’ to grade
else if algebra < '075’
move ‘B’ to grade
else
move ‘A’ to grade.
move student-no to out-student-no.
move name to out-name.
move algebra to out-algebra.
write display-record from first-line.

read-student-record.
read student-file into student-data

at end move high-values to student-no.

Chapter 1

Tutorial Examples

Sample Program Execution

run

Execution begins. ..

1234
1236
1238
1239
1240
1242
1243
1245
1249
1256
1266
1268
1270
1272
1375
1388
1390
1393

Letter - Grade Report

Smith

Jones
Winterbourne
Harrison
Graham
Welch
Dirksen
Cowan
Sullivan
Kitchen
Taylor
Allen
Xerxes
Zimmernran
Quantas
Beatle
Cruikshank
Hopper

...Execution ends.

Notes

(D

SA
TO
MS
K
IW
Iw
PH
DD
J
MP
YO
TT
X
AB
FL
RA
TR
BU

075
076
078
022
000
075
074
035
044
074
095
098
099
095
066
065
055
045

TUOQ®EEPRr>ETOEETTE B>

85

The example produces a report which includes letter grades as well as the
numeric valoes. The letter A, B, C, D, or F is displayed in the
appropriate situation.

86

(2)

(3)

4

Chapter 1

The "display-student-data” paragraph now contains the more complicated
if which handles the necessary cases.

if algebra << '050’
move 'F' to grade
else if algebra < 060
move ‘D’ to grade
else if algebra < '066’
move 'C' to grade
else if algebra < '075’
move 'B’ to grade
else
move 'A’ to grade.

Here we have a number of if's with the entire if sentence ending with a
single period. If the algebra mark is less than 50, an F is moved to the
display line and then control passes to the next sentence. If the mark is
not less than 50 control passes to the clause

else if algebra < '060/
Here the program asks is the mark is less than 60 and if that is the case, a
D is moved to the display line and then control passes to the next

sentence. If not control passes to the next else if clause. This process
continues unti! the correct condition is found.

The else if clause
else if algebra < '060’

determines if the mark is in the range 50 to 59 since the previous
condition

algebra < '050’

eliminated the case of all marks less than 50. Similarly, at each of the
other else if clauses, the program checks for the correct range of marks.

Tutorial Examples 37

(5)

The if sentence could have been written as follows:

if algebra << '050’
move 'F’ to grade
else
if algebra < '060’
move ‘D to grade
else
if algebra << '066’
move 'C’ to grade
clse
if algebra < '075’
move ‘B’ to grade
else
move 'A’ to grade.

Either style of the if sentence is acceptable. However, the authors prefer
the style used in the program.

88 Chapter 1

1.4.5 Logical Operators - And and Or.

On many occasions we wish to test more than one condition. The logical
operators and and or can be used to accomplish this.

*

* And and Or.

*
identification division.
program-id. EXAMPLE-23.
environment division.
configuration section.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.

input-output section.
file-control.
select student-file
assign to "textfile’.
select screen
assign to "terminal’.

data division.

file section.
fd student-file

label records are standard.
01 student-record.

02 filler pic x(60).

fd screen

tabel records are standard.
01 display-record.

02 filler pic x(80).

Tutorial Exarmnples

working-storage section,

01

01

01

01

student-data.

02 student-no pIC XXXX.
02 name pic x(20).
02 age pic xx.
02 sex pic x.
02 class pic x.
02 school pic X.
02 algebra pic xxx.
02 geometry pic XXX.
02 physics pic xxx.
02 chemistry pic xxx.
02 english pIC XXX.
report-heading.
02 filler pic x(20) value is spaces.
02 filler pic x(30)
value is ‘Class 2 - Algebra Report’.
02 filler pic x(40) value is spaces.
first-line.
02 out-student-no pic x(4).
02 filler pic x{10) value is spaces.
02 out-name pic x(20).
02 filler pic x{3) value is spaces.
02 out-algebra pic XXXXX.
blank-line pic x{80) value is spaces.

procedure division.

open input student-file.
open output screen.
write display-record from report-heading.
write display-record from blank-line.
perform read-student-record.
perform process-student-data

until student-no = high-values.
close student-file

screen,

stop run.

89

90 Chapter 1

process-student-data.
if algebra > ‘074" and class = ‘2’
perform display-student-data.
perform read-student-record.

display-student-data.
move student-no to out-student-no.
move name to out-name.
move algebra to out-algebra.
write display-record from first-line.

read-student-record.
read student-file into student-data
at end move high-values to student-no.

Sample Program Execution

run

Execution begins...
Class 2 - Algebra Report

1236 Jones TO 076
1268 Allen TT 098
...Execution ends.

Notes

(1) This example produces a report of students in the second class whose
algebra mark is 75 or greater.

(2} In this case the if sentence

if algebra > '074' and class = "2
perform display-student-data.

uses a compound condition with the logical operator and. If both
conditions are true the record is displayed. If either or both of the
conditions are false, the record is not displayed.

3 If the logical operator or were used instead of and in this example,
records would be displayed for all students in the second class as well as
all those in other classes whose algebra mark was 75 or greater.

Tutorial Examples 91

1.4.6 Combined Use of And and Or

On occasion we wish to combine the logical operators and and or in a
compound condition.

*

* Compound Conditions,
*
identification division.
program-id. EXAMPLE-24.
environment division.
configuration section.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.

input-output section.
file-control.
select student-file
assign to "textfile’,
select screen
assign to ‘terminal’.

data division.

file section.
fd student-file

label records are standard.
01 student-record.

02 filler pic x(60).

fd screen

label records are standard.
01 display-record.

02 filler pic x(80).

working-storage section.

01 student-data.

Chapter 1

02 student-no pic XXXX.
02 name pic x(20).
02 age pic xx.
02 sex pic Xx.

02 class pic x.

02 school pic x.

02 algebra pic xXxx.
02 geometry pic xxx.
02 physics pic XXX.
02 chemistry pic Xxx.
02 english pic XXX.

01 report-heading.
02 filler
02 filler

pic x(20) value is spaces.
pic x(30)

value is 'Class 2 & 4 - Algebra Report’.

02 filler

01 first-line.

pic x(40) value is spaces.

02 out-student-no pic x(4).

02 filler pic x(10) value is spaces.
02 out-name pic x(20).

02 filler pic x(5) value is spaces.
02 out-class pic X.

02 filler pic xx value is spaces.
02 out-algebra pic XXXXX.

01 blank-line

procedure division.

pic x(80) value is spaces.

open input student-file.
open output screen.
write display-record from report-heading.
write display-record from blank-line.
perform read-student-record.
petform process-student-data

until student-no = high-values.
close student-file

screen.

stop run.

Tutorial Examples 93

process-student-data.
if (algebra > ‘074’ and class = '2')
or
(algebra <C ‘050" and class = '4")
perform display-student-data.
perform read-student-record.

display-student-data.
move student-no to out-student-no.
move name to out-name,
move class to out-class,
move algebra to out-algebra.
write display-record from first-line.

read-student-record.
read student-file into student-data
at end move high-values to student-no.

Sample Program Execution
run

Execution begins. ..
Class 2 & 4 - Algebra Report

1236 Jones TO 2 076
1239 Harrison K 4 022
1249 Sullivan J 4 044
1268 Allen TT 2 098
...Execution ends.
Notes
(n This example produces a report for students in the second class whose

algebra mark is 75 or greater as well as students in the fourth class whose
algebra mark is less than 50.

(2) The compound condition

(algebra > (074" and class = '2")
or

il

(algebra <C '050" and class = '4")

94

(3

4

(3)

(6)

Chapter 1

performs the required test. It determines if the class 2 - algebra condition
is true and then if the class 4- algebra condition is true. If either is true
the record is displayed.

Parentheses have been introduced in order that the conditions are
evaluated in the desired order and to make the compound condition
easier to understand. Quantities enclosed in parentheses are evaluated
first.

If parentheses are omitted, and’s are evaluated first, followed by or’s.
Thus in this example the parentheses could have been omitted. However,
they were included to reduce possible ambiguity.

The following compound condition illustrates the use of parentheses.

(class = 2’ or class = '4")
and
(algebra <¢ ‘050 or algebra > '075")

In this case, the report would contain students in the second or fourth
class who had marks less than 50 or greater than 75. If parentheses were
omitted the report would contain all stedents in class 2, students in class
4 with algebra marks less than 50, and students whose algebra mark was
greater than 75.

Finally, this new compound condition could be written somewhat more
compactly as

(class = '2' or '4")
and
(algebra > '075' or < '050")

The reader is referred to the reference manual for a more complete
presentation of implied subjects in compound conditions.

Tutorial Examples

1.5 Arithmetic.

1.5.1 Integer Arithmetic

One of the major uses of computers is to perform arithmetic. This example
introduces the verbs used for arithmetic operations. It also presents a new field
definition for defining numbers to be used in arithmetic operations. The program
itself has little meaning; it is used to demonstrate arithmetic operations.

*

* Simple Arithmetic (Integer Numbers).

*

identification division.

program-id. EXAMPLE-25.
environment division.
configuration section.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.
data division.

working-storage section.

01
01

01
01
01
01

oo

-0 a0

pic 9(4) value is 1234,
pic 9(6) value is 123456.

pic 7).
pic 9(6).
pic 9(10).
pic 9(3).

96 Chapter 1

procedure division.
add a b giving c.
subtract a from b giving d.
multiply a by b giving e.
divide a into b giving f.

display 'a ' a.
display 'b ' b.
display ’ ',
display 'c ' c.
display 'd * d.
display ‘e ' e.
display 'f ' f.
stop run.

Sample Program Execution

rin
Execution begins...
a 1234

b 123456

¢ 0124690

d 122222

e 0152344704

f 100

...Execution ends.

Notes

(O This example defines two fields "a” and "b”, assigns the values 1234 and
123456, and then finds the sum, difference, product, and quotient of the
two values. The answers of the four operations are stored in four fields
and are then displayed.

{2) A different picture clause is required for fields which are used to store
numbers which will be used to enter into arithmetic operations. The two
definitions for "2’ and "b" are writien as

01 a pic 9(4) value is 1234.
01 b pic 9(6) value is 123456.

Tutorial Examples 97

(3

{(4)

(5)

(6)

(7)

(8)

Here "a" holds a 4-digit number with the value 1234 and "b” holds a
6-digit number with the value 123456, The two definitions could have
been written as:

01 a pic 9999 value is 1234,
01 b pic 999999 value is 123456.

It is a basic rule of COBOL that fields that are to enter into arithmetic
operations must be declared using picture’s with 9's instead of x's.
These new picture’s are referred to as numeric pictures.

The integer values, 1234 and 123456, are not enclosed by guotation
marks. They are referred to as numeric literals.

The four basic sentences used in this example for doing arithmetic
operations are:

add a b giving c.

subtract a from b giving d.
multiply a by b giving e.
divide a into b giving f.

The meaning of each of these sentences is fairly obvious. In each case
L

the contents of the fields "a" and "b” enter into an arithmetic operation,
and the answers are stored in "c”, "d", "e", and "f" respectively.

The fields "¢”, "d", "¢”, and "f" are the receiving fields for the four
computations. When these fields have more positions than needed to
hold the answer, zeros are padded on the left,

When division is pertormed the result is stored in "’ giving a value 100.
The remainder, namely 56, is lost. Later we will see how the remainder
can be retained.

A number of other forms of the arithmetic verbs exist in COBOL. These
are described in the reference manual. Several are presented in future
examples.

98

Chapter 1

1.5.2 Decimal Places

In the previous exampie, the decimal point was assumed to be to the right of the
right-most digit. This example introduces decimal values in arithmetic operations.

*

* Simple Arithmetic (With Decimal Places).

*

identification division.

program-id, EXAMPLE-26.
environment division,
configuration section,
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.
data division.

working-storage section.

01
01

01
(]|
01
01

a
b

- oo e

pic 99v99 value is 12.34.
pic 999v099 value is 123.456.

pic A7),

pic 999v999.
pic 9(5)v999.
pic 399v999.

procedure division.

add a b giving c.

subtract a from b giving d.
multiply a by b giving e.
divide a into b giving f.

display 'a ' a.
display 'b ' b.
display ' ",
display ‘¢ ' c.
display 'd ' d.
display ‘e ' e.
display 'f ' f.
stop run.

Tutorial Examples 99

Sample Program Execution

run

Execution begins...
a 1234

b 123456

c 0000135

d 111116

e 01523447

f 010004

...Execution ends.
Notes

(1 To indicate a decimal point in the field, we use a 'v’ in the appropriate
place in the picture clause. For example,

01 a pic 99v99 value is 12.34,
01 b pic 999v999 value is 123.456.

defines a 4-digit field which has two decimal places, and a 6-digit field
which has 3 decimal places. The values 12.34 and 123.456 are assigned
to the two fields.

(2) Consider the statement
add a b giving c.

Here the computer lines up the decimal points and performs the addition
as follows:

12.34
123.456

135.796

The result is stored in "c”". However, "¢ has a picture of 9(7) meaning it
can hold a 7-digit integer. Hence, the portion of the result to the right of
the decimal is dropped or truncated. Only the 135 is stored with four
zeroes inserted on the left to fill out the field.

100

(3

4

(5)

(6)

Chapter 1

In the case of the subtract operation, we were not satisfied with the
truncation of the result to an integer. The picture clause for "d" is
defined as

01 d pic 999v999.

and the appropriate value is stored in "d” namely 111116. Note that no
decimal point is displayed i.e. we have to remember where it is. In a
similar way, we have included decimal places for "¢” and "f".

There is no decimal point physically recorded in working storage. The
symbol 'v’ is used to indicate its position.

Numeric literals can contain decimal points, as illustrated by the values
12.34 and 123.456.

Consider the statement

add a b giving ¢ rounded

»ot

and assume that the picture clause for “¢” has been defined as
01 c pic 99999v99.

Here the value displayed would be 0013580. Since the picture clause is
defined to have 2 digits to the right of the decimal, the third digit after
the decimal is examined and if it is five or greater, the result is rounded.
In this example, the third digit after the decimal is a 6 and hénce the
value is rounded. The rounded option can be used with the other
arithmetic verbs.

Tutorial Examples 101

(7N

(8)

LN

Assume that the picture clause for "e” had been written as

01 e pic 999v999.

In this case the result for "e” would have been 523447 i.e. the 1 has been
dropped from the result. COBOL does not check if the resuit is too large
for the receiving field; it merely truncates the result to fit in the receiving
field. This can be remedied by using the on size error option. For
example,

multiply a by b giving e
on size error display 'arithmetic overflow’.

would tell the user that an error had occurred and an appropriate action
could be taken. This option can also be used with all the arithmetic
verbs.

The reader is referred to the reference manual for a more complete
description of rounded and on size error.

102

Chapter !

1.5.3 Negative Numbers

The previous two examples used only positive values. This example shows how
negative values can be defined and used.

*

* Simple Arithmetic {With Decimal Places and Negative Numbers).

*

identification division.

program-id. EXAMPLE-27.
environment division.
configuration section.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.
data division.

working-storage section.

01
01

01
01
01
01

a pic s99v09 value is -12.34.

b pic s999v099 value is 123.456.
¢ pic s9(4)v399.

d pic s9(4)v99,

e pic sH6)v99999.

f pic s9(3)v999.

procedure division,

add a b giving c.
subtract a from b giving d.
multiply a by b giving e.
divide a into b giving f.
display 'a ' a.

display ‘b ' b.

display ' ’.

display 'c ' c.

display 'd ' d.

display ‘e " .

display 'f ' f.

Stop run.

Tutorial Examples 103

Sample Program Execution

run
Execution begins...
a 123M

b 12345F

¢ OlL111F

d 013571

e 0015234470M
f 01000M

...Execution ends.
Notes

(1 We wish to assign the value -12.34 to "a” rather than 12.34. This is done

N0

by changing the picture for “a” to
02 a pic s99v99 value is -12.34.
(2) The numeric literal is written as one would expect, namely -12.34.

(3) The picture has been changed to s99v99 from 99v95. The character ‘s’
is included to indicate that the field may contain a negative value and that
provision must be made to store a sign.

4) The other picture clauses have also been changed in anticipation that the
respective fields may contain negative values. Clearly the definition for
"b" need not have been changed since "b" contains a positive value.
However, without doing the actual arithmetic operations, we cannot be
sure if "c”, "d”, "e", or "f" will contain positive or negative results.

&) If the 's” is omitted and the result of an arithmetic operation is negative,
the result will be stored as a positive value. Hence it is safer to include
the 's’ for all fields unless one is certain that the value to be stored is
positive.

(6) Upon examination of the output, the user is probably somewhat
disconcerted to find that the right-most character of each of the results
may be a letter instead of a digit. In fact the output produced by your
system may differ from that shown in this example. This depends on the
particular coding or collating sequence used by your system. You
should refer to the reference manual if your output differs.

104

(7

Chapter 1

In COBOL the sign is stored as part of the right-most digit in the field.
This results in unexpected letters being displayed. The letters A - I
represent the positive integers 1 - 9 and the letters J - R represent the
negative integers 1 - 9. Thus, 123M is -12.34 (the ‘v’ places the
decimal) and 12345F is 123.456. Positive zero is represented by { and
negative zero is }. A future example will show how to display negative
values in a more appropriate fashion.

Tutorial Examples 105

1.5.4 Expressions and the Compute Verb.

In the previous examples, we were limited to one arithmetic operation for each
verb. Mathematicians have provided us with a language for expressing arithmetic
computations, namely algebra. COBOL has a facility to incorporate certain aspects
of this language by permitting one to define a mathematical expression and to then
compute the required value.

*

* Compute Verb.

*
identification division.
program-id. EXAMPLE-28.
environment division.
configuration section.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.
data division,

working-storage section.

0l a pic s99v99 vaiue is -12.34.

01 b pic $999v999 value is 123.456.
01 ¢ pic §999vA99,

01 d pic sH6)vI(6).

01 e pic s99v99.

01 f pic s9(3).

procedure division.
compute ¢ = a + b.
compute d = a + b * ¢ + 425.2.
computee = b/a*(b-a)
compute f = 4 ** 3,

display 'a ' a.
display 'b ' b.
display ' ’.
display 'c ' c.
display 'd * d.
display ‘e ' e.
display 'f ' f.
stop run.

106 Chapter 1

Sample Program Execution

ruR
Execution begins...
a 123M

b 12345F

¢ 11111F

d 01413079689F
e 585P

f 06D

...Execution ends.
Notes

(nH This example contains a number of arithmetic expressions listed below.
A few others are included for completeness.

at+b
a+b*c+ 4252
b/a*(b-a)

4 *¥% 3

a

-a+b

7.9

b** . 2

Each example consists of one or more numeric quantitics, combined
with the symbols +, -, *, /, and **, which represent addition,
subtraction, multiplication, division, and exponentiation respectively.
The numeric quantities are data-names representing numeric fields or
numeric literals. Parentheses are used to denote operations which are to
be evaluated first.

Tutorial Examples 107

2

(3)

(4

(5)
(6)

N

Just as in algebra, priority rules are used to determine the order of
computation of the items in an expression. Quantities in parentheses are
considered sub-expressions and are evaluated first, inner-most
parentheses receive priority over outer parentheses. The priority of
operators is as follows, arranged in descending order.

- unary minus

*o exponentiation

*/ multiply and divide
+ - add and subtract

Whenever any ambiguity exists, such as in the third example, the left-
most operation is performed first.

The expressions are entered with a space on either side of the operator. If
spaces were not the rule, it would be difficult to determine if a-b were a
data-name or an expression.
The compute verb in the statement

compute d = a + b * ¢ + 452.2
causes the expression to be evaluated and its value is assigned to "d".

Spaces must appear on either side of the equal sign.

The data-name to the left of the equal sign may appear in the arithmetic
expression. Consider the example

compute a = a + 1.

Here the expression "a + 1" is evaluated first. Then the result is assigned

H_N

to "a.

Expressions may also be used in conditions. For example in the
condition

a+4>b-234

both arithmetic expressions are evaluated and then the comparison is
made.

108 Chapter 1

1.6 Printing and Editing Numeric Values.

1.6.1 Decimals in Output.

The previous several examples introduced how one can do arithmetic
operations. However, the output produced left much to be desired in that it
contained high-order zeroes, no decimal points, and even displayed letters instead of
digits in the case of signed values. This example shows how decimal points can be
included as part of the output. Future examples will show various ways of editing
output values to have a more reasonable appearence.

*

* Displaying the Decimat Point.
*

identification division.

program-id. EXAMPLE-29.
environment division.
configuration section.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.
data division.

working-storage section.

01 a pic 99V99 value is 12.34,

01 b pic 999V999 value is 123.456.
0l ¢ pic 9(5).99.

01 d pic 9(5).999,

01 e pic 9(7).99999.

01 f pic 9(3).999.

Tutorial Examples 109

procedure division.
add a b giving c.
subtract a from b giving d.
multiply a by b giving e.
divide a into b giving f.

display ‘a ' a.
display 'b ' b.
display ' '.
display 'c ' c.
display 'd ' d.
display 'e ' e.
display 'f ' f.
stop run.

Sample Program Execution

run
Execution begins. ..
a 1234

b 123456

c 0013579

d 00111.116

e 0001523.44704
f 010.004

...Execution ends.
Notes
(D The four lines of output for “c”, "d”, "¢”, and "f’ now include the decimal
point in the correct position. This is accomplished by changing the four

picture clauses to contain a '.’ instead of a 'v'.

(2) Because the decimal points are inserted, an extra character appears in
each of the fields that are displayed.

110

(3)

4

Chapter 1

By writing .’ instead of ‘v’ the decimal point actually appears in
working storage. (Recall that in the case of 'v' only the position was
recorded and no physical decimal point was inserted.) Since the decimal
point is present, the field is nor a legitimate numeric field, and cannot
therefore enter into arithmetic operations. Thus it would be incorrect to
change the definition of "a” as follows:

01 a pic 99.99 value is 12.34.

Picture clauses containing the ’.’ are called output pictures and the data
stored in them are called numeric edited data. They cannot be used in
arithmetic operations. They can be used only to receive results from
arithmetic operations and are used solely for display purposes.

Tutorial Examples 111

1.6.2 Suppress Leading Zeros and Printing Minus Signs.

Leading zeros are usually not considered necessary when displaying numeric
results. This example shows how they can be eliminated.

*

* Suppress Leading Zeroes.

E3
identification division.
program-id. EXAMPLE-30.
environment division.
configuration section.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.
data division.

working-storage section.

01 a pic 99V99 value is 12.34.

01 b pic 999VI99 value is 123.456.
01 ¢ pic z{5).99.

01 d pic z(5).99.

01 e pic z(7).99999.

o1 f pic z(3)9.999.

procedure division.
add a b giving c.
subtract a from b giving d.
multiply a by b giving e.
divide a into b giving f.

display 'a’ a.
display 'b ' b.
display ' ’.
display ‘¢ ' c.
display 'd ' d.
display 'e ' e.
display ‘f’ f.
stop run.

112 Chapter 1

Sample Program Execution

run
Execution begins. ..
a 1234

b 123456

c 135.79

d 111.11

e 1523.44704
f 10.004

...Execution ends.
Notes

(0 The output no longer has leading zeroes. The symbol 'z’ acts precisely
like a ‘9’ except that if the digit to be displayed is a '0’, and no non-zero
digit appears to the left of it, it is replaced by a biank character.

(2) It is common practice to have '9's’ after the decimal place in output
pictures. If “c" had been defined to have 2 z's after the decimal and the
value to be displayed were 00000.00, all that would be displayed would
be spaces. By using 9's we are assured that .00 would be displayed.

(3) If a value to be displayed is negative, we will wish to display a minus
sign to the left of the value.

Tutorial Examples 113

4

The ’-' character behaves as a 'z’ with one extra feature. Should the
number be negative, a minus sign is placed immediately to the left of the
first non-blank character to be displayed. If the picture clauses for were
written as

01 a pic s99v99 value is -12.34.
01 b pic 999v999 value is 123.456.
01 ¢ pic-(5).99.

01 d pic -(5).99.

01 e pic -(7).99999,

01 f pic -(3}.999.

and the output displayed would be

a 123M
123456

o

111.11
135.79
-1523.44704
-10.004

oo L O

114

1.6.3 Dollar Signs, Commas, and CR.

On many occasions the values we wish to display represent some form of
money, usually dollars. In this case we may wish to display the § sign as well as
inserting commas to make the output more readable. Finally, accountants rarely
display a minus sign if a value is negative. They usually use the CR symbol. These

features are incorporated in this example.

&

* Printing Dollar Signs, Commas, and CR.

*

identification division.

program-id. EXAMPLE-31.
environment division,
configuration section,
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.
data division.

working-storage section.

01
01

01
01
01
01

a
b

-0 a0

pic s9999V99 value is -123.40.

pic $999999V99 vaiue is 12345.60,

pic $(7).99.

pic 5.,55%,88%.99CR.
pic $$$.33%,$5%.99CR.
pic $$8,$5%,9$%.99CR.

procedure division.

add a b giving c.

subtract a from b giving d.
muitiply a by b giving e.
divide a into b giving f.

display 'a ' a.
display ‘b’ b.
display ' .
display 'c ' c.
display 'd ' d.
display 'e ' e.
display ‘' f.
stop run.

Tutorial Examples 115

Sample Program Execution

run

Execution begins...

a 01234}

b 01234564

¢ $12222.20

d $12,469.00

e $1,523,447.04CR
f $100.04CR

...Execution ends.
Notes

() The '$’ character also behaves like a 'z’ with one extra feature. A '$’ is
inserted immediately to the left of the left-most non-blank character.
Examine the value displayed for "¢”.

(2) In the last three lines of output, commas are inserted in the picture
clauses. This causes commas to be displayed whenever there are
significant digits to the left of it.

3 The values to be displayed for "e” and "f" are negative and instead of
displaying a minus sign to the left of the value, the symbol CR is
displayed to the right of the value.

(4) Finally, note that as extra characters such as comma, CR, .’ etc. are
included in the picture clauses, extra characters appear in the displayed
values. Note also that when displaying "d” no CR is present but it should
be noted that two blank spaces have been inserted.

116 Chapter 1

1.6.4 Combining Edit Characters

In order to achieve the desired form of output, it is often necessary to combine
some of the edit characters. This example shows a few examples of how this can be
done.

*

* Combining Edit Symbols.

*

identification division.

program-id. EXAMPLE-32,
environment division.
configuration section.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.
data division.

working-storage section.

01 a pic $9999v99 value is -123.40.

01 b pic §999599v99 value is 12345.60.
0l ¢ pic $z(6).99,

Q1 d pic $77.,777,722..99CR.

01 e pic $zz,722,7z29.99CR. .

01 f pic $zz,277,729.99CR.

procedure division.
add a b giving c.
subtract a from b giving d.
multiply a by b giving e.
divide a into b giving f.
display 'a ' a.
display 'b ' b.
display ' '.
display 'c ' c.
display 'd " d.
display 'e ' e.
display 'f ' f.
stop run.

Tutorial Examples 117

Sample Program Execution

run

Execution Begins...

a 01234}

b 0123456{

c $12222.20

d § 12,469.00

e $ 1,523,447.04CR
f 3 100.04CR

...Execution ends.

Notes

(1) The '$’ and 'z’ symbol can be combined in one picture clause as in the
above cases. In these cases the '$’ signs all occur in column one of the
output. In previous example the '$’ signs floated to be immediately left
of the most significant digit.

(2 In the last two cases a ‘9" has been inserted to the left of the decimal.
This would cause a value, say .25, to be displayed as 0.25 instead of .25.

(&) The use of various edit characters to produce different forms of output
depends very much on the user’s particular preferences. It may also
depend on installation standards.

118 Chapter 1

1.7 Two Examples Using Files and Arithmetic.

1.7.1 Student Averages

This and the next example use some of the material presented in the previous
examples to demonstrate how arithmetic can be used.

*

* Calculate Student Averages.

£
identification division.
program-id. EXAMPLE-33.
environment division.
configuration section.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.

input-output section.
file-control.
select student-file
assign to 'textfile’.
select screen
assign to "terminal’.

data division.

file section.
fd student-file

label records are standard.
01 student-record.

02 filler pic x(60),

fd screen

label records are standard.
01 display-record.

02 filler pic x(80).

working-storage section.

01 student-total pic 9(5).

Tutorial Examples

01 student-data.
02 student-no
02 name
02 age
02 sex
02 class
02 school
02 algebra
02 geometry
02 physics
02 chemistry
02 english

01 report-heading.
02 filler
02 filler
02 filler

01 first-line.
02 out-student-no
02 filler
02 out-name
02 out-algebra
02 out-geometry
02 out-physics
02 out-chemistry
02 out-english
02 out-average

01 blank-line

procedure division.
open input student-file.
open output screen.

pic XXXX.
pic x(20).
pic xx.
pic x.
pic x.
pic x.
pic 999.
pic 999.
pic 999.
pic 999.
pic 999.

pic x(20) value is spaces.
pic x(30) value is 'Student Averages’.
pic x(30) value is spaces.

pic x(4).

pic x(5) value is spaces,
pic x(20).

pic z(4)9.

pic z{(4)9.

pic z(4)9.

pic z(4)9.

pic z{(4)9.

pic z(5).9.

pic x(80) value is spaces.

write display-record from report-heading.
write display-record from blank-line.
perform read-student-record.
perform process-student-data

unti] student-no = high-values.

close student-file
screen.
stop run.

119

120 Chapter 1

process-student-data.
perform process-student-marks.
perform display-student-data.
perform read-student-record.

process-student-marks.
move zero to student-total.
add algebra to student-total.
add geometry to student-total.
add physics to student-total.
add chemistry to student-total.
add english to student-total.
divide student-total by 5 giving out-average.

display-student-data.
move student-no to out-student-no.
move name to out-name.
move algebra to out-algebra.
move geornetry to out-geometry.
move physics to out-physics.
move chemistry to out-chemistry.
move english to out-english.
write display-record from first-line.
write display-record from blank-line.

read-student-record.
read student-file into student-data
at end move high-values to student-no.

Tutorial Examples

Sample Program Execution

run
Execution begins...

Student Averages

1234 Smith
1236 Jones
1238 Winterbourne
1239 Harrison
1240 Graham
1242 Welch
1243 Dirksen
1245 Cowan
1249 Sullivan
1256 Kitchen
1266 Taylor
1268 Alien
1270 Xerxes

1272 Zimmerman
1375 Quantas
1388 Beatle

1390 Cruikshank
1393 Hopper

...Execution ends.

SA

TO

MS

JW

w

PH

DD

MP

YO

TT

AB

FL

RA

TR

BU

75 100

76

78

22

0

75

74

55

44

74

95

98

99

95

66

65

55

45

78

88

87

68

75

85

66

55

49

83

84

B8

8S

66

62

64

69

735

55

56

65

75

76

54

77

66

100

72

73

77

78

66

73

77

37

65

57

67

87

67

75

68

B8

77

97

66

65

66

61

66

76

76

26

84

78

88

68

87

75

84

99

88

36

39

55

57

66

87

85

35

79.8

63.8

75.4

65.8

59.4

73.0

77.0

66.0

71.2

74.2

75.8

77.0

75.2

66.0

72.6

71.4

42.4

121

122

Notes

(1)

2

3

4

&)

(6)

)

Chapter 1

This example calculates the average mark of the five courses for each
student and displays a report of this information.

A heading is displayed for the report and then one line is displayed for
each student containing the marks and the calculated average.

An area called "student-total” is defined in working storage to contain the
total of the five marks.

The definitions for the five marks in “student-data” have been changed
from pic xxx to pic 999. These values will be used in arithmetic
operations and hence must be defined with 9's instead x's.
The calculation of the student average is done in the "process-student-
marks” paragraph using a number of sentences each with one verb. A
slightly different version of the add is used, namely

add algebra to student-total
instead of the longer and more complicated

add algebra student-total giving student-total.

The required computation could have been done in the following manner

compute out-average = (algebra + geometry + physics
+ chemistry + english) / 5.

or alternatively as

add algebra geometry physics chemistry english
giving student-total.
divide student-total by 5 giving out-average.

If for some reason any particular mark in the file contained non-numeric
characters, an error would occur when the value was read and the
program would terminate.

Tutorial Examples

1.7.2 School Algebra Averages.

This example calculates school algebra averages.

%

* Calculate Class Algebra Averages.

*
identification division.
program-id. EXAMPLE-34.
environment division.
configuration section.

source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.

input-output section.
file-control.
select student-file
assign to 'textfile’,
select screen
assign to 'terminal’.

data division.

file section.
fd student-file

label records are standard.

01 student-record.

02 filler pic x(60).

fd screen

label records are standard.

01 display-record.

02 filler pic x(80).

working-storage section.

01 totals,
02 total-1
02 total-2
02 total-3
02 count-1
02 count-2
02 count-3

pic 9(5).
pic 9(5).
pic %(5).
pic 9(5).
pic 9(5).
pic 9(5).

123

124

01

01

01

01

student-data.

02 student-no pic XXXX.

02 name pic x(20).

02 age pic xx.

02 sex pic x.

02 class pic x.

02 school pic X.

02 algebra pic 999.

02 geometry pic 999,

02 physics pic 999.

02 chemistry pic 999.

02 english pic 999,
report-heading.

02 filler pic x(20) value is spaces.
02 filler pic x(30) value is 'Algebra Averages’.
02 filler pic x(30) value is spaces.

school-line.

02 filler pic x(8) value is 'School’.

02 out-school pic 9.

02 filler pic x(12) value is ' Average is "
02 out-average pic z(5).9.

blank-line pic x(80) value is spaces.

procedure division.

open input student-file.
open output screen.
write display-record from report-heading.
write display-record from blank-line.
perform read-student-record.
move zeros to totals.
perform process-student-data

until student-no = high-values.
perform display-averages
close student-file

screen.

stop run.

process-student-data.

perform process-student-marks.
perform read-student-record.

Chapter 1

Tutorial Examples

process-student-marks.

if school = "1’
add algebra to total-1
add 1 to count-1

else if school = "2’
add algebra to total-2
add 1 to count-2

else
add algebra to total-3
add 1 to count-3.

display-averages.
move 1 to out-school.

divide total-1 by count-1 giving out-average.
write display-record from school-line.

move 2 to out-school.

divide total-2 by count-2 giving out-average.
write display-record from school-line.

move 3 to out-school.

divide total-3 by count-3 giving out-average.
write display-record from school-line.

read-student-record.

read student-file into student-data
at end move high-vaiues to student-no.

Sample Program Execution

run
Execution begins...

Algebra Averages

School 1 Average is 63.2
School 2 Averageis 62.8
School 3 Average is 71.1
...Execution ends.

125

126

Notes

(1)

2

(3)

C)

(5}

(6)

Chapter 1

This example calculates the algebra average for each of the three
schools.

In this case, three areas are defined to contain the total of the algebra
marks for each school. Three other areas are defined to contain the
number of students in each school.

The six totals have been defined as a data structure called “totals”. This
permits us to store zeros in each of the six areas with the one sentence

move zeros to totals
instead of requiring six separate move sentences.

The "process-student-marks” paragraph determines the school of the
current record and then adds the algebra mark to the appropriate total. It
also adds 1 to the appropriate "count” total.

After all the records are read, the averages are calculated and displayed
in the "display-averages” paragraph.

The reader might be tempted to use value is clauses to set the six totals to
zero. This would work correctly in this example. However, it not
considered good programming practice to initialize values in working
storage unless they are to remain unchanged by the program. In this case
the totals were changed and hence were zeroed by the appropriate maove.

Tutorial Examples 127

1.8 Subscripted Data-names.

1.8.1 Subscripted Data-names.

Most data processing applications in some way involve the use of tables of
information. This section introduces features of COBOL which permit the easy
handling of table data, and in particular subscripted data-names are introduced.

*

* Number of Students at each School.
®
identification division.
program-id. EXAMPLE-35.
environment division.
configuration section.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.

input-output section.
file-control.
select student-file
assign to "textfile’.
select screen
assign to ‘terminal’.

data division.

file section.
fd student-file

label records are standard.
01 student-record.

02 filler pic x(60).

fd screen

iabel records are standard.
01 display-record.

02 filler pic x(80).

working-storage section.

01 i pic 9.

128

01

01

01

01

01

count-table.
02 counts pic 9(5) occurs 3 times.

student-data.

02 student-no pic xxxx.

02 name pic x(20).

02 age pic Xx.

02 sex pic x.

02 class pic x.

02 school pic x.

02 algebra pic 999.

02 geometry pic 999.

02 physics pic 999.

02 chemistry pic 999.

02 english pic 999.

report-heading.

02 filler pic x(20) value is spaces.

02 filler pic x(30) value is ‘Enrollment Numbers'.
02 filler pic x(30) value is spaces.
school-line.

02 filler pic x(8) value is 'School ',
02 out-school pic 9.

02 filler pic x{5) value is " has ’.
02 out-count pic zz9.

02 filler pic x(9) value is ' Students’.
blank-line pic x{80) value is spaces.

Chapter 1

Tutorial Examples 129

procedure division,
open input student-file.
open output screen.
write display-record from report-heading.
write display-record from blank-line.
perform read-student-record.
move zeros to count-table.
perform process-student-data
until student-no = high-values.
move 1 to i.
perform display-totals 3 times.
close student-file
screen.
stop run.

process-student-data.
perform process-student-marks.
perform read-student-record.

process-student-marks.
move school to i.
add 1 to counts(i).

display-totals.
move i to out-school.
move counts(i) to out-count.
write display-record from school-line.
add 1 to i.

read-student-record.
read student-file into student-data
at end move high-values to student-no.

Sample Program Execution

run
Execution begins...
Enrollment Numbers

School 1 has 5 Students
School 2 has 6 Students
School 3 has 7 Students
...Execution ends.

130

Notes

(1)

{(2)

3

4)

Chapter 1

This program reads the student file and determines the number of
students in each of the three schools. Note that a previous example
needed this information in order to calculate school algebra averages. In
that case, three areas were defined to hold the three required counters. In
this example we introduce a new way of defining the three counters.

A new definition appears in working storage, namely,

01 count-table.
02 counts pic 9(5) occurs 3 times.

We have introduced the oceurs clause on the 02-level table entry item,
This means that the data-name “counts” is defined 3 times, each time
with the same picture clause of 9(5). The 3 entries in the table are
referred to as follows:

counts(1)

counts(2)

counts(3)
The integers contained in parentheses are known as subscripts,
The data-name "counts” must be associated with one of the valid
subscripts to be meaningful. The value of the subscript must be in the
range 1-3 i.e. by using the clanse

occurs 3 times

we promise that we will not use a subscript greater than 3. COBOL, does
not permit a subscript of zero or any negative vaiue.

The data-name “count-table” can be used to refer to all the items in the
table. Thus the statement

move zeros to count-table

sets each item in the table to zero.

Tutorial Examples 131

(5}

{6)

(7)

(8)

%

The paragraph

process-student-marks.
move school to i.
add 1 to counts(i).
causes 1 to be added to the appropriate table item. The data-name "i"
defined as a numeric item and the value of "school” is moved to
Recall that the school field of the student record contains eithera 1, 2, or
3. Subscripts must be defined as numeric fields and must contain
numeric values.

is
in”.

We could have defined "school” with a picture of ‘9’ instead of 'x’ and
then the paragraph could have been wriiten as

process-student-marks.
add 1 to counts(school).

In order to display the calculated values, "i" is initialized to 1 and the
"display-totals” paragraph is executed 3 times; each time the appropriate
line is displayed and "1” is incremented by 1.

The power of the use of subscripts should be self-evident. For example
if the number of schools were increased from 3 to 9, the "process-
student-marks” paragraph requires no modification. Of course, the
occurs clause would have to be changed to define nine items. We would
also have to modify the part of the program that displays the results.

The user may have been tempted to use the value is clause to set the
initial table values to zero. This is not possible as COBOL does not
permit one to use the value is clause to initialize subscripted data-names.

132 Chapter 1}

1.8.2 Perform Varying.

When using subscripted data-names, we quite often wish to execute a paragraph
repetitively; the only difference is that we wish to change the subscript’s value. This
was the case in the previous example when we were displaying the results. The
perform verb with the varying option gives us this capability.

*

* School Algebra Averages using Subscripted Data-names
* and the Perform Varying.
L

identification division.

program-id. EXAMPLE-36.

environment division.

configuration section.

source-computer. CBM-SuperPET.

object-computer. CBM-SuperPET.

input-output section.
file-control.
select student-file
assign to 'textfile’.
select screen
assign to "terminal’.

data division.

file section.
fd student-file

label records are standard.
01 student-record.

02 filler pic x(60).

fd screen

label records are standard.
01 display-record.

02 filler pic x(80).

working-storage section.

01 i pic 9.

Tutorial Examples

01

01

01

01

01

a1

totals-table.
02 total
02 counts

school-table.
02 school-data

student-data.
02 student-no
02 name

02 age

02 sex

02 class

02 school

02 algebra
02 geometry
02 physics
02 chemistry
02 english

report-heading.
02 filler
02 filler
02 filler

school-line.

02 filler

02 out-school
02 filler

02 out-average

blank-line

133

pic 9(5) occurs 3 times.
pic 9(5) occurs 3 times.

pic x(10) occurs 3 times.

pic XxXxx.
pic x(20).
pic xx.
pic x.
pic x.
piC X.
pic 999,
pic 999.
pic 999.
pic 999.
pic 999,

pic x{20} value is spaces.
pic x(30) value 1s "'Algebra Averages'.
pic x(30) value is spaces.

pic x(13) value is ' Average for ’.
pic x(10).

pic x(4) value is ' is ',

pic z(5).9.

pic x(80) value is spaces.

134

procedure division.
open input student-file.
open output screen.
write display-record from report-heading.
write display-record from blank-line.
move 'Central’ to school-data(1).
move "Western” to school-data(2).
move 'Southern’ to school-data(3).
perform read-student-record.
move zeros to totals-table.
perform process-student-data
until student-no = high-values.
perform display-averages
varying i from 1 by 1
until i > 3.
close student-file
screen.
stop run.

process-student-data.
perform process-student-marks.
perform read-student-record.

process-student-marks,
move school to i
add algebra to total(i).
add 1 to counts(i).

display-averages.
move school-data(i) to out-school.

divide total(i} by counts(i) giving out-average.

write display-record from school-line.

read-student-record.
read student-file into student-data
at end move high-values to student-no.

Chapter |

Tutorial Examples 135

Sample Program Execution

run

Execution begins...

Algebra Averages

Average for Central is 63.2
Average for Western is 62.8
Average for Southern is 71.1

...Execution ends.

Notes

(1)

2

(3

4

&)

This example calculates average algebra mark for each of the three
schoels. It also displays a school name instead of a school number.

Another table is introduced to hold the sum of the grades for each school.
While it could have been defined as a separate table, it has been defined
as part of the totals-table. This permits us to zero both tables with one
move sentence.

The program reads each record and accumulates the algebra mark for the
appropriate school as well as incrementing the appropriate counter.

The "display-averages” paragraph calculates the average for each school
and displays the desired values.

The sentence

perform display-averages
varying i from 1 by 1
until 1 > 3.

causes the "display-averages” paragraph to be executed repeatedly as
long as i is not greater than 3. Before the paragraph is executed, the
valve of "i" is set to I and the condition is evaluated to determine if it is
true or false. If it is true the paragraph is executed; if false control passes
to the next sentence. Each successive time, "i” is incremented by 1 and

the condition is tested to determine if the paragraph should be executed.

136

(6)

(N

(&)

%)

Chapter 1

We could have displayed the results in the reverse order by changing the
perform as follows:

perform display-averages
varying i from 3 by -1
until i = O

In this case, "i" will start with the value 3, and each time will be

Hat

decremented by 1 until "i" is zero.

A complete description of the perform verb can be found in the
reference manual.

Another table has been defined to contain the names of the three schools.
This table is initialized with threc moves of "Central’, ‘Western’, and
'Southern’ respectively. These names are moved to the display line in
the "display-averages” paragraph. The next example will show how to
define these initial values in working storage.

Note that tables can be defined using x's as well as 9's in the picture
clauses.

Tutorial Examples 137

1.8.3 The Redefines Clause with Subscripted Data-names.

While COBOL does not permit the initialization of tables directly using the
value is clause, an indirect method is available.

*

* Redefines Clause.

%
identification division.
program-id. EXAMPLE-37.
environment division.
configuration section.
source-computer, CBM-SuperPET.
object-computer. CBM-SuperPET.

input-output section.
file-control.
select student-file
assign to 'textfile’.
select screen
assign to "terminal’.

data division.

file section.
fd student-file

label records are standard.
01 student-record.

02 filler pic x(60).

fd screen

label records are standard.
01 display-record.

02 filler pic x(80).

working-storage section.

01 i pic 9.

01 totals-table.
02 total pic 9(5) occurs 3 times.
02 counts pic 9(5) occurs 3 times.

138

01

01

01

01

a1

01

school-table-data.

02 filler pic x(10) value is 'Central’.
02 filler pic x(10) value is ‘'Western'.
02 filler pic x(10) value is 'Southern’.

school-table redefines school-table-data.
02 school-data pic x(10) occurs 3 times.

student-data.

02 student-no pic XXXX.
02 name pic x(20).
02 age pic xx.
02 sex pic X.

02 class pic x.

02 school pic X.

02 algebra pic 999.
02 geometry pic 999.
02 physics pic 999.
02 chemistry pic 999.
02 english pic 999.

report-heading.

02 filler pic x(20} value is spaces.
02 filler pic x(30) value is 'Algebra Averages’.
02 filier pic x(30) value is spaces.

school-line.

02 filler

02 out-school
02 filler

02 out-average

blank-line

r

pic x(13) value is ' Average for '

pic x(10).
pic x(4) value is " is ’.
pic z(5).9.

pic x(80) value is spaces.

Chapter 1

Tutorial Examples 139

procedure division.
open input student-file.
open output screen.
write display-record from report-heading.
write display-record from blank-line.
perform read-student-record.
move zeros to totals-table.
perform process-student-data
until student-no = high-values.
perform display-averages
varying i from 1 by 1
until i > 3.
close student-file
screen.
stop run.

process-student-data.
perform process-student-marks.
perform read-student-record.

process-student-marks.
move school to i.
add algebra to total(i).
add 1 to counts(i).

display-averages.
move school-data(i) to out-school.
divide total(i) by counts(i) giving out-average.
write display-record from school-line.

read-student-record.
read student-file into student-data
at end move high-values to student-no.

140 Chapter

Sample Program Execution

run
Execution begins...
Algebra Averages

Average for Central is 63.2
Average for Western is 62.8
Average for Southern is T1.1

...Execution ends.
Notes
(1 This example alsc calculates and displays school algebra averages.

(2) An area called "school-table-data” is initialized to contain the three
names of the schools.

(3) Immediately following the definition of the "school-table-data”, we have
inserted the following description of "schooi-table”.

01 school-table redefines school-table-data.
02 school-data pic x(10) occurs 3 times.

This differs from the previous example in that the redefines clause is
introduced. This means that the item "school-table” occupies the same
area in working storage as the item "school-table-data”.

(4 Both areas are defined to have 30 characters; COBOL does not require
that they same length if both are 0l-level items.

(5 In essence, the redefines permits the user to give two or more definitions
to the same area in working storage and then to refer to the area with the
appropriate data-name.

(6) There are many other applications of this feature, but the assignment of
initial values in a table of subscripted data-names is an important one.

Tutorial Examples 141

1.8.4 Tables with Two Subscripts.

Consider the problem of finding the number of students in each of the four
classes at each of the three schools. In this case it is more convenient to set up a
table containing three rows representing the schools and four columns representing
the classes. This example introduces tables with two subscripts.

*

* School Course Averages

* Data-names with Two Subscripts.

*
identification division.
program-id. EXAMPLE-38,
environment division.
configuration section.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.

input-output section.
file-control.
select student-file
assign to 'textfile’.
select screen
assign to 'terminal’.

data division.

file section.
fd student-file

label records are standard.
01 student-record.

02 filler pic x(60).

fd screen

label records are standard.
01 display-record.

02 filler pic x(80).

working-storage section.

01 i pic 9.
01 j pic 9.

142

01

01

01

01

01

01

01

school-table-data.

02 filler pic x(10) value is 'Central’.
02 filler pic x(10) value is 'Western’.
02 filler pic x(10) value is 'Southern’.

school-table redefines school-table-data.
02 school-data pic x(10) occurs 3 times.

summary-tabie.
02 count-by-school occurs 3 times.

03 count-by-class pic 9(5) occurs 4 times.

student-data.

02 student-no pic XXXX.

02 name pic x(20).

02 age pic xx.

02 sex pic x.

02 class pic x.

02 school pic X.

02 algebra pic 999.

02 geometry pic 999,

02 physics pic 999.

02 chemistry pic 999.

02 english pic 999.

report-heading.

02 filler pic x(20) value is spaces.

02 filler pic x(30) value is "Enrollment Table’.
02 filler pic x(30) value is spaces.
school-line.

02 out-school pic x(10}).

02 out-counts pic z(4)9 occurs 4 times.
blank-line pic x(80) value is spaces.

Chapter 1

Tutortal Examples

procedure division.
open input student-file.
open output screen.
write display-record from report-heading.
write display-record from blank-line.
perform read-student-record.
move zeros to summary-table.
perform process-student-data
until student-no = high-values.
perform display-averages
varying i from 1 by 1
until i > 3.
close student-file
screen.
stop rumn.

process-student-data.
perform process-student-marks.
perform read-student-record.

process-student-marks.
move school to i.
move class to j.
add 1 to count-by-class(i, j).

display-averages.
move school-data(i) to out-school.
perform move-counts
varying j from | by 1
until j > 4,
write display-record from school-line.

move-counts.
move count-by-class(i, j) to out-counts(j).

read-student-record.
read student-file into student-data

at end move high-values to student-no.

143

144 Chapter 1

Sample Program Execution

run
Execution begins. ..
Enrollment Table

Central 1 2 2 0
Western 0o 2 1 3
Southern 2 1 3 1

...Execution ends.
Notes

(1) A more involved definition is required to set up a table with two
subscripts, namely

01 summary-table.
02 count-by-school occurs 3 times.
03 count-by-class pic 9(5) occurs 4 times.

2) Note that "count-by-school” is defined to occur 3 times because there are
3 schools, These three entries are referred to as:

count-by school(1)
count-by-school(2)
count-by-school(3)
3 For each class, we have "count-by-class” which occurs 4 times, once for
each class. A problem arises when we wish to reference the data-names
"count-by-class”. If we consider the example

count-by-class(3)

we have a vague reference; we know it means the third entry, but for
which class? The problem is solved by introducing a second subscript as
follows

count-by-class(3, 2)

The first subscript refers to school 3, and the second one refers to class 2.

Tutorial Examples 145

(4)

&)

(6)

(N

(8

Every reference to the data-name “count-by-class” must have two
subscripts and is referred to as a doubly-subscripted data-name.
"Summary-table” is often referred to as a two-dimensional table or an
array.

The above definition can be thought to have created 12 items each with a
picture 9(5). The twelve items can be zeroed with the sentence

move zeros to summary-table.

The paragraph "process-student-marks” assigns the school to "i" and the
class to "i". Then "i” and "{" are used as row and column subscripts
respectively and one is added to the correct table entry,

After all the records are processed, the table is displayed. The area
"school-line” was modified to contain a table to hold the four class
counts. The values from a row are obtained from the “summary-table
and then the record is displayed. This action is repeated for each row.

COBOL allows up to three subscripts to be used.

146 Chapter 1

1.9 Relative Files

1.9.1 Create a Relative File.

Suppose that a teacher wished to display the record for a particular student from
the student file in order to look at the student’s marks. It would not be difficult to
write a program to accomplish this. However, consider now that the teacher wished
to examine a second student’s record. If this record occurred after the one just
examined, there would be no major problem to retrieve it and display it. However, if
it occurred before, we would have to go to some extra effort to retrieve the new
record. The difficulty lies in the fact that the student file is a sequential file. Relative
Jfiles permit us to access any record as easily as any other record. This section
introduces relative files.

*

* Create a Relative File.

*®
identification division.
program-id. EXAMPLE-39.
environment division,
configuration section.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.

input-output section.
file-control,
select student-file
assign to "textfile’.
select student-inquiry
assign to 'dirfile,rel’
organization is relative
access 1s sequential.

data division.

file section,
fd student-file

label records are standard.
01 student-record.

02 filler pic x(60),

Tutorial Examples

fd student-inquiry

label records are standard.
01 direct-record.

02 filler pic x(60).

working-storage section.

01 student-data.

02 student-no pic XXXX.
02 name pic x(20).
02 age pic xx.
02 sex pic X.

02 class pic x.

02 school pic x.

02 algebra pic 999.
02 geometry pic 999,
02 physics pic 999.
02 chemistry pic 999.
02 english pic 999,

procedure division.

open input student-file

output student-inquiry.
perform read-student-record.
perform process-student-data

until student-no = high-values.
close student-file
student-inquiry.

stop Tun.,

process-student-data.
write direct-record from student-data,
perform read-student-record.

read-student-record.
read student-file into student-data
at end move high-values to student-no.

Sample Program Execution

run
Execution begins...
...Execution ends.

147

148

Notes

(N

2)

3)

S

(5

(6)

Chapter 1

This program reads the student file and creates a new version of the file
as a relative file.

A new file called "student-inquiry” is defined as a relative file. Its
system-name is "dirfile,rel”. The rel is required by the CBM-SuperPET
to indicate that the file is relative. The chapter containing system
dependent information should be consulted regarding the format of file-
names on other systems.

Two extra clauses

organization is relative
access is sequential

are added to the select statement. The first indicates that the file will be
used in the future as a relative file. The second indicates that for this
program we will be writing the records in a sequential fashion. This may
seem somewhat confusing but we wish to read the records from the
sequential file and write them in the same order, sequentially, as a new
relative file. The next example will use this new file as a relative file.

The fa for the new file is the same as the fd for the student file, except it
has a new file and record name.

Opening and closing the relative file is done in the same manner as
opening and closing sequential files.

Writing records to a relative file is also done in the same manner as
writing records to a sequential file.

Tutorial Examples 149

1.9.2 Read a Relative File.

Having written a relative file, we now wish to assure ourselves that the file exists
and further that we can use it in a ‘relative’ fashion.

*

* Read a Relative File.

*
identification division.
program-id. EXAMPLE-40.
environment division.
configuration section.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.

input-output section.
file-control.
select student-inquiry
assign to 'dirfile,rel’
organization is relative
access is random
relative key is student-key.

data division.
file section.
fd student-inquiry
label records are standard.
01 direct-record.
02 filler pic x(60).

working-storage section.

01 student-key pic 999.

150

01

student-data.
02 student-no
02 name

02 age

02 sex

02 class

02 school

02 algebra
02 geometry
02 physics
02 chemistry
02 english

procedure division.
open input student-inquiry.

move 18 to student-key.

pIC XXXX.
pic x(20).
pic xx.
pic x.
pic x.
pic x.
pic 999.
pic 999.
pic 999,
pic 999.
pic 999.

perform read-student-record.
perform process-student-data
until student-key = 999,

close student-inquiry.

stop run,

process-student-data.
display student-data.

subtract 1 from student-key.
perform read-student-record.

read-student-record.

read student-inguiry into student-data

invalid key move 999 to student-key.

Chapter 1

Tutorial Examples 151

Sample Program Execution

run
Execution begins. ..

1393Hopper BU 15£23045069037026035
1390Cruikshank TR 15f33055064077076085
1388Beatle RA 15f11065062073076087
1375Quantas FL 15m22066066066066066
1272Zimmerman AB 13f32095085078061057
1270Xerxes X 13f13099088077066055
1268Allen TT 13£2109808407306505%
1266Taylor YO 13f33095083072066055
1256Kitchen MP 14m43074049100097036
12495ullivan I 15f42044055066077088
1245Cowan DD 15f33055066077088099
1243Dirksen PH 14m42074085054068084
1242Welch JW 14m31075075076075075
1240Graham JW 14m21000068075067087
1239Harrison K 14m42022087065087068
1238Winterbourne MS 14m31078088056067088
1236Jones TO 14m22076078055057078
12348mith SA 14m13075100075065084

...Execution ends.
Notes

(D This example reads and displays the 18 records of the relative file in
reverse order i.e. the last one first, and the first one last.

(2) The select clause is modified to indicate that
access is random

instead of sequential i.e. we can now access the records in any order.

152

(3)

Sy

(5)

(6)

(7

Chapter 1

Another clause
relative key is student-key

is added to the select clause. "Student-key” is a data-name which will be
used to indicate which record we wish to read. Note that is defined in
working storage and must be defined using a picture with 9's. The value
of "student-key” must be an integer value lying in the range 1 to the
‘number’ of records in the relative file, in our case 18.

This value is used to read the desired record in the file. If the value of
"student-key” were 7, then the seventh record would be read.

The read sentence has also been changed to reflect that we are reading a
relative file.

read student-inquiry into student-data
invalid key move 999 to student-key.

The at end clause is not used when reading a relative file. The clause
invalid key move 999 to student-key

is executed only if an invalid key 1s used, in our case outside the 1-18
range.

When the program is executed, the value of 18 is assigned to "student-
key” which will result in the last record to being read. Then "student-
key” is decremented by one and the second-last record is read. This
process continues until "student-key” is one and the first record is read.
"Student-key is again decremented and now has a value of zero. When
we attempt to read the zero'th record the invalid key clause is executed
and 999 is assigned to "student-key” which in turn causes the "process-
student-data” paragraph to terminate.

Earlier we suggested that one should use high-values instead of a
constant such as 999 to signal that there were no more records or in this
case that an invalid key was encountered. High-values can only be
assigned to a field whose picture clause contains x’s; "student-key” must
be defined using 9's. Hence, we use 999 to signal that the use of an
invalid key. It is suggested that the "student-key” field be made at least
one position larger than the number of records in the file.

Tutorial Examples 153

1.9.3 Create a Relative File with an Index.

In order to use a relative file, we have to know the position of the record in the
file. It would seem more appropriate to use the student number to identify records.
In order to do this we must create an index to the file.

E3

* Read a Relative File.

®
identification division.
program-id. EXAMPLE-41,
environment division.
configuration section.
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.

input-output section.
file-control.
select student-inquiry
assign to "dirfile,rel’
organization is relative
access is random
relative key is student-key.
select index-file
assign to ’indfile’.

data division.
file section.
fd student-inquiry

label records are standard.
01 direct-record.

02 filler pic x(60).
fd index-file

label records are standard.
01 index-record.

02 filler pic XXXX.

working-storage section.

01 student-key pic 999,

154
01 student-data.

02 student-no pic XXXX.
02 name pic x(20).
02 age pic xx.
02 sex pic x.
02 class pic X.
02 school pic x.
02 algebra pic 999.
02 geometry pic 999.
02 physics pic 999.
02 chemistry pic 999,
02 english pic 999.

procedure division.
open input student-inquiry
output index-file.

move 1 to student-key.

perform read-student-record.

perform create-student-index
until student-key = 999.

close student-inquiry

index-file.
stop run.

create-student-index.
write index-record from student-no.
add 1 to student-key.
perform read-student-record.

read-student-record.
read student-inquiry into student-data

invalid key move 999 to student-key.

Sample Program Execution

run
Execution begins. ..
...Execution ends.

Chapter |

Tutorial Examples 155
Notes
N This example reads the "student-inquiry” file and creates a new file called

(2)

"index-file”. This new file will also contain 18 records with each record
containing only the student number.

The program causes each record starting with the first to be read, and a
new record containing the student number is written.

156 Chapter 1

1.9.4 Extract Records from a Relative File.

Having created an index, we now wish to use it retrieve records randomly from
the student file using the student number as the key.

*

* Read the Index and Selective Records.
*
identification division.
program-id. EXAMPLE-42.
environment division.
configuration section.
source-computer, CBM-SuperPET.
object-computer. CBM-SuperPET,

input-output section.
file-control.
select index-file
assign to 'indfile’.
select student-inquiry
assign to 'dirfile,rel’
organization is relative
access is random
relative key is student-key.

data division.
file section.

fd student-inquiry

label records are standard.
01 direct-record.

02 filler pic x(60).

fd index-file

label records are standard.
01 index-record.

02 filler pic XxXxX.

Tutorial Examples

working-storage section.

01 student-key

01 student-found
01 student-id

01 index-exists

01 number-of-keys
01 i

01 student-index.
02 index-key

01 student-data.
02 student-no
02 name
02 age
02 sex
02 class
02 school
02 algebra
02 geometry
02 physics
02 chemistry
02 english

procedure division.

perform read-index.
if index-exists = 'yes’

157

pic 999.
pic xxx.
pic xxxx.
pic xxx.
pic 99.
pic 999,

pic xxxx occurs 18 times.

pic xxxx.
pic x(20).
pic xx.
pic x.
pic x.
pic x.
pic 999,
pic 999,
pic 999.
pic 999.
pic 999.

perform display-student-records.

stop run.

display-student-records.

open input student-inquiry.

perform get-student-id.

perform process-student-records
until student-id = ‘stop’.

close student-inquiry.

process-student-records.

perform find-student-key.

if student-found = "yes’
read student-inquiry into student-data
display student-data

else
display 'invalid student id. ' student-id.

perform get-student-id.

get-student-id.
display ‘enter student id - stop to stop’.
accept student-id.

find-student-key.
move 'no’ to student-found.
perform find-key
varying i from 1 by !

until i > number-of-keys or student-found = "yes'.

find-key.
if student-id =index-key(i)
move i to student-key
move ‘ves' to student-found.

read-index.
open input index-file.
move 'no’ to index-exists.
move 0 to i.
perform read-index-record.
perform store-and-read-index
until student-id = high-values.
ifi>0
move i to number-of-keys
move ‘yes' to index-exists.
close index-file.

store-and-read-index.
add 1 to i.
move student-id to index-key(i)
perform read-index-record.

Chapter 1

Tutorial Examples 159

read-index-record.

read index-file into student-id
at end move high-values to student-id.

Sample Program Execution

run

Execution begins...
enter student id - stop to stop

1234

1234Smith SA 14m13075100075065084
enter student id - stop to stop

1393

1393Hopper BU 15£23045069037026035

enter student id - stop to stop

5427

invalid student id. 5427
enter student id - stop to stop

stop

...Execution ends.

Notes

(1

2

3

®

This example asks the user to enter a student number. Then the record
for that student is displayed. The program terminates when a value of
‘stop’ is entered. If a student number which is not in the file is entered, a
message indicating this is displayed and the program requests another
student number to be entered.

The program initially reads the "index-file” and creates a table with one
entry for each record in the file. If no records exist in the "index-file",
the program terminates.

The user is then requested to enter a student number and this number is
successively compared to each value in the table. When an equal
comparison is found, the position of the item in the table is used as the
position of the record in the relative file. If the number is not found in the
table, a signal is set and a message will be displayed.

The method of searching the table is called a sequential search. If the
table were quite large, it would probably be better to use some other
searching method or algorithm. These methods are described in many
computer science textbooks.

160

()

(6)

7

Chapter 1

If the number of records were quite large, there might not be enough
memory to hold the entire index table. In this case, one would have to
set up a scheme to possibly have an index to the index,

It would be possible in this example to re-write the student record if, for
example, we wished to change a mark or even add a field with a new
mark. Thus we could read the record, make any changes, and then re-
write the record in the same place using the same value of “student-key”;
the value is not changed by the read. In this case, the file should be
opened using the I-O option instead of the input option.

It is also possible to add new records to the file. However, the method to
do this is 'system dependent’. The user is referred to the reference
manual to determine how this can be done.

Tutorial Examples 161

1.10 Miscellaneous.

1.10.1 Create the Student File.

This program creates the student file used in many of the examples in the tutorial
section of this text.

*

* Create Demonstration File.

*
identification diviston.
program-id. EXAMPLE-43.
environment division.
configuration section,
source-computer. CBM-SuperPET.
object-computer. CBM-SuperPET.

input-output section.
file-control.
select student-file
assign to "textfile’.

data division.
file section.
fd student-file

label records are standard.
01 student-record.

02 filler pic x(60).
working-storage section.

0@l rec-number pic 999.

01 student-data.
02 filler pic x(60).

162

01

demo-file.
02 demo-data.
03 filler pic x(60) value is

Chapter 1

*1234Smith SA 14m13075100075065084",
03 filler pic x(60) value is

'1236Jones TO 14m22076078055057078".
03 filler pic x(60) value is

‘1238 Winterbourne MS 14m31078088056067088".
03 filler pic x(60) value is

'1239Harrison K 14m42022087065087068".
03 filler pic x(60) value is

'1240Graham JW 14m21000068075067087".
03 filler pic x(60) value is

'1242Weich JW 14m31075075076075075'.
03 filler pic x(60} value is

"1243Dirksen PH 14m42074085054068084' .
03 filler pic x(60) value is

'1245Cowan DD 15£33055066077088099".
03 filler pic x(60) value is

'12498ullivan J 15f42044055066077088’.
03 filler pic x(60) value is

'1256Kitchen MP 14m43074049100097036'.
03 filler pic x(60) value is

"1266Taylor YO 13f33095083072066055".
03 filler pic x(60) value is

"1268Allen TT 13f21098084073065059'.
03 filler pic x(60} value is

"1270Xerxes X 13f13099088077066055',
03 filler pic x(60) value is

"1272Zimmerman AB 13f32095085078061057".
03 filler pic x{60) value is

'1375Quantas FL 15m22066066066066066'.
03 filler pic x(60) value is

"1388Beatle RA 15f11065062073076087".
03 filler pic x(60) value is

'1390Cruikshank TR 15f33055064077076085",
03 filler pic x(60) value is

"1393Hopper BU 15f23045069037026035',

02 demo-info redefines demo-data.

03demo-rec pic x(60) occurs 18 times.

Tutorial Examples

procedure division.
open output student-file.
perform write-demo
varying rec-number from 1 by 1
until rec-number > 18.
close student-file.
stop run.

write-demo.

move demo-rec(rec-number) to student-data.

write student-record from student-data.
Sample Program Execution
run

Execution begins. ..
...Execution ends.

163

Waterloo microCOBOL

Reference Manual

Waterloo Computing Systems Newsletter

The software described in this manual was implemented by Waterloo
Computing Systems Limited. From time-to-time enhancements to this system or
completely new systems will become available.

A newsletter is published periodically to inform users of recent developments in
Waterloo software. This publication is the most direct means of communicating up-
to-date information to the various users. Details regarding subscriptions to this
newsletter may be obtained by writing:

Waterloo Computing Systems Newsletter
Box 943,

Waterloo, Ontario, Canada

N2J 4C3

Chapter 2

Structure of a COBOL Program

2.1 Overview

COBOL (COmmon Business Oriented Language) is a computer programming
language specifically designed for use in solving business problems. Waterloo
microCOBOL is intended to be an implementation of part of the accepted standard
for COBOL (ANSI X3.23-1974). For persons familiar with this COBOL standard,
the language intended to be supported includes level one of the NUCLEUS,
SEQUENTIAL I-0, RELATIVE I-O and TABLE-HANDLING modules. As
well, certain features of level two in these modules have been supported. These
extra language elements include full support for the PERFORM, STRING, and
UNSTRING verbs. Ne support is provided for tape hardware. Some of the features
described in the manual may not be present in specific hardware/software
environments which do not provide adequate support for them. The chapter
describing System Dependencies should be consulted for the specific details which
apply to a particular implementation of Waterloo microCOBOL.

This reference manual describes the language supported by Waterloo
microCOBOL.. It is intended to be used for reference, not as a primer or tutorial.
Waterloo microCOBOL is implemented on a number of different computer systems.
Most of the manual applies to all implementations. The chapter about System
Dependencies describes features particular to a specific system.

The following conventions are used in the formal descriptions of COBOL
syntax:

(n All reserved words are capitalized. When the words are required within the
context that they are used, they are also shown in bold face.

(2) Square brackets [and] are used to mark the optional parts of the language.
In cases where a choice must be made between a number of elements, the
elements are shown in a vertical list enclosed by curly braces { and }.

168 Chapter 2

3) Semicolon (;) and comma (,) characters are optional items in the formal
descriptions of COBOL elements. To increase the readability of these
descriptions they have not been enclosed in square parentheses.

It should be noted that comma (,} and semicolon (;) characters may be used
interchangeably in the COBOL language. When used as separators, these characters
should be followed by a space character.

2.2 Divisions

A COBOL program is written as a number of DIVISIONS, Waterloo
microCOBOL supports four of these divisions:

(H IDENTIFICATION DIVISION
(2) ENVIRONMENT DIVISION
3) DATA DIVISION
) PROCEDURE DIVISION
The divisions must be given in the order indicated.

The IDENTIFICATION DIVISION contains statements which are used to
identify the program and other elements. The ENVIRONMENT DIVISION
contains sentences describing the environment in which the program is intended to
execute. The DATA DIVISION is used to declare the data upon which the
executing program will operate. The PROCEDURE DIVISION contains sentences
which, when executed, cause specific actions to take place. These divisions are
described in detail in following chapters.

All four divisions are mandatory and so must be present in every program. Thus,
the format of a COBOL program is as follows:

IDENTIFICATION DIVISION.,
. sentences
ENVIRONMENT DIVISION.
. sentences
DATA DIVISION.
. sentences
PROCEDURE DIVISION.
. . sentences

Structure of a COBOL Program 169

The sentences in each division are described in the following chapters. A description
of the format of a COBOL program is given in the next section.

2.3 Columns in a COBOL Program
The following columns of a line in 2 program are significant:

column (1) This column may contain an asterisk (*) character to indicate
that the line is a comment line. Comment lines are ignored
during the execution of a program. Their purpose is only to
provide documentation for people who are looking at the
source lines of the COBOL program.

column (2-5) This area is called Area A. Certain sentences or statements

must start in this area (e.g., paragraph names in the
PROCEDURE DIVISION).

columns (6-) This area is called Area B. Certain sentences must start in
this area (e.g., verbs in the PROCEDURE DIVISION).

All COBOL statements, other than comments, must start in Area A or B. In general,
the majority of the statements occur in the PROCEDURE DIVISION. The rules to
follow in this division are as follows:

(1 SECTION and PARAGRAPH names start in Area A.
(2} All other sentences start in Area B.
If anything other than an asterisk (*) is placed in column (1), the editor supplied with

microCOBOL will replace that character with a question mark (?) character to show
an illegal character.

2.4 COBOL NAMES

Within @ COBOL program, a number of names can be specified. These names
are either reserved words (i.e., SELECT, PROCEDURE) or are defined by the
programmer (i.e., file names, data names). A complete list of the reserved words in
COBOL is given as an appendix (see RESERVED WORDS).

170 Chapter 2

The names defined by the programmer must contain only alphabetic (A-Z, a-z},
numeric (0-9) or dash (-} characters. A name may not start or end with a dash (-)
character. All names must contain at least one alphabetic character. Names may
include up to 30 characters.

The following are examples of legal COBOL names:

GOOD-DATA
TRANSACTION-FILE
DATE-004
1-PARAGRAPH-CHARLIE

The following are examples of illegal user-defined names:
WRITE (reserved word)
-A (starts with-)
B- (ends with-)
403-7 (no alphabetic)

When entering a COBOL program using the editor supplied with microCOBOL,
the following conventions are observed.

(1 lower and uppercase letters are treated identically in names.

(2) names will be subsequently displayed by the editor using the case of the
first letter.

Thus, the names entered as
My Variable and mYvARIABLE
are treated as being the same name. They would be displayed as

MYVARIABLE and myvariable.

2.5 Comment Statements

Comment statements may be entered anywhere in a COBOL program. These
statements are ignored during the execution of the program. Their use is restricted to
increasing the readability of the program by permitting documentation to be placed
with the source statements. A comment statement is identified by an asterisk (*) in
the first column of a statement.

Structure of a COBOL Program 171

2.6 Figurative Constants

Certain reserved words, called figurative constants, are used to stand for one or
more repetitions of certain characters. These constants are as follows:

® ZERO, ZEROS, ZEROES: one or more "0" characters.
L SPACE, SPACES: one or more space characters.
] HIGH-VALUE, HIGH-VALUES: one or more of the character that has

the highest ordinal position in the program collating sequence.

L LOW-VALUE, LOW-VALUES: one or more of the character that has the
lowest ordinal position in the program collating sequence.

. QUOTE, QUOTES: one or more of the quotation (") character.

L ALL literal: one or more of the string of characters comprising the literal.

The literal must be nonnumeric or a figurative constant (in which case the
ALL keyword is redundant).

The singular and plural forms of a figurative constant are equivalent and may be
used interchangeably.

The size of a figurative constant depends upon the context in which it is used.
When the constant is associated with a specific data item (e.g., moved, compared,
VALUE IS), the size of the constant is identical to that of the data item; otherwise,
the literal has a size of one character (e.g., DISPLAYing a figurative constant).

A figurative constant may be used anywhere that a literal can be used. When
only a numeric literal is permitted, then only the ZERO, ZEROS or ZEROES
figurative constants are permitted.

Chapter 3

IDENTIFICATION DIVISION

3.1 Overview

The IDENTIFICATION DIVISION must be the first division in a COBOL
program (it may be preceded by comment statements). The statement

IDENTIFICATION DIVISION.
specifies the start of the division. The statement must start in Area A.

The division is used to identify the program in a general fashion. The division
consists of a number of paragraphs. Each paragraph starts with a paragraph header (
a reserved word written in Area A). The remainder of the paragraph is written in
Area B. Only the PROGRAM-ID paragraph is mandatory. The remainder may be
omitted from a program. When present, the paragraphs must be given in the
following order:

PROGRAM-ID

AUTHOR

INSTALLATION

DATE-WRITTEN

DATE-COMPILED

SECURITY

Except for the PROGRAM-ID paragraph, the contents of each paragraph is limited
to a single line which may contain anything and is ignored. Essentially, these entries

174 Chapter 3

may be considered to be documentation. The following sections describe each
paragraph.

3.2 PROGRAM-ID

PROGRAM-ID. name.

This paragraph is used to give a name to the program. This name is not used in
the Waterloo microCOBOL interpreter. The name is used to create the name of the
object file in the Waterloo microCOBOL compiler.

This is the only mandatory paragraph in the IDENTIFICATION DIVISION.

3.3 AUTHOR

{ AUTHOR. [comment]]

This paragraph is intended for documentation purposes only.

3.4 INSTALLATION

[INSTALLATION. [comment]]

This paragraph is intended for documentation purposes only.

3.5 DATE-WRITTEN

[DATE-WRITTEN. [comment]]

This paragraph is intended for documentation purposes only.

IDENTIFICATION DIVISION

3.6 DATE-COMPILED

{ DATE-COMPILED. [comment |]

This paragraph is intended for documentation purposes only.

3.7 SECURITY

[SECURITY. [comment |}

175

This paragraph is intended for documentation purposes only.

Chapter 4

ENVIRONMENT DIVISION

4.1 Overview

This division is used to inform the COBOL system about the environment in
which the COBOL program is to be processed. The CONFIGURATION
SECTION is mandatory. In that section, only the SOURCE-COMPUTER and
OBJECT-COMPUTER paragraphs are required. The INPUT-QOUTPUT section
must be specified only if files are used in the program.

The first statement,
ENVIRONMENT DIVISION.
specifies the start of the division. The statement must start in Area A. The sections

and paragraphs start in Area A while the various clauses {except the SELECT
statement) start in Area B.

4.2 CONFIGURATION SECTION

CONFIGURATION SECTION.

This mandatory section consists of a number of paragraphs to be described in the

following sections. Only the SOURCE-COMPUTER and OBJECT-
COMPUTER paragraphs are mandatory.

178 Chapter 4

4.2.1 SOURCE-COMPUTER

SOURCE-COMPUTER. name [WITH DEBUGGING MODE |.

This mandatory paragraph is intended to be used as documentation of the
computer on which the COBOL program is compiled (compiler) or interpreted
(interpreter). The Waterloo microCOBOL interpreter treats the entire paragraph as a
comment.

4.2.2 OBJECT-COMPUTER

OBJECT-COMPUTER. name.
{ WORDS }

[, MEMORY SIZE number { CHARACTERS }]

{ MODULES }

[,LPROGRAM COLLATING SEQUENCE is name]

This mandatory paragraph is intended to be used as documentation of the
computer on which the COBOL program is executed. Waterloo microCOBOL treats

the paragraph as a comment.

Waterloo microCOBOL uses only the native character set of the computer on
which it is executed. The collating sequence (order of the characters) is that of the
characters defined for the system in question (see SYSTEM DEPENDENCIES).

ENVIRONMENT DIVISION 179

4.2.3 SPECIAL-NAMES

[SPECIAL-NAMES.
[,CURRENCY SIGN IS literal]

[.LDECIMAL-POINT IS COMMA] 1.

This paragraph is used to specify the currency-sign and decimal-point
characters.

The currency symbol is a character used in PICTURE strings. It is normally
used to precede values of money which are to be displayed. This character is dollar-
sign ($) by default.

Usually the decimal-point character is a period (.). This character has special
significance in PICTURE strings, in combination with comma {,) characters. The

roles of these two characters can be reversed by specifying the DECIMAL-POINT
clause.

4.3 INPUT-OUTPUT Section

INPUT-OUTPUT SECTION.

This optional section is used to specify the names and characteristics of files in

the program. Each file used in the program must have SELECT clause in the FILE-
CONTROL paragraph.

180 Chapter 4

4.3.1 FILE-CONTROL

FILE-CONTROL.

{select clanse}

This optional paragraph consists of a number of SELECT clauses, one per file
in the program, which are used to specify the COBOL file-name for an actual file.
The format of the SELECT entries are described in the following section.

4.3.1.1 SELECT Clause

SELECT [OPTIONAL] file-name
ASSIGN TO Titeral

[; ORGANIZATION IS { RELATIVE }]
{ SEQUENTIAL }

[; ACCESS MODE IS { SEQUENTIAL [,RELATIVE KEY IS name]
{
{ {RANDOM } , RELATIVE KEY IS name
{ {DYNAMIC }

{; FILE STATUS IS name].

There must be a SELECT entry for each file used in the program. The "file-
name” identifier specifies the name by which the file will be referenced elsewhere in

the program.

The OPTIONAL keyword is used to indicate that the file need not be present
every time the program is executed; when processed as an input file, a non-existent
file is treated as a file with no records. Thus, the AT END condition will be detected
when the first READ statement is executed for that file (see READ statement).
When the keyword is not given, a non-existent file used as input will cause an error
message to be displayed and the execution of the program will be terminated. The
OPTIONAL keyword may only be used with input files.

R

ENVIRONMENT DIVISION 181

The mandatory ASSIGN clause may be used to specify the actual file to be
processed by the COBOL program. The vatue of the literal in the ASSIGN clause is
normally used as the name of the actual file. This name is the actual name of the file
for the computer system in which the program will execute. It should be noted that
this clause may be overridden by the VALUE clause of an FD entry in the FILE
SECTION of the DATA DIVISION .

The optionai ORGANIZATION clause is used to inform WATERLOO
microCOBOL whether the file is organized with special characteristics for relative
or sequential processing. On some systems (i.e., IBM VM/CMS) there is no special

organization and the clause is treated as a comment, except for its effect upon the
ACCESS clause.

The optional ACCESS clause specifies whether the file will be accessed
sequentially, randomly or both ways. When the ORGANIZATION is given as
SEQUENTIAL, the only ACCESS MODE permissible is also SEQUENTIAL
and the RELATIVE KEY clause may not be specified.

When the ORGANIZATION is given as RELATIVE the access mode may be
any of SEQUENTIAL, RANDOM or DYNAMIC. The last mode specifies that
both random and sequential access may be used for the file in question. The
RELATIVE KEY clause may be specified for SEQUENTIAL access and must be
specified for RANDOM or DYNAMIC access. When the RELATIVE KEY
clause is specified, the data item indicated by the clause receives the relative record
number of the record when a READ statement is successfully executed; and, the
contents of the data item are used to establish the position in the file at which a
record is to be written using a WRITE or REWRITE statement.

The optional FILE STATUS clause is used to specify a two-character
alphanumeric or group data item to receive a value indicating the status of the last
input/output operation for a file. The first character of this data item receives the
following information immediately after an input/output operation:

"0" operation completed successfully

" AT END error detected

"2’ INVALID KEY error detected

"3" other input/output error

When an INVALID KEY ermror (value 2) is detected the second character of the
FILE STATUS data item may contain the following values:

182 Chapter 4
"2 record already exists
"3v no record found
"4y attempt to access a record beyond the bounds of a file

Otherwise, the second character of the data item will contain "0".
Two typical SELECT statements are illustrated below:

select myfile
assign to "TRANS".

select output-file
assign to '"MASTER’
organization is relative
access mode is random
relative key is master-rec-numb,

The SELECT statements show how a sequential and a relative file, respectively,
might be referenced. The relative file is to be accessed in a RANDOM mode.

Chapter 5

DATA DIVISION

5.1 Overview

The DATA DIVISION is used to inform Walterloo microCOBOL about the data
used in the program. There are two sections which deal with this data: FILE
SECTION (input/output records) and WORKING-STORAGE SECTION (other
data items used in the program), These COBOL SECTIONs are described in detail
in the following sections.

The first statement in the division is

DATA DIVISION.
It must start in Area A. Data items are all preceded by level numbers (described in
the next section). Level numbers 01 and 77 must start in Area A. All other level

numbers may be indented arbitrarily. The data names following the level numbers
must start in Area B.

5.2 FILE SECTION

FILE SECTION.

This optional section is concerned with the data that applies to the files used in a
program. For each file there is an FI) (file description) entry specified. The FD is
used to describe the information in the file. Each FD is immediately followed by one
or more record descriptions which define the format of a record read from or to be
written to a file.

184 Chapter 5

5.2.1 ¥D

FD filename

(FD entry)

({record-description entry) . . .]
where an FD entry is described as:

[; BLOCK contains [number TO] number { RECORDS H
{ CHARACTERS }

[: RECORD CONTAINS | number TQ] number CHARACTERS]

[;LABEL {RECORD IS } { STANDARD }]
{RECORDS ARE }{ OMITTED }

[: VALUE OF literal is literal

[; DATA { RECORD IS } name, name ...]
{ RECORDS ARE }

[; CODE-SET IS name |

An FD entry must be present for each file used in the COBOL program. There is
one mandatory clause, LABEL, and a number of optional clauses. These clauses
may be given in any order. These clauses are described in detall in the following
subsections.

A typical FD entry is shown following:

fd myfile
label records are standard.
01 my-data.

02 filler pic x(50).

The file contains 50-character records.

DATA DIVISION 185

5.2.1.1 BLOCK CONTAINS

The optional BLOCK clause is used to inform microCOBOL of the size of a
physical bleck in which logical records are stored. In many implementations (i.e.,
SuperPET, VM/CMS) this information is not required and so is ignored except for
syntactic correctness.

The clause specifies the size of a physical block either in records or in
characters.

5.2.1.2 RECORD CONTAINS

This optional clause is never required since the size of logical records is also be
given by the record description entries following the FD. When specified, the size or
range of sizes must be the same as that of the single record, or as the range of sizes
given by those multiple records, respectively.

5.2.1.3 LABEL

This mandatory clause must be present in each FI). It is used to indicate whether
a special record, called a label record, precedes the data records in a file. Because
many specific systems (i.e., SuperPET, VM/CMS) automatically handle label
records, this clause is usually ignored, except for syntactic correctness.

5.2.14 VALUE OF

This optional clause may be used to specify the system name of the file in
question. When the value is given as a literal, its value is taken as the system name
for the file. Thus, the clause

VALUE OF " IS 'SALES’
indicates that the system name for the file is "SALES".

When the value is given as a data name, the value of that data item (at the time
the file is opened) is used as the system name. It should be noted that this feature
allows the name of a file to be established while the COBOL program is being
executed. For example, the name may be entered by a user of a program via an
ACCEPT statement.

186 Chapter 5

The clause
VALUE OF " IS FILENAME

specifies that the value of the data item "FILENAME" is to be used as the system
name for the file, when the file is opened.

5.2.1.5 DATA

This opticnal clause is used only to document the records given immediately
following the FD entry. If specified, the names of the records must be the same as
the 01 levet record descriptions following the FD.

5.2.1.6 CODE SET

The CODE SET clause is used to specify the character set to be used for the data
in the records in the file. The only character set supported by microCOBOL is the
one that is normally used on the system, calied NATIVE. Thus, the only valid form
of this clause is

CODE SET IS NATIVE.

5.2.2 Record Descriptions

The record descriptions following an FI) establish the size(s) of logical record(s)
written to or read from a file. The format of record descriptions is given in the
section dealing with data description.

DATA DIVISION 187

5.3 WORKING-STORAGE SECTION

[WORKING-STORAGE SECTION.

{ 77 (data-description) Yool
{ (record-description entry) 1

Data in the WORKING-STORAGE SECTION is defined using either 77 level
entries (elementary items) or 01 level entries (record descriptions). These entries are
described in the next section.

5.4 Data Description

This section is used to specify the data items (other than file records) used by the
COBOL program. The various entries are given in following subsections.

5.4.1 Level Numbers and Records

Each data item is given a level number in order to organize elementary items as
subdivisions of group items. An item which is a subdivision of another item is said
to be subordinate to all the group items which contain it. In general, the
specification of a larger level number indicates that the data item specified is a
subdivision of the data item with a lesser level number that immediately precedes it
in the program. This may be schematically shown as follows:

01 A

02 B

02 C
03 D
03 E

02 F
05 G
05 H

The group item A is subdivided into 3 items shown as B, C and F. The group item C
is subdivided into D and E. The group item F is subdivided into items G and H.
Items which are not subdivided (B, D, E, G, H) are termed elementary items. It is
important to differentiate between group and elementary items since different
clauses can be used to describe the data contained by them.

188 Chapter 5
A group item with a level number 01 is called a record. When subdividing
records or group items in records, the following rules must be followed:

(1) All items which are used to subdivide a group item must have the same
level number.

(2) Level numbers used in records must be in the range 01 to 49.

Records defined in this way are used in both the WORKING-STORAGE and
FILE sections.

There are also 3 reserved level numbers (66,77,88) used for special purposes.
Briefly, these purposes are:

66 used to regroup data items
T used to define special elementary items
B8 used to define condition names

These items are described in detail in following subsections.

5.4.2 Qualification

name {OF } name [{OF } name] ...
{IN } {IN }

Any data name which is used as a subdivision of a group item may be qualified
by specifying some or all of the names of group items of which it is part. Consider
the following schematic diagram:

0l A
02 B

DATA DIVISION 189

The data item D may be referenced elsewhere in the program by any of the
following:

D

D OF C

D OF B

D OF C OF B

D OF A

D OF C OF A

D OF B OF A

D OF C OF B OF A

Qualification must be used when a name occurs more than once in the same program

Consider the following example:

01 A
02 B
01 C
02 D

03 B

In the example, B cannot be used by itself since the reference would be ambiguous.
The first occurance of B must be referenced as

B OF A
and the second occurrence must be referenced by one of:
B OF D
B OF C
B OF D OF C

Every data item must be capable of being uniquely qualified.

190 : Chapter 5

5.4.3 PICTURE Strings

A PICTURE string is a sequence of characters (maximum 30) which is used to
describe all elementary data items (except INDEXED). A few examples of
PICTURE strings are as follows:

PICTURE Meaning

999v99 3-digit number with 2 decimal places
XXXXXX 6-character sequence of characters
22779 5-digit field, leading zeros suppressed on 4 digits

Uppercase letters will be used as the characters in PICTURE strings for explanatory
purposes. Waterloo microCOBOL also accepts lowercase letters in an equivalent
fashion. The general rules for PICTURE strings are as follows:

(D There are five categories of data that can be described with a PICTURE
clause: alphabetic, numeric, alphanumeric, alphanumeric edited, and

numeric edited.

(2) To define an item as alphabetic:

a. Its PICTURE character-string can only contain the symbols ‘A’,
‘B; and
b. Its contents when represented in standard data format must be any

combination of the twenty-six (26) letters of the Roman alphabet
and the space from the COBOL character set.

Some sample alphabetic PICTURE strings are shown following:

A(20)
bbbb
a(1)BBAA
3 To define an item as numeric:
a, Its PICTURE character-string can only contain the symbols '9’,

'P', 'S’, and 'V’. The number of digit positions that can be
described by the PECTURE character-string must range from | to
18 inclusive; and

DATA DIVISION 191

(4)

(5)

b. If unsigned, its contents when represented in standard data format

must be a combination of the Arabic numerals ‘0’, '1’, '2’, '3/,
41 050 e, 7, 87, and '9'; if signed, the item may also contain
a’'+','-’, or other representation of an operational sign.

Some sample numeric strings are as follows:

99999
9999v99
59999V9999
89(6v99

To define an item as alphanumeric:

a. Its PICTURE character-string is restricted to certain
combinations of the symbols "A’, ‘X’, '9’, and the item is treated
as if the character-string contained all X’s. A PICTURE

character-string which contains all A’s or all 9's does not define an
alphanumeric item; and

b. Its contents when represented in standard data format are
allowable characters in the computer’s character set.

Some sample alphanumeric strings are as follows:

999xxx
A(10)99X(4)

To define an item as alphanumeric edited:

a. Its PICTURE character-string is restricted to certain
combinations of the following symbels: 'A’, 'X’, '9', 'B’, 0,
and '/’; and
D The character-string must contain at least one ‘B’ and at

least one ‘X' or at least one ‘0’ (zero) and at least one "X’
or at least one '/ (stroke) and at least one 'X’; or

2) The character-string must contain at least one ‘0’ (zero)
and at Ieast one 'A’ or at least one '/’ (stroke) and at least
one 'A’; and

192

(6)

(N

Chapter 5
b. The contents when represented in standard data format are
allowable characters in the computer’s character set.
A sample alphanumeric string is:
BAA/AA/AAB
To define an item as numeric edited:
a. Its PICTURE character-string is restricted to certain

combinations of the symbols 'B’, */7, 'P', 'V, A0, 9, T,
TR T Y 'CRY, DB, and the currency symbaol. The
allowable combinations are determined from the order of
precedence of symbois and the editing rules; and

1y The number of digit positions that can be represented in
the PICTURE character-string must range from 1 to 18
inclusive; and

2) The character-string must contain at least one ‘0", 'B',
l‘/l!‘, I”r, l‘*’1 ’+‘,’ F’,‘ irl" 1‘_’1 !CRP‘ I'I)'Bi‘ (}r C.Llrrency
symbol.
b. The contents of the character positions of these symbols that are

allowed to represent a digit in standard data format, must be one of
the numerals.

Some sample numeric edited strings are:

99/95/99
$5.$3%.$%9.99
722,227,229.99

$$%,$$$.9$9.99CR

The size of an elementary item, where size means the number of character
positions occupied by the elementary item in standard data format, is
determined by the number of allowable symbels that represent character
positions. An integer which is enclosed in parentheses following the
symbols "A', 1) X, 90 P, A, RO B, 00, T+ Y or the
currency symbol indicates the number of consecutive occurrences of the
symbol. Note that the following symbols may appear only once in a given
PICTURE: 'S’, 'V', * 7, 'CR’, and 'DB’",

DATA DIVISION 193

(8) The functions of the symbols used to describe an elementary item are
explained as follows:

A

Each A’ in the character-string represents a character position
which can contain only a letter of the alphabet or a space.

Each 'B’ in the character-string represents a character position into
which the space character will be inserted.

Each 'P’ indicates an assumed decimal scaling position and is used
to specify the location of an assumed decimal point when the point
is not within the number that appears in the data item. The scaling
position character ‘P’ is not counted in the size of the data item.
Scaling position characters are counted in determining the
maximum number of digit positions (18) in numeric edited items
or numeric items. The scaling position character 'P’ can appear
only to the left or right as a continuous string of 'P’s within a
PICTURE description; since the scaling position character P’
implies an assumed decimal point (to the left of "P’s if 'P’s are
leftmost PICTURE characters and to the right if 'P’'s are
rightmost PICTURE characters), the assumed decimal point
symbol 'V’ is redundant as either the leftmost or rightmost
character within such a PICTURE description. The character ‘P’
and the insertion character ".’' (period) cannot both occur in the
same PICTURE character-string. If, in any operation involving
conversion of data from one form of internal representation to
another, the data item being converted is described with the
PICTURE character 'P’, each digit position described by a 'P’ is
considered to contain the value zero, and the size of the data item
is considered to include the digit positions so described.

The letter 'S’ is used in a character-string to indicate the presence,
but neither the representation nor, necessarily, the position of an
operational sign; it must be written as the leftmost character in the
PICTURE. The 'S’ is not counted in determining the size (in
terms of standard data format characters) of the elementary item
unfess the entry is subject to a SIGN clause which specifies the
optional SEPARATE CHARACTER phrase.

The 'V’ is used in a character-string to indicate the location of the
assumed decimal point and may only appear once in a character-
string. The 'V’ does not represent a character position and

194

Chapter 5

therefore is not counted in the size of the elementary item. When
the assumed decimal point is to the right of the rightmost symbol
in the string the 'V’ is redundant.

Each 'X’ in the character-string is used to represent a character
position which contains any allowable character from the
computer’s character set.

Each 'Z’ in a character-string may only be used to represent the
leftmost leading numeric character positions which will be
replaced by a space character when the contents of that character
position is zero. Each "Z’ is counted in the size of the item.

Each "9 in the character-string represents a character position
which contains a numeral and is counted in the size of the item.

Each '0" (zero) in the character-string represents a character
position into which the numeral zero will be inserted. The '0’ is
counted in the size of the item.

Each '/’ (stroke) in the character-siring represents a character
posttion into which the stroke character will be inserted. The ’ /s
counted in the size of the item.

Each ')’ (comma) in the character-string represents a character
position into which the character ')’ will be inserted. This
character position is counted in the size of the item. The insertion
character ’," must not be the last character in the PICTURE
character-string.

When the character *.’ (period) appears in the character-string it is
an editing symbol which represents the decimal point for
alignment purposes and in addition, represents a character position
into which the character *.” will be inserted. The character '.’ is
counted in the size of the item,

For a given program the functions of the period and comma are
exchanged if the clause DECIMAL-POINT IS COMMA is
stated in the SPECIAL-NAMES paragraph. In this exchange the
rules for the period apply to the comma and the rules for the
comma apply to the period wherever they appear in a PICTURE
clause. The insertion character ‘.’ must not be the last character in
the PICTURE character-string.

DATA DIVISION 195

(D

(2

+, —, CR, DB

CS

These symbols are used as editing sign control symbols. When
used, they represent the character position into which the editing
sign control symbol will be placed. The symbols are mutually
exclusive in any one character-string and each character used in
the symbol is counted in determining the size of the data item.

Each '*' (asterisk) in the character-string represents a leading
numeric character position into which an asterisk will be placed
when the contents of that position is zero. Each '*' is counted in
the size of the itemn.

The currency symbol in the character-string represents a character
position into which a currency symbol is to be placed. The
currency symbol in a character-string is represented by either the
currency sign$ or by the single character specified in the
CURRENCY SIGN clause in the SPECIAL-NAMES
paragraph. The currency symbol is counted in the size of the item.

When a value is assigned to a data item, it is said to be edited into that item. The
following rules describe this process.

There are two general methods of performing editing in the PICTURE
clause, either by insertion or by suppression and replacement. There are
four types of insertion editing available. They are:

a.

b.

d.

Simple insertion
Special insertion
Fixed insertion

Floating insertion

There are two types of suppression and replacement editing:

b.

Zero suppression and replacement with spaces

Zero suppression and replacement with asterisks

The type of editing which may be performed upon an item is dependent
upon the category to which the item belongs. The following table specifies
which type of editing may be performed upon a given category:

196

(3

(4)

(5)

(6)

Chapter 5
CATEGORY TYPE OF EDITING
Alphabetic Simple insertion ‘B’ only
Numeric None
Alphanumeric None
Alphanumeric Edited Simple Insection ‘0Y, 'B’, and '/
Numeric Edited All, see rule 3 following

Floating insertion editing and editing by zero suppression and replacement
are mutually exclusive in a PICTURE clause. Only one type of
replacement may be used with zero suppression in a PICTURE clause.

Simple Insertion Editing. The ',’ (comma), ‘B’ (space), "0’ (zero), and '/’
{stroke) are used as the insertion characters. The insertion characters are
counted in the size of the item and represent the position in the item into
which the character will be inserted.

Special Insertion Editing. The '.’ (period) is used as the insertion character.
In addition to being an insertion character it also represents the decimal
point for alignment purposes. The insertion character used for the actual
decimal point 15 counted in the size of the item. The use of the assumed
decimal point, represented by the symbol 'V’ and the actual decimal point,
represented by the insertion character, in the same PICTURE character-
string is disallowed. The result of special insertion editing is the appearance
of the insertion character in the item in the same position as shown in the
character-string.

Fixed Insertion Editing. The currency symbol and the editing sign control
symbols, "+, '-', 'CR’, 'DB’, are the insertion characters. Only one
currency symbol and only one of the editing sign control symbols can be
used in a given PICTURE character-string. When the symbols '‘CR’ or
"DB’ are used they represent two character positions in determining the size
of the item and they must represent the rightmost character positions that
are counted in the size of the item. The symbol ’ +' of /-', when used, must
be either the leftmost or rightmost character position to be counted in the
size of the item. The currency symbol must be the leftmost character
position to be counted in the size of the item except that it can be preceded
by either a '+’ or a '-' symbol. Fixed insertion editing results in the
insertion character occupying the same character position in the edited item
as it occupied in the PEICTURE character-string. Editing sign control
symbols produce the following results depending upon the value of the data
item:

DATA DIVISION 197

(N

EDITING DATA DATA
SYMBOL NON-NEGATIVE NEGATIVE

+ + -
- space -
CR 2 spaces CR
DB 2 spaces DB

Floating Insertion Editing. The currency symbol and editing sign control
symbols '+’ or ’-" are the floating insertion characters and as such are
mutually exclusive in a given PICTURE character-string.

Floating insertion editing is indicated in a PICTURE character-string by
using a string of at least two of the tloating insertion characters. This string
of floating insertion characters may contain any of the fixed insertion
symbols or have fixed insertion characters immediately to the right of this
string. These simple insertion characters are part of the floating string.

The leftmost character of the floating insertion string represents the
leftmost limit of the floating symbol in the data item. The rightmost
character of the floating string represents the rightrnost limit of the floating
symbols in the data item.

The second floating character from the left represents the leftmost limit of
the numeric data that can be stored in the data item. Non-zero numeric data
may replace all the characters at or to the right of this limit.

In a PICTURE character-string, there are only two ways to representing
floating insertion editing. One way is to represent any or all of the leading
numeric character positions on the left of the decimal point by the insertion
character. The other way is to represent all of the numeric character
positions in the PECTURE character-string by the insertion character.

If the insertion characters are only to the left of the decimal point in the
PICTURE character-string, the result is that a single floating insertion
character will be placed into the character position immediately preceding
either the decimal point or the first non-zero digit in the data represented by
the insertion symbol string, whichever is farther to the left in the
PICTURE character-string. The character positions preceding the
insertion character are replaced with spaces.

If all numeric character positions in the PICTURE character-string are
represented by the insertion character, the result depends upon the value of

198

(8)

Chapter 5

the data. If the value is zero the entire data item will contain spaces. 1f the
value is not zero, the result is the same as when the insertion character is
only to the left of the decimal point.

To avoid troncation, the minimum size of the PECTURE character-string
for the receiving data item must be the number of characters in the sending
data item, plus the number of non-floating insertion characters being edited
into the receiving data item, plus one for the floating insertion character.

Zero Suppression Editing. The suppression of leading zeroes in numeric
character positions is indicated by the use of the alphabetic character "Z’ or
the character '*’ (asterisk) as suppression symbols in a PICTURE
character-string. These symbols are mutnally exclusive in a given
PICTURE character-string. Each suppression symbol is counted in
determining the size of the item. If 'Z’ is used the replacement character
will be the space and if the asterisk is used, the replacement character will
be '*',

Zero suppression and replacement is indicated in a PEICTURE character-
string by using a string of one or more of the allowable symbols to
represent leading numeric character positions which are to be replaced
when the associated character position in the data contains a zero. Any of
the simple insertion characters embedded in the string of symbols or to the
immediate right of this string are part of the string.

In a PICTURE character-string, there are only two ways of representing
zero suppression. One way is to represent any or all of the leading numeric
character positions to the left of the decimal point by suppression symbols.
The other way is to represent ail of the numeric character positions in the
PICTURE character-string by suppression symbols.

If the suppression symbols appear only to the left of the decimal point, any
leading zero in the data which corresponds to a symbol in the string is
replaced by the replacement character. Suppression terminates at the first
non-zero digit in the data represented by the suppression symbol string or at
the decimal point, whichever is encountered first.

If all numeric character positions in the PICTURE character-string are
represented by suppression symbols and the value of the data is not zero the
result is the same as if the suppression characters were only to the left of the
decimal point. If the value is zero and the suppression symbol is ‘Z’, the
entire data item will be spaces. If the value is zero and the suppression

DATA DIVISION 199

symbol is "*’, the data item will be all "*’ except for the actual decimal
point.

) The symbols '+', -*, "*' ‘'Z’, and the currency symbol, when used as
floating replacement characters, are mutually exclusive within a given
character-string.

The following chart shows legal combinations of picture characters. An "x" at an
intersection indicates that the symbol at the top of a column may precede the symbol
at the left of a row. The currency symbol is indicated by a dollar sign ($) character.

FIXED FLOAT OTHER
B, . + +CS3%7Z 7Z + + % $|9 A S VP
0 - - R *oxoo L X
/ D
R

PFTBO," X X X x| x x X X xX]x x X

11, X X x| x X X Xx|x X

X . X X xl x X X

E| + -

+ - X X X X x x X x|x X X
CR DR X X Xjx X X X |x X X
3 X

FlZ X X X x| x

L|Z X X X X x| x x X

q+- X X X

Al + - X X X X X X X

% X X X X
$ X X X XX X

a9 X X X X x| x X X X X X X

TIA X X X X

HS

E}j V X X X Xx]x X X X X X

R|P X X X x| x X X X X X
P X X X X

Non-floating insertion symbols "+ and '-’, floating insertion symbols 'Z’, '*', '+,
'-',’8$', and the other symbol P’ appear twice in the preceding chart. The leftmost
column and uppermost row for each symbol represent its use to the left of the
decimal point position, The second appearance of the symbol in the chart represents
its use to the right of the decimal point.

200 Chapter 5

The following characters are mutually exclusive in a PICTURE string:

non-floating '+’ and -’
‘'CR’ and 'DB’

A aﬂd Pt

floating "+ and '-’

At least one of the symbols "A’, ‘X", 'Z’, '9’ or "*', or at least two of the characters
"+, '-" or '$' must be present in a PICTURE string.

DATA DIVISION 201

5.4.4 Describing Data Items

level-number { data-name }

{ FILLER }
[; REDEFINES data-name]

[; { PICTURE } IS character string |

{PIC }
{ COMPUTATIONAL }
[[USAGEIS| { COMP t]
{ DISPLAY)
{ INDEX }

—

. SIGN 1S | { LEADING } | SEPARATE CHARACTER |
{ TRAILING }

3 OCCURS { number TO number TIMES DEPENDING on name } |
{ number TIMES }

[INDEXED BY name [, name] }

—

. {SYNCHRONIZED }[{ LEFT }]}
{ SYNCH } { RIGHT }

—

; { JUSTIFIED } RIGHT }
{ JUST)

[; BLANK WHEN ZERO |

{: VALUE is literal] .

This section indicates how data items may be described. Items with level
numbers 66 or 88 are described in the next section. The following general rules

apply:

202 Chapter 5
) the clauses (described in subsections) may be written in any order except
(a) the data name or FILLER keyword must immediately follow the

level number; and

(b) when the REDEFINES clause is used, it must immediately follow
the data name or FILLER keyword.

2 A PICTURE clause must be specified for every elementary item except for
an index data item in which case the clause may not be used.

3) A 77 level data item must be specified as an elementary data item. The
FILLER keyword cannot be used with this level number.

4 The following keywords are equivalent:

THRU THROUGH

PIC PICTURE

COMP COMPUTATIONAL
SYNC SYNCHRONIZED
JUST JUSTIFIED

(5) The SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN
ZERO clauses may be used only with elementary data items.

The following subsections describe the various clauses.

The FILLER keyword may be used instead of a data name when the elementary
item is never to be explicitly referenced. Thus, it is used to reserve storage which
will be referenced in some other manner such as using the group item containing it.
The FILLER keyword may be used many times in a program.

5.4.4.1 BLANK WHEN ZERO

This clause is used to indicate that the item is to contain spaces when its value is
zero. It may only be specified for an elementary item which is numeric or numeric
edited. The category of an item containing this clause is considered to be numeric
edited.

DATA DIVISION 203

5.4.4.2 JUSTIFIED

This clause is used to specify non-standard positioning of data within a data
item. It may only be specified for an elementary item which is neither numeric nor
edited.

Normally, when data is moved to a field it is moved as follows:

(1 When the data is larger than the field, the data is truncated on the right and
placed in the field.

(2) When the data is smaller than the field, the data is augmented with space
characters on the right and placed in the field.

The JUSTIFIED clause changes this normal action as follows:

(1 When the data is larger than the field, the data is truncated on the left and
placed in the field.

(2) When the data is smaller than the field, the data is augmented with space
characters on the left and placed in the field,

In both cases, the rightmost position of the data is placed in the rightmost position of
the receiving field.

5.4.4.3 OCCURS Clause

The OCCURS clause is described in the chapter entitled TABLE HANDLING.

5.4.4.4 PICTURE Clause

The PICTURE clause is used to describe the general characteristics and editing
requirements of an elementary data item. This is accomplished by the PICTURE
string following the PICTURE keyword (see PICTURE STRING). The clause
may only be specified for elementary data items.

204 Chapter 5

5.4.4.5 REDEFINES

The REDEFINES clause is used to provide another definition of a previously
defined area of storage. The two data names must have the same level number and
there must be no data item with a lower level number between these two data items
in the program. Level 66 and 88 items may not use REDEFINES,

The clause is used in order to provide more than one definition of how an area of
storage is to be treated. This enables, for example, two or more PICTURE clauses
to apply to a single area of storage.

The following rules apply to the data item following the REDEFINES keyword:
N The data item may not itself contain a REDEFINES clause, although it

may be subordinate to a group item which does contain a REDEFINES
clause. Thus, the following is illegal:

05 A.

05 B REDEFINES A.

05 C REDEFINES B.

The data item "C" is REDEFINEd using the data item "C” which is itself
REDEFINEd. The following is iegal:

03 X REDEFINES Y.
' 05 A.
05 -B REDEFINES A.
05 ‘C REDEFINES A.

(2 The data item cannot contain an CCURS clause. The following would be
itlegal:

10 TAB-COST OCCURS 20 TIMES.
10 TAB REDEFINES TAB-COST.

The following rules apply to the data item following the level number:

DATA DIVISION 205

(hH The data item may not us¢ an OQCCURS clause.

(2) The data item, or any items subordinate to it, may not contain a VALUE
clause, except for condition name entries. The VALUE clause can only be
used with an item which actually defines storage. Any item which is
REDEFINEd to occupy existing storage cannot have this clause. Thus,

10 A PIC 99 VALUE IS 47.

10 B REDEFINES A PIC XX.
is legal, while

10 A PIC 99,

10 B REDEFINES A PIC XX VALUE IS "99".
is illegal.

The following rules apply to both data items:

(1 The items may not have 01 level numbers in the FILE SECTION.

2) When the items do not have 01 level numbers, they must be the same size.

5.4.4.6 SIGN

This clause is used to indicate the position and representation of signs of numeric
data items. It may be used only with numeric data items with a PLCTURE string
containing an "S" or with group items which contain at least one such data item.

When the clause has not been specified for either an elementary numeric data
item whose picture contains an “S” or for a group item containing it, the sign is
stored in the same storage location as the right-most character of the data item.
Because this last character is used to store both the last digit and the sign, an attempt
to DISPLAY the last character will cause it to appear as another character than the
digit. The data may be reviewed in a more understandable format by moving the
data to a numeric edited data item and then DISPLAYing that item.

206 Chapter 5

The SIGN clause is used to obtain the storage of the sign information in different
ways:

(n When TRAILING is specified and SEPARATE is present, the sign is
stored as a "+" or a "-" in a character following the last digit.

(2) When LEADING is specified and SEPARATE is present, the sign is
stored as a "+" or a "-" in a character preceding the first digit.

{3 When TRAILING is specified and SEPARATE is not given, the default
representation of the sign (described previously) is used.

(€)] When LEADING is specified and SEPARATE is not given, the default
representation of the sign (described previously) is used except that the first
digit of the data item contains the sign (not the last one).

5.4.4.7 SYNCHRONIZED

This clause is intended to be used to align data on the "natural” boundaries of
storage that are required in some computer systems. In the systems in which
microCOBOL is currently implemented or being implemented (IBM 370, DEC
PDP/11, IBM Personal Computer, Motoral 6809) this alignment is unnecessary and
so this clause has no effect. The clause may only be used with elementary data
items.

5.4.4.8 USAGE

This clause is intended to provide different representations of data for items,
depending upon whether they are used in computations ot not. Waterloo
microCOBOL uses the same representation for both COMPUTATIONAL and
DISPLAY items.

An item specified as COMPUTATIONAL may have a PICTURE string
containing only the characters "9”, "S", "V" and 'P". When the USAGE clause is
specified for a group items it applies to the elementary items subordinate to it.

An item specified as INDEX can only be used to index items in tables (see
INDEXING). The SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE, and
BLANK WHEN ZERO clauses cannot be used for an indexed data item.

DATA DIVISION 207

5.44.9 VALUE

The VALUE clause is used to place an initial value in a data item. This is the
value contained in the item when the program begins execution. When the storage
for a data item has not been initialized in this way, the data item should not be used
as value until a value has placed in the data item. The Waterloo microCOBOL
Interpreter treats as an error any attempt to use such an undefined value.

The data value to be placed into the storage for a data item is specified as either a
literal or a figurative constant. The rules for numeric and non-numeric items are
given in the following paragraphs.

A numeric literal or a figurative constant may be specified as initialization for a
numeric data item. A numeric literal must not be larger than the capability of the
item to store that value. If the literal specifies a sign, the data item must be a signed
numeric item.

Non-numeric data items, including group items, may be initialized with non-
numeric literals or figurative constants. The size of the literal cannot exceed the size
of the data item. No editing is performed; a literal is presented in an edited form.

The JUSTIFIED and BLANK WHEN ZERO clauses are ignored when the
data is placed into data item as a result of the VALUE clause. The clause may not be
used in the following cases:

(n when the data item also contains an OCCURS or REDEFINES clause, or
is subordinate to a group item containing those clauses;

(2) when the data item is in the FILE SECTION:; or
3 when the data item is group item which has subordinate items with any of

the JUSTIFIED, SYNCHRONIZED, or USAGE (other than DISPLAY)
clauses.

208 Chapter 5

5.4.5 66 Level Data Items

66 name-1; RENAMES name-2 [{ THROUGH } name-3]
{ THRU y

A 66 level data itemn defines an alternative method to group one or more
elementary data items. The 66 level item is constdered to be a group item, unless it
renames a single elementary data item. The storage for the 66 level item begins at
the start of the data item given following the RENAMES keyword and continues o
the end of the data item specified in the THRU clause. When no THRU or
THROUGH clauses are present, the storage ends at the end of the data item given
following the RENAMES clause.

Consider the following example:

01 AL
05 B.
10 C PIC X.
10 D PIC X.
05 E.
10 F PIC X.
10 G PIC X.
10 H PIC X.
66 DEF-1 RENAMES D THROUGH G.
66 DEF-2 RENAMES D THRU E.

The data item "DEF-1" includes the elementary items "D, "F”, and "G"; the data item
"DEF-2" includes the elementary items “D", “F" "G" and "H".

The following rules apply to 66 level data items:

(1 All 66 level items must occur immediately following the last data
description in a logical record.

{(2) The one or two data items specified in the RENAMES clause must be
distinct items in the logical in which the 66 level item applies. These items
may not be 01, 66, 77 or 88 level items. These items may not have an
OCCURS clause nor can either be subordinate to an item with this clause.

DATA DIVISION 209

(3) When the THRU or THROUGH keyword is used, the data item following
the keyword must not start before and must end after the data item given
following the RENAMES keyword.

(4) The 66 level data item is treated as an elementary item if the THRU claunse

is not used and if the data item following the RENAMES keyword is an
elementary item; otherwise, the item is treated as a group item.

5.4.6 88 Level Data Items

88 name; { VALUE IS } literal [{ THROUGH 3} literal]
{ VALUES ARE } [{ THRU }
{, literal [{ THROUGH } literal]] ...
{ THRU 3

Level 88 data items are used to specify condition names to be associated with
fields, called condition variables. Consider the following example:

77 TR-CODE PICTURE 99.

88 GOOD-CODE VALUES ARE 20, 30, 40.
88 ADD-CODE VALUE IS 20.

88 DLT-CODE VALUE IS 30.

88 CHG-CODE VALUE IS 40.

Four condition names are defined for the condition variable "TR-CODE". The usage
of one of these 88 level items as a simple condition will result in a value of ‘true’
when the condition variable contains one of the values given with that 88 level item.
Thus, the statement

IF GOOD-CODE
may be used to test if "TR-CODE" contains 20, 30 or 40. Similarly,

IF CHG-CODE

may be used to test if "TR-CODE’ contains 40.

210 Chapter 5
The 88 level items are given following the field to be used as the condition
variable. The condition variable may not have any of the following properties:
(H level 66
(2) USAGE given as COMP, COMPUTATIONAL or INDEX .
3) JUSTIFIED or SYNCHRONIZED clauses.
The conditional variable may be an item in a logical record.
The values to be used to test if the condition name is true are given as single
literals or as ranges of values (when THRU or THROUGH keywords used). The

test to see if the conditional variable contains an appropriate value is equivalent to
one of the following:

literal condition-variable = literal
range condition-variable NOT < first-literal
AND

condition-variable NOT > second-literal

where the literals used in the range test are respectively the literals before and after
the THRU or THROUGH keyword.

Chapter 6

PROCEDURE DIVISION

6.1 Overview

PROCEDURE DIVISION.
[DECLARATIVES.
{ section-name SECTION. declarative sentence
[paragraph-name. [sentence] ...]} ...

END DECLARATIVES. |

{procedure body)

where the procedure body is given by:

{ paragraph-name. { sentence] . . . }

or

{ section-name SECTION.

[paragraph-name. [sentence | ...] ... } ...

212 Chapter 6

The PROCEDURE DIVISION is concerned with the actions to be performed
by the program. The division consists of a number of paragraphs which consist of
sentences to specify particular actions and of directives to specify actions to take
place when certain error situations arise.

Each paragraph consists of zero or more sentences. Each sentence consists of
cne or more statements, followed by a period (.) character. Each statement starts
with a verb. These verbs are discussed in the following chapters.

A number of the verbs are said to be conditiongl statements; i.e., they have a
portion of them which is executed only if some condition is true. For example,

READ IN-FILE INTO IN-RECORD
AT END MOVE HIGH-VALUES TO IN-KEY,

illustrates a READ statement in which a MOVE verb is executed when an attempt is
made to read past the end of the file. When there is no conditional action associated
with the statement, the statement is said to be an imperative statement. A sequence
of imperative statements is also treated as an imperative statement. Many of the
conditional statements specify that an imperative statement must be the conditional
part of the conditional statement.

The opticnal DECLARATIVES portion occurs first in the PROCEDURE
DIVISION. It is composed of a number of sections, each one of which has a USE
statement that specifies an error condition. The section in question is executed
whenever the specified error condition arises during the normal execution of the
program. The END DECLARATIVES statement marks the end of the declaratives
area.

The main body of the PROCEDURE DIVISION follows the optional
DECLARATIVES area. The body consists either of a number of paragraphs or a
number of sections each of which consists of a number of paragraphs. Section and
paragraph names start in Area A. A paragraph consists of zero or more sentences,
each ending with a period. A sentence consists of one or more verbs. Each verb
starts in Area B. If the sentence defined by the verbs is written on more than one
line, the continued line(s) also start in Area B. A verb is not required to be the first
word on a line.

When the program is placed into execution, control begins at the first section or
paragraph (following the optional DECLARATIVES area) in the program. Control
means the place at which the program is being executed. Normally, control proceeds
sequentially through the program, performing the actions indicated by each verb

PROCEDURE DIVISION 213

encountered. Certain verbs, however, may cause control to be altered to some other
place in the program. These actions are described in detail in the sections of the
manual dealing with COBOL verbs.

6.2 Declaratives
This area starts with
DECLARATIVES.

and ends with
END DECLARATIVES.

Both are written starting in Area A. The area between these statements consists of a
number of sections. Each section name is immediately followed by a USE statement
which specifies an error condition. Should that error condition arise during the
execution of the program, then control is passed to the first paragraph following the
USE statement.

When the execution of the section is complete, control returns to statement
following that which caused the error. It should be noted that this mechanism
provides a method whereby etrors can be trapped, diagnosed, andjor corrective
action can be applied. The subsections describing the USE statement should be
consulted for the specific conditions which may be given in that statement.

Each section in the DECLARATIVES area should be considered self-contained
for the following reasons:

(1 There can be no reference to a section or paragraph name in the
DECLARATIVES area from outside that area, except in a PERFORM
statement.

(2) There can be no reference from within the DECLARATIVES area to a
section or paragraph name found outside the area.

—~
T
—

No action can take place while executing statements in a
DECLARATIVES section which cause the execution of another
DECLARATIVES section that had previously been invoked and had
not yet returned control to the place of invocation.

214 Chapter 6

6.3 Common Terms

This section contains descriptions of several common terms which will be
referenced in the following sections. The explanations are included separately since
they apply to a number of statements.

6.3.1 Arithmetic Expressions

Arithmetic expressions are used in various statements in order to specify values
which are to be calculated. For example,

COMPUTEZ = X *Y + B.
is a statement which specifies that the expression
X*Y+ B

be evaluated and that the resultant value is to be assigned to the data item "Z". In the
example, the expression is evaluated by multiplying together the values of “X" and
"Y” and then adding the value of "B” to produce the final result.

An expression is written as a combination of names of elementary data items,
numeric literals, arithmetic operators and parentheses. The rules by which these
elements are combined are very similar to the familiar conventions of algebra or
arithmetic.

The following binary operators (given between two values) may be used in
arithmetic expressions

+ add two values
subtract second value from first
* multiply two values
/ divide second value into first
** raise first value to power of second value

and the following unary operators (given in front of a value) may be used:

+ has the effect of multiplying by +1
— has the effect of multiplying by —1

These operators may be combined with parentheses, names and literals in the
manner shown in the following table:

PROCEDURE DIVISION 215
Name binary unary ()
op. op.
Name X X
Binary op. X X X
Unary op. X X
(X X X
) X X

The table has five columns and rows. An "x” at the intersection of a row and column
indicates that an item from the column can immediately follow an item from the
row. The "name” item represents both numeric literals and elementary data items.

In addition, the following rules apply:

() An expression must start with a name, opening parenthesis or a unary
operator.

2) An expression must end with a name or a closing parenthesis.

3) The parentheses must be paired such that each closing parenthesis is to the

right of the corresponding opening parenthesis.
Operators must be written with a space both before and after the operator.
The order in which an expression is evaluated is determined by parentheses in

the expression and by the priority of the operators. The following priorities of
operators apply:

1 Unary + and —

2 Exponentiation

3 Multiplication and Division
4 Addition and Subtraction

Operations enclosed within parentheses are performed first, with the inner most
pairs evaluated before the outer pairs. When parentheses are not used, or
parenthesized expressions are at the same level of inclusiveness, the priority of
operations determines the order in which the operations are applied.

216 Chapter 6

Consider the following expression, where data items A, B and C have values 4,
6 and 2 respectively:

—A*(2+B)/C)Y*25*C
The evaluation proceeds as follows:
— A2+ B)/Oy*25=*C

{~4} % (2 + B/ C)* 25 *C
{—4r* ({8} /OY*25*C
[—4) = ({4})*2.5%2
{256} * 2.5 * 2

{640} * 2

{1280}

The result of each operation has been shown in braces ({}).

Arithmetic expressions are calculated with 36 significant digits of internal
accuracy. In addition to zero, the absolute values which may be represented range
from 10 to the 75-th power to 10 to —75-th power. The exponentiation (raising to a
power) operation is an approximation procedure which varies from implementation
to implementation; it usually gives results which have fewer (typically 7 or 8)
significant digits of precision.

6.3.2 Conditional Expressions

Conditional expressions identify conditions that are tested to enable the object
program to select between alternate paths of contro] depending upon the truth value
of the condition. Conditional expressions are specified in the IF and PERFORM
statements. There are two categories of conditions associated with conditional
expressions: simple conditions and complex conditions. Each may be enclosed
within any number of paired parentheses, in which case its category is not changed.

6.3.2.1 Simple Conditions

The simple conditions are the relation, class, condition-name and sign
conditions. A simple condition has a truth value of 'true’ or 'false’'. The inclusion in
parentheses of simple conditions does not change the simple truth value.

PROCEDURE DIVISTON 217

6.3.2.1.1 Relation Condition

A relation condition causes a comparison of two operands, each of which may
be the data item referenced by an identifier, a literal, or the value resulting from an
arithmetic expression. A relation condition has a truth value of 'true’ if the relation
exists between the operands. Comparison of two numeric operands is permitted
regardiess of the formats specified in their respective USAGE clauses. However, for
all other comparisens the operands must have the same usage. If either of the
operands is a group item, the nonnumeric comparison rules apply.

The general format of a relation condition is as follows:

{ identifier } relation { identifier t
{ literal 1 { literal)
{ arithmetic expression 3 { arithmetic expression 1

where a "relation” is one of the relational operators:

IS [NOT | GREATER THAN
1S { NOT] LESS THAN

IS [NOT] EQUAL TO
ISINOT] >

ISINOT] <

IS[NOT] =

The first operand is called the subject of the condition; the second operand is
called the object of the condition. The relation condition must contain at least one
reference to an identifier.

The relational operator specifies the type of comparison to be made in a relation
condition. A space must precede and follow each reserved word comprising the
relational operator. When used, NOT and the next key word or relation character are
one relational operator that defines the comparison to be executed for truth value;
e.g., NOT EQUAL is a truth test for an 'unequal’ comparison; NOT GREATER is
a truth test for an ‘equal’ or 'less’ comparison.

6.3.2.1.1.1 Comparison of Numeric Operands

For operands whose class is numeric, a comparison is made with respect to the
algebraic value of the operands. The length of the literal or arithmetic expression
operands, in terms of number of digits represented, is not significant. Zero is
considered a unigue value regardless of the sign.

218 Chapter 6

Compariscn of these operands is permitted regardless of the manner in which
their usage is described. Unsigned numeric operands are considered positive for
purposes of comparison.

6.3.2.1.1.2 Comparison of Nonnumeric Operands

For nonnumeric operands, or one numeric and one nonnumeric operand, a
comparison is made with respect to the collating sequence of characters. One of the
operands is specified as numeric, it must be an integer data or an integer literal and:

a. If the nonnumeric operand is an elementary data item or a nonnumeric
literal, the numeric operand is treated as though it were moved to an
elementary alphanumeric data item of the same size as the numeric data
item (in terms of standard data format characters), and the contents of this
alphanumeric data item were then compared to the nonnumeric operand.

b. If the nonnumeric operand is a group item, the numeric operand is treated
as though it were moved to a group of the same size as the numeric data
item (in terms of standard data format characters), and the contents of this
group item were then compared to the nonnumeric operand.

c. A non-integer numeric operand cannot be compared to a nonnumeric
operand.

The size of an operand is the total number of standard data format characters in
the operand. Numeric and nonnumeric operands may be compared only when their
usage is the same.

There are two cases to consider: operands of equal size and operands of unequal
size.

{1 Operands of equal size. If the operands are of equal size, comparison
effectively proceeds by comparing characters in corresponding character
positions starting from the high order end and continuing until either a pair
of unegual characters is encountered or the low order end of the operand is
reached, whichever comes first. The operands are determined to be equal if
all pairs of characters compare equally through the last pair, when the low
order end is reached.

The first encountered pair of unequal characters is compared to determine
their relative position in the collating sequence. The operand that contains

PROCEDURE DIVISION 219

the character that is positioned higher in the collating sequence is
considered to be the greater operand.

2) Operands of unequat size. If the operands are of unequal size, comparison
proceeds as though the shorter operand were extended on the right by
sufficient spaces to make the operands of equal size.

6.3.2.1.2 Class Condition

The class condition determines whether the operand is numeric, that is, consists
entirely of the characters '0°, "1, '2', '3, ..., '%, with or without the operational
sign, or alphabetic, that is, consists entirely of the characters ‘A", 'B’, 'C’, ..., 'Z’,
space. The general format for the class condition is as follows:

identifter IS { NOT } { NUMERIC t
{ ALPHABETIC }

The usage of the operand being tested must be described as display. When used,
NOT and the next key word specify one class condition that defines the class test to
be executed for truth value; e.g. NOT NUMERIC is a truth test for determining that
an operand is nonnumeric.

The NUMERIC test cannot be used with an item whose data description
describes the item as alphabetic or as a group item composed of elementary items
whose data description indicates the presence of operational sign(s). If the data
description of the item being tested does not indicate the presence of an operational
sign, the item being tested is determined to be numeric only if the contents are
numeric and an operational sign is not present. If the data description of the item
does indicate the presence of an operational sign, the item being tested is determined
to be numeric only if the contents are numeric and a valid operational sign is present.
Valid operational signs for data items described with the SIGN IS SEPARATE
clause are the standard data format characters, "+’ and '—'.

The ALPHABETIC test cannot be used with an item whose data description
describes the item as numeric. The item being tested is determined to be alphabetic
only if the contents consist of any combination of the alphabetic characters 'A'
through 'Z’ and the space.

220 Chapter 6

6.3.2.1.3 Condition-Name Condition (Conditions Variable)

In a condition-name condition, a conditional variable (see Level 88 data items)
is tested to determine whether or not its value is equal to one of the values associated
with a condition-name. The general format for the condition-name condition is as
follows:

condition-name
If the condition-name is associated with a range or ranges of values, then the
conditional variable is tested to determine whether or not its value falls in this range,

including the end values.

The rules for comparing a conditional variable with a condition-name value are
the same as those specified for relation conditions.

The result of the test is true if one of the values corresponding to the condition-
name equals the value of its associated conditional variable.
6.3.2.1.4 Sign Ceondition

The sign condition determines whether or not the algebraic value of an

arithmetic expression is less than, greater than, or equal to zero. The general format
for a sign condition is as follows:

arithmetic-expression IS { NOT } {POSITIVE }
{NEGATIVE }
{ZERO }

When used, NOT and the next key word specify one sign condition that defines
the algebraic test to be executed for truth value; e.g., NOT ZERO is a truth test for
a nonzero (positive or negative) value. An operand is positive if its value is greater
than zero, negative if its value is less than zero, and zero if its value is equal to zero.
The arithmetic expression must contain at least one reference to a variable.

6.3.2.2 Complex Conditions

A complex condition is formed by combining simple conditions, combined
conditions and/or complex conditions with logical connectors (logical operators
AND and OR) or negating these conditions with logical negation (the logical
operator NOT) The truth value of a complex condition, whether parenthesized or

PROCEDURE DIVISION 221

not, is that truth value which results from the interaction of all the stated logical
operators on the individual truth values of simple conditions, or the intermediate
truth values of conditions logically connected or logically negated.

The logical operators and their meanings are:
Logical Operator Meaning
AND Logical conjunction; the truth value is 'true’ if both of the
conjoined conditions are true; 'false’ if one or both of the
conjoined conditions is false.
OR Logical inclusive OR; the truth value is "true’ if one or

both of the inclided conditions is true; ’false’ if both
included conditions are false.

NOT Logical negation or reversal of truth value; the truth value
is "true’ if the condition is false; 'false’ if the condition is
true.

The logical operators must be preceded by a space and followed by a space.

6.3.2.2.1 Negated Simple Conditions

A simple condition is negated through the use of the logical operator NOT. The
negated simple condition effects the opposite truth value for a simple condition.
Thus the truth value of a negated simple condition is "true’ if and only if the truth
value of the simple condition 1s ‘false’; the truth value of a negated simple condition
is 'false’ if and only if the truth value of the simple condition is ‘true’. The inclusion
in parentheses of a negated simple condition does not change the truth value.

The general format for a negated simple condition s:

NOT simple-condition

6.3.2.2.2 Combined and Negated Combined Conditions

A combined condition results from connecting conditions with one of the logical
operators AND or OR. The general format of a combined condition is:

Where ‘condition’ may be:

(1)
(2)
3
4)

(3)

Although parentheses need never be used when either AND or OR (but not both)
is used exclusively in a combined condition, parentheses may be used to effect a
final truth value when a mixture of AND, OR and NOT is used.

The following table indicates the ways in which conditions and logical operators
may be combined and parenthesized. There must be a one-to-one correspondence
between left and right parentheses such that each left parenthesis is to the left of its
corresponding right parenthesis.

Chapter 6

condition { { AND } condition }...
{OR }

A simple condition, or
A negated simple condition, or
A combined condition, or

A negated combined condition; i.e., the NOT logical operator followed
by a combined condition enclosed within parentheses, or

Combinations of the ahove, specified according to the rules summarized
in the following table. Combinations of Conditions, Logical Operators,
and Parentheses.

PROCEDURE DIVISION 223

In a left-to-right sequence of elements
Location in

conditional Element, when not Element, when not
Given the expression first, may be last may be
following immediately pre- immediately fol-
element First Last ceded by only: lowed by only:

condition Yes No OR, NOT, AND, (OR, AND,)

OR or AND No No condition, } condition, NOT, (
NOT Yes No OR, AND, (condition, (

(Yes No OR, NOT, AND, { condition, NOT, (
) No Yes condition,) OR., AND, }

Thus, the element pair OR NOT is permissible while the pair NOT OR is not
permissible; “NOT” is permissible while NOT NOT is not permissible.

6.3.2.2.3 Abbreviated Combined Relation Conditions

When simple or negated simple relation conditions are combined with logical
connectives in a consecutive sequence such that a succeeding relation condition
contains a subject or subject and relational operator that is common with the
preceding relation condition, and no parentheses are used within such a consecutive
sequence, any relation condition except the first may be abbreviated by:

(H The omission of the subject of the relation condition, or
(2) The omission of the subject and relational operator of the relation
condition.

The format for an abbreviated combined relation condition 1s:

relation-condition { { AND } | NOT |
{ OR }

[relational-operator] object } ...

Within a sequence of relation conditions both of the above forms of abbreviation
may be used. The effect of using such abbreviations is as if the last preceding stated
subject were inserted in place of the omitted subject, and the last stated relational
operator were inserted in place of the omitted relational operator. The result of such
implied insertion must comply with the rules shown. This insertion of an omitted

224 Chapter 6

subject and/or relational operator terminates once a complete simple condition is
encountered within a complex condition.

The interpretation applied to the use of the word NOT in an abbreviated
combined relation condition is as follows:

(1 It the word immediately following NOT is GREATER, '>', LESS,
"<’, EQUAL, '=", then the NOT participates as part of the relational
operator; otherwise

(2} The NOT is interpreted as a logical operator and, therefore, the implied
insertion of subject or relational operator results in a negated relation
condition.

Some examples of abbreviated combined and negated combined relation
conditions and expanded equivalents foliow.

Abbreviated Combined Expanded Equivalent
Relation Condition

a > b AND NOT < ¢ OR d ((a > b) AND (a NOT < c))
OR (a NOT < d)

a NOT EQUAL b OR ¢ (a NOT EQUAL b)
OR (a NOT EQUAL c)

NOT a=bOR ¢ (NOT (a = b)) OR (a = ¢)
NOT (a GREATER b OR < ¢) NOT ((a GREATER b) OR (a < ¢))

NOT (a NOT > b AND ¢ AND NOT d) NOT ((((a NOT > b)
AND (a NOT > ¢))
AND (NOT (a NOT > d))))

6.3.2.2.4 Condition Evaluation Rules

Parentheses may be used to specify the order in which individual conditions of
complex conditions are to be evaluated when it is necessary to depart from the
implied evaluation precedence. Conditions within parentheses are evaluated first,
and, within nested parentheses, evaluation proceeds from the least inclusive
condition to the most inclusive condition. When parentheses are not used, or

PROCEDURE DIVISION 225

parenthesized conditions are at the same level of inclusiveness, the following
hierarchical order of logical evaluation is implied until the final truth value is
determined:

(1)
(2}

)

(4)

&)

(6)

Values are established for arithmetic expressions.
Truth values for simple conditions are established in the following order:

relation (following the expansion of any abbreviated
relation condition)

class

condition-name

switch-status

sign

Truth values for negated simple conditions are established.

Truth values for combined conditions are established: AND logical
operators, followed by OR logical operators.

Truth values for negated combined conditions are established.
When the sequence of evaluation is not completely specitied by

parentheses, the order of evaluation of consecutive operations of the
same hierarchical level is from left to right.

226 Chapter 6

6.4 CORRESPONDING Items

Several COBOL verbs (ADD, SUBTRACT, MOVE) have an optional
CORRESPONDING or CORR keyword which may be used when the verb
operands refer to group items. The inclusion of this keyword causes these verbs to
act individuaily upon subordinate items of these group items, when the names of the
subordinate items exactly correspond within their group items. Consider the
following records:

01 A
02 B PIC 99.
02 D PIC 99
02 E PIC 99
01 F
02 B PIC 99.
02 C PIC 99.
02 D PIC 99.

The statement
MOVE CORRESPONDING A TO F.
is equivalent to the two statements:

MOVE BIN A TO BINF.
MOVE DIN A TO D IN F.

Only those fields that have the same names when fully qualified, up to but not
including the group items, in the statement are MOVEd.

Two items are said to correspond when they are subordinate to the group items
named in the statement using CORRESPONDING and:

(D The items do not have FILLER as a data name.

2) The items have the same data name and qualifiers up to the group items
named in the statement.

(3 At least one of the items is elementary (MOVE statement) or both are
elementary (ADD, SUBTRACT statements).

4) Neither items contain 66 or 88 level data items.

PROCEDURE DIVISION 227

(5) Neither items have REDEFINES, RENAMES or OCCURS clauses.

The group items in the CORRESPONDING statement may have a REDEFINES
or OCCURS clause. Any items, and subordinate items to them, which are
subordinate to the group items and have REDEFINES or OCCURS clauses, are not

considered to be corresponding.

6.5 Undefined Values

The Waterloo microCOBOL Interpreter detects as an error any attempt to use an
undefined value. A data item to which a value has not yet been assigned is said to be
undefined.

Other COBOL processors may not detect the use of undefined values or may
place predictable values into undefined items. Tt is considered poor programming
practice to rely on these nonstandard features.

Chapter 7

Interacting with the Terminal

7.1 Overview

Two COBOL statements may be used to interact with a user of a program, via
the terminal. The DISPLAY statement may be used to transmit data to be shown
upon the terminal screen. The ACCEPT statement transfers data entered using the
keyboard to a data item.

The various input/output statements may also be used with the terminal screen
and keyboard considered to be files. The statements are described in later chapters.

The ACCEPT statement may also be used to obtain the current date and time.
For completeness, these uses of the ACCEPT statement are also described in this

chapter.

The next sections describe the ACCEPT and DISPLAY statements.

7.2 ACCEPT Statement

ACCEPT identifier [FROM { DATE } |
{ TIME

The ACCEPT statement may be used to obtain data from the user’s terminal or
to obtain data representing the current time or the current data. The accepted data is
transferred to the data item specified following the ACCEPT keyword. This transfer
obeys the following rules:

(D The size of data transferred is the minimum of the accepted data and the
size of the accepting data item.

230 Chapter 7

(2} No verification is performed for the appropriateness of the data for the
data item in question.

(3) The data is directly transferred. No editing is performed in this transfer.

4) When the accepted data is shorter than the accepting item, the transfer
starts at the leftmost character in the data item. Characters in the data
item to which data is not transferred remain unchanged.

Thus, the ACCEPT statement may be used to obtain data interactively from the
terminal. Caution should be used in this situation, as a portion of the accepting data
item will unchanged if less data is transferred than the item can contain.

When the FROM TIME clause is specified, the data returned is an eight-
character integer value (no sign) representing the number of seconds since midnight.
Thus, 2:41 p.m. would be expressed as 14410000,

When the FROM DATE clause is specified, the data returned is a six-character

integer value. The date of March 9, 1982 would be expressed as 820309. Two digits
are used for each of the year of the century, month and day of month.

7.3 DISPLAY Statement

DISPLAY { identifier } [, { identifier }] ...
{ literal } { literal b

The DISPLAY statement may be used to display data upon the terminal. The
data to be displayed is given a list following the keyword DISPLAY. Each item in
the list is either a literal or the name of a data item. In the latter case, the value of the
data item is displayed. The data is displayed upon the terminal without any
intervening blanks or editing, in the order in which items are given in the list. When
the sizes of the items exceeds the size of a line on the terminal, the current line is
displayed and the remainder is displayed using another line.

When all or part of a data itermn has not been assigned a value during the
execution of a program, those character positions are said to be undefined.
Undefined characters are DISPLAYed as question-mark (?) characters.

Chapter 8

MOVE Statement

MOVE { identifier } TO { identifier } [, identifier] ...
{ literal }

MOVE { CORRESPONDING } identifier TO identifier
{ CORR L

The MOVE statement is used to transfer data to one or more data areas. When
the move involves elementary items, the data may be edited from one representation
to another. The contents of this chapter are also important as several other
descriptions in the reference manual describe the use of data items as if they had
been moved to specific fields in particular ways. A READ statement with an INTO
clause, for example, causes data to be moved from the FILE SECTION to a data
item. This transfer is accomplished with the same rules as if the data had been
MOVEd.

When the CORR or CORRESPONDING keyword is used, corresponding
items are moved from the source group item to the target group items. Refer to the
section on CORRESPONDING ITEMS for a description of how the corresponding
items are selected for a pair of group items. The results of a MOVE with this option
are as if the corresponding items had been specified individually in separate MOVE
statements.

The following rules apply the MOVE verb:

(h The data designated by the literal or identifier following the MOVE
keyword is moved first to the data items in the order that they follow the

232

(2

Chapter 8

TO keyword. Any subscripting or indexing associated with an 1dentifier
following the TO keyword is evaluated immediately before the data is
moved to the respective data item.

Any subscripting or indexing associated with the identifier which
follows the MOVE keyword is evaluated only once, immediately before
data is moved to the first of the receiving operands. The result of the
statement

MOVE a (b) TO b, ¢ (b)
is equivalent to:

MOVE a (b) TO temp
MOVE temp TO b
MOVE temp TO ¢ (b)

where “temp” is an intermediate result item provided by the implementor.

Any MOVE in which the sending and receiving items are both elementary
items is an elementary move. Every elementary item belongs to one of the
following categories: numeric, alphabetic, alphanumeric, numeric edited,
alphanumeric edited. These categories are described in the section dealing
with PICTURE strings. Numeric literals belong to the category numeric,
and nonnumeric literals belong to the category alphanumeric. The
figurative constant ZERO belongs to the category numeric. The figurative
constant SPACE belongs to the category alphabetic. All other figurative
constants belong to the category alphanumeric.

The following rules apply to an elementary move hetween these categaries:

a. The figurative constant SPACE, a numeric edited, alphanumeric
edited, or alphabetic data item must not be moved to a numeric or
numeric edited data item.

b. A numeric literal, the figurative constant ZERO, a numeric data
item or a numeric edited data item must not be moved to an
alphabetic data item.

c. A non-integer numeric literal or a non-integer numeric data item
must not be moved to an alphanumeric or alphanumeric edited
data item.

MOVE Statement 233

(3)

d.

All other elementary moves are legal and are performed according
to the rules given in the next rule.

Any necessary conversion of data from one form of internal representation
to another takes place during legal elementary moves, along with any
editing specified for the receiving data item:

a.

When an alphanumeric edited or alphanumeric item is a receiving
item, alignment and any necessary space filling takes place. If the
size of the sending item is greater than the size of the receiving
item, the excess characters are truncated on the right after the
receiving item is filled. Tf the sending item is described as being
signed numeric, the operational sign will not be moved; if the
operational sign occupied a separate character position, the
character will not be moved and the size of the sending item will
be considered to be one less than its actual size.

When a numeric or numeric edited item is the receiving item,
alignment by decimal point and any necessary zero-filling takes
place, except where zeroes aré replaced because of editing
requirements.

1) When a signed numeric item is the receiving item, the
sign of the sending item is placed in the receiving item.
Conversion of the representation of the sign takes place
as necessary. If the sending item is unsigned, a positive
sign is generated for the receiving item.

2) When an unsigned numeric item is the receiving item, the
absolute value of the sending item is moved and no
operational sign is generated for the receiving item.

3) When a data item described as alphanumeric is the
sending item, data is moved as if the sending item were
described as an unsigned numeric integer.

When a receiving field is described as alphabetic, justification and
any necessary space-filling takes place. If the size of the sending
item is greater than the size of the receiving item, the excess
characters are truncated on the right after the receiving item is
filled.

234

(4)

(5)

Chapter 8

Any move that is not an elementary move is treated exactly as if it were an
alphanumeric to alphanumeric elementary move, except that there is no
conversion of data from one form of internal representation to another. In
such a move, the receiving area will be filled without consideration for the
individual elementary or group items contained within either the sending or
receiving area, except as noted in the preceding rule with the OQCCURS

clause.

Data in the following chart summarizes the legality of the various types of
MOVE statements. The general rule reference indicates the rule that
prohibits the move or the behavior of a legal move.

SENDING ALPHABETIC ALPHANUMERIC
ITEM EDITED
ALPHANUMERIC

ALPHABETIC YES/3C YES/3a
ALPHANUMERIC YES/3c YES/3a
ALPHANUMERIC

EDITED YES/3c YES/3a
NUMERIC

INTEGER NO/2b YES/3a
NUMERIC

NON-INTEGER NO/2b NO/2c
NUMERIC

EDITED NO/2b YES/3a

NUMERIC
EDITED
NUMERIC

NOQ/2a
YES/3b

NO/3a
YES/3b
YES/3b

NO/2a

Chapter 9

Arithmetic Statements

9.1 Overview

This chapter is concerned with the statements that cause computations to be
performed and the result saved in data items. The ADD, SUBTRACT,
MULTIPLY and DIVIDE statements perform the operations indicated by their
names. The COMPUTE statement causes an arithmetic expression to be evaluated
and the resultant value to be stored in data itemns.

In the next section several common clauses found with the arithmetic statements
will be described. The subsequent sections will describe the five arithmetic
statements.

9.2 Common Terms

In all the arithmetic statements the optional ROUNDED keyword and/or the
optional SIZE ERROR clause may be specified. These features are described in
this section to avoid redundant explanations with the description of each verb.

9.2.1 ROUNDED

In the arithmetic statements any data itermn which is specified to receive a value
(except the REMAINDER identifter in DIVIDE) may be given with the
ROUNDED keyword immediately following the data name, This keyword causes
values to be assigned to these identifiers with the number of decimal places rounded
to the number of decimal places in the data item. In the absence of the keyword, the
value to be assigned is truncated to the number of decimal places in the receiving
data item.

236 Chapter 9

When the tow-order integer positions of the receiving data item are represented
by the character 'P’ in its PICTURE, the rounding or truncation occurs relative to
the rightmost integer position for which storage is allocated.

9.2.2 SIZE ERROR

ON SIZE ERROR imperative-statement

A size error condition exists when the absolute value of a result exceeds the
capacity of a data item to contain the value (after decimal point alignment). Division
by zero always causes this condition. The size error condition applies to final results
only, except for the MULTIPLY and DIVIDE statements, in which cases the
condition applies to intermediate results as well.

When the SIZE ERROR clause is not specified for a statement, results causing
the error are truncated on the left {after decimal point alignment) for assignment to
data items. When the clause is specified, data items for which the condition applies
are left unchanged and the imperative sentence specified in the clause is executed.

Receiving data items, for which no size error condition is activated, receive data
before the imperative statement in the SIZE ERROR clause is executed. Thus, if
there are muitiple receiving values, either specified or resulting from a
CORRESPONDING clause, those data items for which there is no size error
condition will all receive values. Consequently, if the size error condition was
detected for any of the receiving values, then the imperative statement in that clause
is executed.

9.2.3 Composite of Operands

The term "composite of operands” is used to describe the computational size of a
number of numeric operands. The value is calculated as the size of a hypothetical
data item resulting from the super imposition of the operands aligned on this decimal
point. For example, consider the following items:

77 A PIC 999V99
77 B PIC 9999V9
77 C PIC 9V59999

Arithmetic Statements 237

The hypothetical operand would have a picture specification of 9999V99999 and
would require 9 digits.

The ADD, SUBTRACT, MULTIPLY and DIVIDE statements all require that
the composite of operands not exceed 18 digits. Refer to the descriptions of these
staternents for the details of which operands are used in this calculation.

9.2.4 ADD Statement

ADD {identifier } [, {identifter }] ...
{ literal 3 { literal }

TO identifier [ROUNDED] [, identifier [ROUNDED | ...
[; ON SIZE ERROR imperative statement |
ADD { identifier }, { identifier } [, {identifier }] ...
{ literal 1 { literal ¥ {literat]
GIVING identifier [ROUNDED] [identifier [ROUNDED]]...
[; ON SIZE ERROR imperative statement]
ADD { CORRESPONDING } identifier TO identifier [ROUNDED |
{ CORR 1

[; ON SIZE ERROR imperative statement]

This statement calculates the sum of a number of elementary numeric operands
and then stores that sum. The sum is stored in each data item specified by the TO
phrase or by the GIVING phase. The sum is calculated either from all operands (TO
used) or from the operands preceding the GIVING keyword.

When the CORRESPONDING or CORR keyword is specified, the effect is
the same as if all corresponding data items (see CORRESPONDING section) were
specified in appropriate ADD statements. An exception to this effect is the SIZE
ERROR clause which, if specified, is executed only once at the end of the list of

238 Chapter 9

conceptual ADD statements, if a size error condition was detected in any of them
(see SIZE ERROR).

The results assigned to data items may be rounded (see ROUND).

The composite of operands (see COMPOSITE OF OPERANDS) is determined
for all operands used to produce the sum. When the CORRESPONDING or
CORR keyword is given, the composite is determined for each pair of
corresponding items. The composite of operands must not exceed 18 digits.

9.2.5 COMPUTE Statement

COMPUTE identifier [ROUNDED] [, identifier { ROUNDED 1] ...
= arithmetic-expression

[; ON SIZE ERROR imperative statement]

The COMPUTE statement evaluates an arithmetic expression (see
ARITHMETIC EXPRESSIONS) and assigns the resultant value to one or more data
items. These receiving items must be elementary numeric or numeric edited items.
The value assigned to these items may be rounded (see ROUNDED). A size error
condition may cause the execution of the imperative statement given in a SIZE
ERROR clause (see SIZE ERROR).

The expression is calculated only once per COMPUTE statement. The value is
then assigned to each of the data items specified to the left of the assignment
operator (=).

Arithmetic Statements 239

9.2.6 DIVIDE Statement

DIVIDE { identifier } INTOQ identifier [ROUNDED]
{ literal +

[, identifier [ROUNDED] ...
[; ON SIZE ERROR imperative statement]
DIVIDE {identifier } INTO { identifier }
{ literal } {literal 3
GIVING identifier [ROUNDED] [, identifier [ROUNDED]]...
[; ON SIZE ERROR imperative statement]
DIVIDE { identifier }BY <{ identifier }
{ literal 1 { literal ¥
GIVING identifier [ROUNDED | [, identifier [ROUNDED]]...
[; ON SIZE ERROR imperative statement]
DIVIDE < identifier } INTO { identifier }
{ literal } { literal }
GIVING identifier | ROUNDED | REMAINDER identifier
[; ON SIZE ERROR imperative statement |
DIVIDE { identifier }BY { identifier }
{ literal } { literal }
GIVING identifier [ROUNDED] REMAINDER identifier

[ON SIZE ERROR imperative statement]

240 Chapter 9

The DIVIDE statement causes an elementary numeric data item or numeric
literal to be divided into one or more numeric operands to produce one or more
quotients and, optionally, a remainder.

When the INTO clause is specified, the operand following the DIVIDE
keyword is divided into the operand(s) following the INTO keyword. When the BY
keyword is given, the operand following the BY keyword is divided into the operand
following the DIVIDE keyword.

When a list of data items follows the INTO keyword, each of the quotients
formed replaces the respective data items used in the computations. When the
GIVING keyword is present, the quotient is assigned to each of the data items
following that keyword. 1f the REMAINDER keyword is present, the computed
remainder is assigned to the data-itern following that keyword.

All data items to receive quotients may be followed by the ROUNDED
keyword, in which case those items receive rounded values (sece ROUNDED).

Execution of the statement may cause a size error to be detected when assigning
a quotient(s) or remainders. When z size error occurs for the quotient, the data item
specified in the optional REMAINDER clause is unchanged.

The composite of operands (see COMPOSITE OF OPERANDS) is determined
for all data items in the statement which receive a quotient. This value must not
exceed 18 digits.

Arithmetic Statements 241

9.2.7 MULTIPLY Statement

MULTIPLY { identifier } BY { identifier } [ROUNDED]
{ literal 1

[, identifier | ROUNDED] 1. ..
[; ON SIZE ERROR imperative statement |
MULTIPLY { identifier } BY { identifier }
{ literal 1 { literal }
GIVING identifier [ROUNDED]
[. identifier [ROUNDED]] . ..

[; ON SIZE ERROR imperative statement |

The MULTIPLY statement causes a number of numeric operands to be
multiplied together and the resulting product to be assigned to one or more items.
Operands following the MULTIPLY and BY keywords must be numeric; operands
following the GIVING keyword must be numeric or numeric edited. All operands
must be elementary.

When the GIVING clause is specified, the product formed by multiplying the
operands following the MULTIPLY and BY keywords is assigned to each data item
in the list following the GIVING keyword. When the GIVING clause is omitted,
the operand following the MULTIPLY keyword is multiplied by each data item in
the list and each product is assigned to the respective data item in the list.

Each data item receiving a product may receive a rounded value if the data name
is tollowed by the ROUNDED keyword (see ROUNDED).

The composite of operands (see COMPOSITE OF OPERANDS) is determined
using all the receiving data items. This value may not exceed 18 digits.

242 Chapter 9

9.2.8 SUBTRACT Statement

SUBTRACT {identifier } [, { identifier } ...}
{ literal } { literal 1

FROM identifier [ROUNDED] [identifier [ROUNDED |]...
[; ON SIZE ERROR imperative statement |
SUBTRACT { identifier } [, { identifier } ...}
{ literal } {literal }

FROM { identifier }
{ literal }

GIVING identifier [ROUNDED]
[, identifier [ROUNDED |] ...
[; ON SIZE ERROR imperative statement]
SUBTRACT { CORRESPONDING } identifier
{ CORR }
FROM identifier [ROUNDED]

[; ON SIZE ERROR imperative statement |

The SUBTRACT statement subtracts a value or a number of values from a
numbser of values and stores the result in a data item. When the GIVING keyword is
present, the sum of the values following the SUBTRACT keyword are subtracted
from the value following the FROM keyword and the result is placed in each of the
data items following the GIVING keyword. Otherwise, the sum of the values
following the SUBTRACT keyword is subtracted from each of identifiers following
the FROM keyword and that difference is stored in each of the respective
identifiers.

When the CORRESPONDING or CORR keyword is specified, the effect is
the same as if all corresponding (see CORRESPONDING) data items were

Arithmetic Statements 243

specified in SUBTRACT statements. An exception to this effect is the SIZE
ERROR clause which, if specified, is executed only at the end of the conceptual
SUBTRACT statements, provided the size error condition was detected in any of
the (see SIZE ERROR).

The results assigned to data items may be rounded (see ROUND).

The composite of operands (see COMPOSITE OF OPERANDS) is
determined for all operands except those following the GIVING keyword; when
CORRESPONDING or CORR is given, the composite of operands is determined
for each corresponding pair. This value cannot exceed 18 digits.

Chapter 10

Sections and Paragraphs

10.1 Overview

When a program begins execution, the first statement to be executed is the first
statement in the program following the optional DECLARATIVES area. Normally,
the next statement to be executed is the one immediately following the one just
completed. Several statements, however, may cause control to change to some other
place in the programs. These statements, GO, PERFORM and EXIT, are
described in this chapter. The STOP statement (halts or suspends execution of a
program) is also described. The ALTER statement is associated with the GO
statement and so is described. Other statements which cause control to vary from
normal sequential execution include the IF statement and other conditional
statements which are described elsewhere.

10.2 Procedure Names

The PROCEDURE DIVISION is organized either as a group of paragraphs or
as a group of sections containing paragraphs. Every paragraph, except possibly the
first in the PROCEDURE DIVISION or a section, has a name (written in Area A)
preceding it. Every section also has a name.

The names of sections and paragraphs are jointly called procedure names. These
names are important because they are referenced in GO, PERFORM and ALTER
statements to specify how control is to be altered from the normal sequential
execution of statements.

246 Chapter 10

Section names must be unique and must not be keywords. Paragraph names
must be either unique or capable of being uniquely qualified using the name of the
section in which they are found:

paragraph-name { IN } section-name
{OF }

One of the preceding forms is used to qualify a paragraph name.
It is considered good programming practice to use names which accurately

describe the function performed in sections and paragraphs. In this way the program
is more understandable by anybody referring to the source program.

10.3 ALTER Statement

ALTER procedure-name TO [PROCEED TO] procedure-name

[, procedure-name TO [PROCEED TO] procedure-name | ...

The ALTER statement is used to change the procedure to which control may be
transferred using a GO statement. The GO statement must be the only statement in
the paragraph(s) immediately referenced before the TO keyword(s). This GO
statement may not contain a DEPENDING clause. The execution of the ALTER
statement causes any subsequent execution of the GO statement(s) to transfer
control to the procedure (paragraph or section) named following to TO keyword in
the ALTER statement.

WARNING

Many people, including the authors, discourage or prohibit the use of this verb. It is
generally felt that its use tends to decrease the clarity of a program. This is because it
is often unclear where the target of a GO is [ocated, unless the entire source listing is
inspected in detail.

Sections and Paragraphs 247

10.4 EXIT Statement

EXIT

The EXIT statement is provided in order to define a procedure name of a given
point in the program. It must be the only sentence in a paragraph. The statement has
no effect while the program executes.

The statement is often used in a paragraph which is the second paragraph of a

PERFORM-THROUGH verb (see PERFORM). In this way, paragraphs may be
added to or deleted from the group of performed paragraphs.

10.5 GO Statement

GO TO [procedure-name]

GO TO procedure-name [, procedure-name 1 ...

DEPENDING ON identifier

The GO or GOTO statement may be used to transfer control to another part of
the PROCEDURE DIVISION. When the form

GO TO procedure-name

is used (and an ALTER does not apply for the statement), the execution of the
statement causes control to be transferred to the point in the program indicated by
the procedure name.

No procedure names are given with the GO statement, only when the GO
statement is to be used in conjunction with ALTER statements (see ALTER). The
DEPENDING clause is used when one of a number of procedures is to be selected.
In this situation, the value of the identifier following that keyword is used to
determine to which procedures control is transferred. When the value of this
identifier is 1 the first procedure in the list receives control; when it is 2 the second
procedure receives control; and so forth. When the value is not an unsigned positive

248 Chapter 10

integer value or when the value exceeds the number of procedures in the list, control
passes to the next statement according to the normal sequential execution of
statements.

10.6 PERFORM Statement

PERFORM procedure [{ THROUGH } procedure]
{ THRU }

{ {identifier } TIMES]
{ number }
PERFORM procedure [{ THROUGH } procedure]
{ THRU }

[UNTIL condition]

PERFORM procedure [{ THROUGH } procedure]

{ THRU)
VARYING { identifier } FROM { identifier }
{ literal } { index-name }
{ literal }

BY { identifier } UNTIL condition
{ literal }

[AFTER { identifier } FROM {identifier }
{ index-name } {index-name }
{literal ¥

BY {identifier } UNTIL condition
{ literal }

Sections and Paragraphs 249

[AFTER { identifier } FROM { identifier }
{ index-name } {index-name }
{literal }

BY {identifier } UNTIL condition]]
{ literal }

The PERFORM statement is used to transfer control to one or more procedures.
The statement differs from the GO statement in that control implicitly returns to the
point of PERFORM when the execution of the PERFORMed procedures is
complete.

The simplest forms of the PERFORM verb are as follows:

PERFORM paragraph
PERFORM section

The PERFORM verb causes control to pass to the paragraph or section referenced.
When the last statement in that paragraph or section has been executed, control
passes to the statement following the initial PERFORM statement.

When the THROUGH or THRU clause is used
PERFORM procedure THRU procedure

the procedure following the PERFORM keyword is passed control. Control returns
to the statement following the PERFORM verb when the procedure following the
THRU or THROUGH keyword has been executed.

When the TIMES keyword is present, the procedures given in the statement are
executed the number of times indicated by the literal or the value of the elementary
numeric integer data item preceding the TIMES keyword. When the value is a
positive integer, the procedures are executed that number of times and then control
continues to the next statement in the normal sequential manner of execution. When
the value is non-positive, no procedures are PERFORMed by the statement.

The UNTIL clause (without any VARYING clauses) causes the indicated
procedures to be PERFORMed until the associated condition becomes true. The
statement

PERFORM P1 [THRU P2]
UNTIL condition

250 Chapter 10

is equivalent to the following group of statements:

L1.
IF condition GO TO L2.
PERFORM PI1 [THRU P2].
GO TO L1.

L2,

It should be noted that the UNTIL condition is tested before each PERFORM takes
place. Thus, if the condition is initially true, no procedures would be PERFORMed
by the statement.

The YARYING phrase is used in conjunction with the UNTIL clause to give a
data item a sequence of values, one each time the indicated procedures are
PERFORMed

PERFORM P1 [THRU P2]
VARYING D FROM V1 BY V2
UNTIL condition

A statement of the preceding form is equivalent to the following pseudo statements:

set D to V1 value.

L1.
IF condition GO TO L2.
PERFORM P1 {THRU P2].
augment D with V2 value.
GO TO L1.

L2.

One or two AFTER clauses may be given. A statement of the form

PERFORM P1 {THRU P2]
VARYING D21 FROM V11 TO Vi2
UNTIL condition-1
AFTER D2 FROM V21 TO v22
UNTIL condition-2
AFTER D3 FROM V31 TO V32
UNTIL condition-3

is equivalent to the following pseudo statements.

Sections and Paragraphs 251

set D1 to V11 value.
set D2 to V21 value.
set D3 to V31 value.

L.1.
IF condition-1 GO TO L6.
L2.
IF condition-2 GO TO L5.
L3.
IF condition-3 GO TO L4.
PERFORM P1 [THRU P2].
augment D3 with V32 value.
GO TO L3.
L4,
set D3 to V31 value,
augment D2 with V22 value,
GO TO L2.
LS.
set D2 to V21 value.
augment D1 with V12 value.
GO TO L1.
L6.

When an index name occurs in a VARYING, AFTER or FROM phase, values are
placed in the data item in the associated VARYING or AFTER phase according to
the rules of the SET statement (see SET). Otherwise, data items are initialized
according to the rules of the MOVE statement (see MOVE) and augmented
according to the rules of the ADD statement (see ADD).

A PERFORMed procedure or group of PERFORMed procedures may
themselves contain PERFORM statements. These statements must PERFORM
procedures that are completely excluded from procedures initially being actively
PERFORMed or, in the case of THRU or THROUGH, must reference procedures
that are all actively being PERFORMed, excluding the actual procedures

referenced in the first PERFORM-THROUGH statement.

252 Chapter 10

10.7 STOP Statement

STOP { RUN }
{ literal }

The STOP statement is used to halt execution of a COBOL program, completely
or temporarily. When the RUN keyword follows the verb, the execution of the
program is completed. When a literal follows the verb, the literal is displayed and
the Debugger is entered (see DEBUGGER).

Chapter 11

IF Statement

IF condition; { statement L[; ELSE { statement

{ NEXT SENTENCE } { NEXT SENTENCE

11.1 Overview

The execution of an IF statement causes the condition following the IF keyword
to be evaluated, When the condition is true, the statement following the condition is
executed; when the condition is false and the ELSE keyword is present, the
statement following the ELSE is executed. Control normally continues following
the IF statement, regardless of whether the condition was true or false.

The syntactic definition of the IF statement specifies that a statement may be
given following either the condition or the ELSE keyword. A statement may
involve several verbs. Thus,

MOVE Al to B
ADD 2 to C
DISPLAY Q

is 4 statement involving three verbs. It is common to use a statement of this nature
with an IF. It should be noted that the statement does not contain a period ()
character. Because this statement may contain several more elementary statements,
the statement following the condition is be called the frue range of the IF. The
statement following the ELSE keyword is called the false range of the IF.

254 Chapter 11

The NEXT SENTENCE clause may be specified in place of either the
statement following the condition or following the ELSE keyword. The execution
of this clause has no effect. It is useful, however, in permitting the full form of the
IF statement to be coded. This is often necessary in nested IF's, to be discussed
later.

The examples in this chapter will make use of indentation. This is an important
convention used when coding programs. Indentation is designed to increase the
clarity of the program by making obvious the structure of it. It is not required by the
COBOL language nor does it convey any special information to the COROL
processor. The examples could be written, in a less understandable format, without
any indentation.

11.2 Simple IF

IF condition; statement

This simplest form of the IF statement has no ELSE clause. When the condition
is evaluated as true, the true range following the condition is executed and then
control continues following the IF statement; when the condition is false, the true
range following the condition is not executed and control continues following the IF
statement. Thus,

if colour = 14
display 'peach’.

causes the DISPLAY statement to be executed only when the value of "colour” is
14, The true range of the IF is that single statement.

The end of the IF statement and of the true range is determined by the period (.)
character. Several statements may be found in the true range:

if colour = 14
add 1 to peach-count
display "peach”.

In the example, two statements will be executed if "colour” has a value of 14. Note
that the period (.) character is given only after the true range.

IF Statement 255

In order to increase the clarity of the program, it is a common practice to indent
the statements that are to be conditionally executed. Various indentation
conventions can be used; what is important is that a consistent method be used
throughout an entire program. In this way, it is obvious which statements are to be
executed when the condition is true. 1t becomes easy to visually verity that a period
follows only the last statement in the sequence.

11.3 ELSE Clause

IF condition; { statement }[; ELSE { statement

{ NEXT SENTENCE } { NEXT SENTENCEF.

The more general form of an IF statement involves an ELSE clause. In this
case, the execution of the IF causes one of two ranges of statements to be selected
for execution. When the condition is true, the range following the condition is
executed, otherwise, the range following the ELSE is executed. Following the
execution of one of these ranges, control normally continues following the false
range. The IF statement

IF SALARY > 50000.00
DISPLAY 'Executive’
ELSE
DISPLAY 'Worker'.

causes "Executive” to be DISPLAYed when the value of "SALARY” exceeds
50,000, otherwise, "Worker” is DISPLLAYed.

Several statements may form the true or false ranges:

IF SALARY > 50000.00
ADD 1 TO EXEC-COUNT
DISPLAY ’Executive’

ELSE
ADD 1 TO WORKER-COUNT
DISPLAY "Worker”.

Again, it is considered good style to indent both groups of statements. A period is
given only after the false range.

256 Chapter 11

11.4 Nested IF

An IF statement may itself be one of statements in the the true or false range of
an IF. In this case, the IF is said to be nested:

if salary > 50000.00
add 1 to high-priced
if job = "VP’
add 1 to vp-count
else
add | to exec-count
else
add 1 to worker-count.

In the example, an IF is nested inside the true range of the outer IF. The end of the
nested IF statement is determined by the ELSE of the outer IF staterent (the second
ELSE in the example).

An IF statement may also be nested inside the false range of an IF:

if salary > 50000.00
add 1 to executive-count
else
if job = "clerk’
add 1 to clerk-count
else
add 1 to worker-count.

In the example, the period (.) character determines the end of hoth the inner and the
outer TF's,

It becomes particularly important to use a consistent style of indentation with
nested IF's. In this way, the structure of the program is clearly indicated.

The COBOL language permits an IF to be nested only at end of the true or false
range of an IF. This is because of the way the end of an IF statement is determined.
The end is determined by encountering a period (.} character or by encountering an
ELSE keyword for an enclosing IF statement. Consider the following:

IF Statement 257

if satary > 50000
if job = "VP”
display 'VICE-PRESIDENT’
else
display 'EXECUTIVE'
display salary
else
display "WORKER'.

The indentation indicates that "VICE-PRESIDENT” and then the value of "salary”
should be DISPLAYed when the values of "salary” and "job” are 51000 and "VP”
respectively. However, only "VICE-PRESIDENT" would be DISPLAYed. This is

because the statement
display salary

is part of the false range of the nested IF. The desired effect may be obtained by
placing the inner IF in a separate paragraph to be PERFORMed from the place it
was originally nested:

if satary > 50000
perform print-job
display salary

else
display "worker’.

print-job.
if job = "VP”
display "VICE-PRESIDENT”
else
display "EXECUTIVE".

This example accomplishes the effect indicated by the indentation of the original
example.

One use of the NEXT SENTENCE clause is illustrated by the following
(erroneous) example:

if salary > 50000
if job = "VP”
add 1 to vp-count
else
add 1 to worker-count.

258 Chapter 11

The indentation indicates that 1 is to be added to "worker-count” whenever the value
of "salary” does not exceed 50000. However, the ELSE clause is part of the nested
IF, not the outer IF. This sitvation may be remedied as follows:

if salary > 350000
if job = "VP”
add 1 to vp-count
else
next sentence
else
add 1 to worker-count.

The NEXT SENTENCE clause is used to give the nested IF an ELSE clause and so
the original ELSE clause now applies to the outer ELSE.

11.5 Multiple Choice

An IF with an ELSE can be used to select one of two alternatives. By nesting IF
statements, a choice may be made to select one from many alternatives:

if job = "VP’
display 'VICE-PRESIDENT’
else
if job = 'CL/
display 'CLERK’
else
if job = '8C’
display 'SECRETARY’
else
display "WORKER’.

In the example, one of four messages is DISPLAYed, depending upon the value of
M U
'job”.

An alternate method of indentation is often used to emphasize the structure of
those multiple-choice situations:

IF Statement 259

if job = "VP’
display 'VICE-PRESIDENT’
elseif job = 'CL’
display 'CLERK’
else if job = 'SC’
display 'SECRETARY’
else
display 'WORKER'.

In this case, the four choices are shown at the same leve! of indentation. This
emphasizes that one of the four is to be selected.

Chapter 12

Sequential Files

12.1 Introduoction to Files

Various input/output statements are used to control the transmission of data to
and from an executing COBOL program. Data within an executing program is kept
in data items and manipulated using various COBOL statements such as MOVE or
ADD.

Data outside of programs is organized into files. Each file has a system name by
which it is catalogued in the computer system in which it resides. A file consists of a
number of records, each one of which is organized into a number of elementary data
items. WRITE statements are used transmit new records to a file. REWRITE
statements are used to transmit records to replace existing records in a file. READ
statements are used to transmit the data in records to the executing COBOL
program.

When a file is to accessed, it must first be connected to the program using an
OPEN statement. A CLOSE statement is used to undo this connection when the
program has completed accessing the file.

A COBOL identifier, called a filename, is used to identify a given file in a
program. It should be noted that the filename is not the system filename; the
filename is associated with a particular file by using the SELECT statement in the
ENVIRONMENT division or by using the VALUE clause of an FD in the DATA
division.

The records in a file may be accessed either sequentially or randomly. By
sequentially is meant that the records can only be read in the order that they were
originally written to file and that the records can only be written in the order in
which they are to be stored in the file. By randomliy is meant that records can be read
or written in any order; the number of the specific record to be accessed is

262 Chapter 12

established by the value of the data item given in the RELATIVE KEY phrase in a
SELECT statement for the file in question.

Every file to be accessed in a COBOL program must have at least the following
components:

(hH A SELECT statement in the ENVIRONMENT division.
(2) An FD in the DATA DIVISION.

3 An OPEN statement which is executed prior to any other statements which
are executed and cause access to the file.

(4) A CLOSE statement which is executed after all accesses to the file have
been completed.

Because of the precise rules concerning the accessibility of data in the FILE
SECTION, many programmers do not directly access the data in the FILE
SECTION. Instead, records are copied intoc WORKING-STORAGE as they are
read (using the INTO clause of the READ) and copied from WORKING-
STORAGE as they are written (using the FROM clause of the WRITE and
REWRITE statements).

The FILE SECTION defines the memory to contain records read from or
transmitted to files. The record descriptions in each FD describe the memory. Since
more than one type of record can be read or written, a number of record descriptions
may be given in an FD. Unlike data in the WORKING-STORAGE SECTION .,
the data specified by these record descriptions is not always accessible. It is not
accessible, for example, before the file has been OPENed. A READ statement
makes accessible the record which is read. A READ or REWRITE statement
transmits the record which is currently accessible and then that record becomes
unaccessible.

12.2 ENVIRONMENT DIVISION

The ENVIRONMENT DIVISION, in general, is explained in full detail in the
chapter by that name. In this section, only the part of the division applying to
sequential files is discussed. This pertains to the SELECT statement in the FILE-
CONTROL paragraph of the INPUT-OUTPUT section. The syntax permitted for
the SELECT statement is as follows:

Sequential Files 263

SELECT [OPTIONAL] file-name
ASSIGN TO literal
{; ORGANIZATION IS SEQUENTIAL]
[; ACCESS MODE IS SEQUENTIAL]
[; FILE STATUS IS name |.
This restricted form of the SELECT statement applies to sequential files only. The
meaning of the various phrases is described in the chapter about the
ENVIRONMENT DIVISION (see SELECT).
12.3 DATA DIVISION
The DATA DIVISION is completely explained in the chapter by that name.

The description of FD's in that chapter completely applies to sequential files.
Consequently, no other details are provided in this section.

12.4 PROCEDURE DIVISION

12.4.1 CLOSE Statement

CLOSE file-name { {{REEL } [{ WITHNOREWIND }] }
{{UNIT } { FOR REMOVAL oo
{ b
{ WITH {NO REWIND } 3
{ { LOCK } 3

{, file-name ...] ...

The CLOSE statement is used to disconnect a file from a program. It should be
executed when the program has completed execution of all statements which access
that file. Waterloo microCOBOL checks only this syntax for all options shown in
the syntactic description at the start of this section. No actions are performed as a
result of these options, since many systems do not have facilities to support them.

264 Chapter 12

12.4.2 OPEN Statement

OPEN { INPUT } file-name, [, file-name] ...
{OUTPUT}
{1-0 ¥
{ EXTEND }

[{INPUT } file-name, [, file-name] ...] ...
{OUTPUT }
{10 }
{EXTEND }

The OPEN statement is used to connect a file to the COBOL program. It
prepares the file to be accessed using COBOL statements such as READ or
WRITE. It must be executed before the file can be accessed.

Associated with each file name is one of the following OPEN modes:
INPUT The file will only be accessed using the READ statement.

QUTPUT The file will only be accessed with WRITE statements. A new file will
be created to consist of the records transmitted using WRITE
statements. The order of records in this new file is the order in which
they were written. If the file already exists, the file written will replace
the old one.

1-0 The file may only be accessed using READ, or REWRITE statements.

EXTEND The file may only be accessed with WRITE statements. The records
written are added to the end of the file, in the order written.

A file must exist in order to be OPENed for INPUT, J-O or EXTEND. The file
may exist when OPENed for output; the new file created will replace the existing
file.

Once a file has been CLOSEd, it may be OPENed again. Thus, it is possible to
OPEN a file for QUTPUT, create it using WRITE statements, CLOSE the file, to
OPEN ii for INPUT, READ the file, and then the CLOSE it again.

Sequentia] Files 265

12.4.3 READ Statement

READ file-name RECORD [INTO identifier]

[; AT END imperative statement]

The READ statement causes the rext logical record to be made available for
processing by the program. Made available means the next record in the file is now
available to be accessed in the record description(s) supplied with the FD in the
DATA DIVISION for the file. This data is available until the next READ statement
(or a CLOSE statement) is executed for the file. Thete is no record made available
following the OPEN statement for the file or following a READ staternent which
attempts to read past the end of the file.

When the INTO clause is present, the data in the record description for the FI} is
transferred to the record in the INTO clause, according to the rules of the MOVE
statement. Any subscripting or indexing associated with the identifier is performed
after the record has been read and before it is transferred to the data item.

An AT END condition occurs when an attempt is made to read past the end of
the file. The following actions occur in the specified order:

(1) If a FILE STATUS data item has been specified by the SELECT clause in
the ENVIRONMENT DIVISION, then that data item is given the
appropriate value.

(2) If an AT END phrase is specified in the READ statement, control is
transferred to the imperative statement with that phrase. Any USE
procedure specified for this file is not executed.

(3) If no AT END phrase is specified and a USE procedure has been specified,
then that procedure is executed.

4 If neither an AT END phrase nor a USE procedure exist for the file, an
error message will be displayed and the program execution is terminated.

It is an error to attempt to read past the end of a file more than once in a program,
without a CLOSE followed by an OPEN for that file.

266 Chapter 12

12.4.4 REWRITE Statement

REWRITE record-name [FROM identifier |

The REWRITE statement is used to replace a record in an existing file. The
record to be replaced is the one made available by the previous successfully-
executed READ statement for the file. No other intervening input/output operation
is permitted for the file in question. The file must have been OPENed for I-0O.

When the FROM phrase is present, the execution of the REWRITE statement
is equivalent to:

MOVE identifier TO record-name.
REWRITE record-name.

Both the record-name and the identifier must not refer to the same storage area.

The logical record made available by a READ statement is no longer available
to the program once a REWRITE statement is executed for that record.

12.4.5 USE Statement

USE AFTER STANDARD { EXCEPTION PROCEDURE

{ ERROR }
ON { file-name [, file-name] ... ¥
{INPUT t
{ OUTPUT b
{I-0 }
{ EXTEND)

The USE statement specifies procedures to be used when input/output errors
occur, The USE statement must appear in the declaratives section of the
PROCEDURE DIVISION. it must immediately follow a section header and is
followed by a period. The remainder of the section consists of zero or more
procedural paragraphs to be executed when the indicated input/output error occurs.
The USE statement is never executed; it merely defines the conditions calling for the

Sequential Files 267
execution of USE procedures. The keywords ERROR and EXCEPTION are
synonymous and may be used interchangeably.

The USE procedure is invoked for the input/output errors specified following
the optional ON keyword:

FILENAME All input/output errors for the file.

INPUT All input/output errors for files OPENed for INPUT.
OUTPUT All input/output errors for files OPENed for OUTPUT.
I-O All input/output errors for files OPENed for I-O.
EXTEND All input/output errors for files OPENed for EXTEND.

The USE procedure is not executed when the input/output statement causing the
error contains a clause, such as AT END, to handle the condition.

For additional rules concerning declaratives, see the section entitled
DECLARATIVES.

12.4.6 WRITE Statement

WRITE record-name [FROM identifier]

[{BEFORE } ADVANCING { { identifier }{ {LINES }] }]

{ AFTER } { { number } {LINE } }
{ }
{PAGE ¥

The WRITE statement is used to release a record to an QUTPUT or EXTEND
file. To release means that the record is conceptually transmitted to the file. The
record-name is the name of a logical record used in the FD for the file in question.

Immediately after a file is successfully OPENed for OUTPUT, the logical
record(s) in the FD is available to receive data. A MOVE statement, for example,
may be used to move data to the logical record. A WRITE statement causes the
record in the FI to be conceptually transmitted to the file. The data in that record is

268 Chapter 12

no longer available. Any data subsequently moved to a logical record(s) in the FD
will be used to compose the next logical record, if any,

When the FROM phrase is present, the statement is equivalent to the following
statements:

MOVE identifier TO record-name
WRITE record-name

The WRITE statement in the preceding example is to be understood to contain any
ADVANCING phrase that occurred in the original WRITE statement.

The use of the ADVANCING phrase is used to control the vertical spacing of
records in an output file. ¥t must be specified in all WRITE statements for a file or
in none of them. When the BEFORE keyword is used, the record is written and then
the positioning occurs; when the AFTER keyword is used, the positioning occurs
and then the record is written. The positioning can be to the top of a page (PAGE
keyword given) or by a number of lines. The first character in every record written
with the ADVANCING option is reserved for use in vertical positioning, often
called carriage control.

The positioning indicated by the ADVANCING phrase is accomplished in
system-dependent manners (see SYSTEM DEPENDENCIES). Generally speaking,
there are two different situations:

(1) Terminal: The system will attempt to clear the screen when ADVANCING
PAGE is used and will write blank lines for other positioning. The
carriage-control character, at the start of the record, is not displayed upon
the screen.

(2) Carriage-control Files: These files will have an extra character appended
to the front of some or all records. The extra (carriage-control) character is
used by the computer hardware to provide vertical positioning on printed

pages.

When the ADVANCING clause is not specified for a file, the first character in each
record is normally transmitted unchanged to the file in question. An exception to this
rule occurs when microCOBOL can recognize that a file, such as a printer, will
require the first character for positioning. In this case, the following control
characters in the leftmost position of a record have the indicated meaning:

Sequential Files 269

'’ ADVANCE PAGE

'+' ADVANCE ZERO LINES (overprint)
"7 ADVANCE 1 LINE

‘0" ADVANCE 2 LINES

‘' ADVANCE 3 LINES

Any character not specified in the preceding is treated as a space character. The
detection of these special files is system dependent (see SYSTEM
DEPENDENCIES for a description of the files detected in each system).

Chapter 13

Relative Files

13.1 Overview

The concept of files, in general, is introduced in the first section of the chapter
about sequential files. The records in a sequential file may be only read or written
consecutively. Relative files provide the capability to access records in any order.

When records are to be accessed in random or non-sequential order, the position
of a record to be accessed is taken from a special data item. The RELATIVE KEY
phrase of a SELECT statement specifies the data item which contains the current
record pointer for the file. This is a positive integer value specifying the number of
the record to be read or written. The records in the file are numbered consecutively
with the initial record at position one. Thus, to read or write a specific record the
RELATIVE KEY data item should be assigned a number indicating the position of
the record to be accessed.

Relative files can also be accessed sequentiaily in much the same way as is
discussed in the chapter about Sequential Files. The ACCESS clause of the
SELECT statement specifies exactly how the file is to accessed. These files may be
accessed sequentially, relatively, or in combination called dynamic access. When
records are accessed sequentially (sequential or dynamic access), special forms of
the READ and WRITE statements are used to indicate that the RELATIVE KEY
data item is not required.

13.2 ENVIRONMENT DiVISION

The ENVIRONMENT DIVISION, in general, is explained in full detail in the
chapter by that name. In this section, only the part of the division applying to
relative files is discussed. This pertains to the SELECT statement in the FILE-
CONTROL paragraph of the INPUT-OUTPUT section. The syntax permitted for
the SELECT statement is as follows:

272 Chapter 13

SELECT [OPTIONAL] file-name
ASSIGN TO literal
[ORGANIZATION IS { RELATIVE } }
[; ACCESS MODE IS { SEQUENTIAL {,RELATIVE KEY IS name |

{
{ {RANDOM } RELATIVE KEY IS name

{{DYNAMIC }
[; FILE STATUS IS name |].
This restricted form of the SELECT statement applies only to relative files. The

meaning of the various phrases is described in the chapter about the
ENVIRONMENT DIVISION (see SELECT).

13.3 DATA DIVISION
The DATA DIVISION is completely explained in the chapter by that name.

The description of FD's in that chapter completely applies to relative files.
Consequently, no other details are provided in this section.

13.4 PROCEDURE DIVISION

13.4.1 CLOSE Statement

CLOSE filename [WITH LOCK] [, filename [WITH LOCK 1] ...

The CLOSE statement is nsed to disconnect a file from a program. It should be
executed when the program has completed execution of all statements which access
that file. Waterloo microCOBOL checks only this syntax for all options shown in
the syntactic description at the start of this section. No actions are performed as a
result of these options, since many systems do not have facilities to support them.

St St et et

Relative Files 273

13.4.2 OPEN Statement

OPEN {INPUT } file-name, [, file-name] ...
{ OUTPUT }
{LO }

[{INPUT } file-name, [, file-name] ... | ...
{OUTPUT }
(ro

The OPEN statement is used to connect a file to the COBOL program. It
prepares the file to the accessed using COBOL statements such as READ or
WRITE. It must be executed for a file before the file can be accessed.

Associated with each file name is one of the following OPEN modes:
INPUT The file will only be accessed using the READ statement.

OUTPUT The file will only be accessed with WRITE statements. A new file will
be created to consist of the records transmitted using WRITE
statements. The order of records in this new file is the order in which
they were written. If the file already exists, the file written will replace
the old one.

1-0 The file may only be accessed using READ, or REWRITE statements.

A file must exist in order to be OPENed for INPUT or I-Q. The file may exist when
OPENed for output; the new file created will replace the existing file.

Once a file has been CLLOSEd, it may be OPENed again. Thus, it is possible to
OPEN a file for OUTPUT, create it using WRITE statements, CLOSE the file, to
OPEN it for INPUT, READ the file, and then the CLOSE it again.

274 Chapter 13

13.4.3 READ Statement

READ file-name | NEXT RECORD] [INTO identifier |

i; AT END imperative statement |

READ file-name RECORD [INTO identifier]

[: INVALID KEY imperative statement |

The READ statement causes the next logical record to be made available for
processing by the program. By made available means that the next record in the file
is now available to be accessed in the record description(s) supplied with the FD in
the DATA DIVISION for the file. This data is available until the next READ
statement (or a CLOSE statement) is executed for the file. There is no record made
available following the OPEN statement for the file or following a READ statement
which attempts to read past the end of the file.

When the INTO clause is present, the data in the record description for the FD is
transferred to the record in the INTO clause, according to the rules of the MOVE
statement. Any subscripting or indexing associated with the identifier is performed
after the record has been read and before it is moved to the data item.

When the ACCESS is SEQUENTIAL, the records are retrieved sequentially in
order that they are located in the file. The INVALID KEY clause may not be
specified.

An AT END condition occurs when an attempt is made to read past the end of
the file. The following actions occur in the specified order:

(1 If a FILE STATUS data item has been specified by the SELECT clause in
the ENVIRONMENT DIVISION, then that data item is given the
appropriate value.

(2) If an AT END phrase is specified in the READ statement, control is
transferred to the imperative statement with that phrase. Any USE
procedure specified for this file is not executed.

(3) If no AT END phrase is specified and a USE procedure has been specified,
then that procedure is executed.

Relative Files 275

4) If neither an AT END phrase nor a USE procedure exist for the file, an
error message will be displayed and the program execution is terminated.

It is an error to attempt to read past the end of a file more than once in a program,
without a CLOSE followed by an OPEN for that file,

When the ACCESS is RELATIVE neither the NEXT keyword nor the AT
END clause may be specified. The record to be read is located at the position
indicated by the data item named RELATIVE KEY clause in the SELECT
statement for the file. If the file does not contain a record at the indicated position,
then the INVALID KEY condition is detected. The following actions occur in the
indicated order:

(N A value is placed into the FILE STATUS data item, if specified, for the
file, to indicate the INVALID KEY condition.

) If an INVALID KEY clause is specified for the statement, control is
transferred to the imperative statement specified in this clause. Any USE
procedure specified for this file is not executed.

(3 If an INVALID KEY clause is not specified and an appropriate USE
statement exists for the file, then the indicated USE procedure is executed.

(4) If neither an INVALID KEY clause nor an appropriate USE statement

exist, an error message is displayed and the program execution is
terminated.

When the ACCESS is DYNAMIC, the file may be read sequentially or
relatively. A sequential READ statement specifics the NEXT keyword and
optionally the AT END clause. This statement behaves in the manner of a READ
statement for SEQUENTIAL ACCESS described above. A relative READ may
not specify the NEXT keyword nor the AT END clause, but may specify a
INVALID KEY clause. This statement behaves in the same way as the relative
READ statement described above.

276 Chapter 13

13.4.4 REWRITE Statement

REWRITE record-name [FROM identifier |

{; INVALID KEY imperative statement]

The REWRITE statement is used to replace a record in an existing file. When
the ACCESS is SEQUENTIAL, the record to be replaced is the one made available
by the previous successfully executed READ statement for the file. No other
intervening input/output operation may have been executed for the file in question.
The file must have been OPENed for I-O. When the ACCESS is either
RELATIVE or DYNAMIC, the record to be replaced is determined by the value of
the data item given in.the RELATIVE KEY clause for the file. When the file does
not contain such a record to be updated, the INVALID KEY condition is detected
and processed (the action to be performed is described in the section about the
READ statement). The file must be OPENed for 1-O.

When the FROM phrase is present, the execution of the REWRITE statement
is equivalent to:

MOVE identifier TO record-name.
REWRITE record-name,

Both the record-name and the identifier must not refer to the same storage area.

The logical record made available by a READ statement is no longer available
to the program once a REWRITE statement is executed for that record.

Relative Files 277

13.4.5 USE Statement

USE AFTER STANDARD { EXCEPTION } PROCEDURE
{ ERROR }

ON { file-name [, file-name | ...
{ INPUT
{ OUTPUT
{10

e

The USE statement specifies procedures to be used when input/output errors
arise. A USE statement must appear in the declaratives section of the
PROCEDURE DIVISION. It must immediately follow a section header and is
followed by a period. The remainder of the section consists of zero or more
procedural paragraphs to be executed when the indicated input/output error occurs.
The USE statement is never executed; it merely defines the conditions calling for the
execution of USE procedures. The keywords ERROR and EXCEPTION are
synonymous and may be used interchangeably.

The USE procedure is invoked for the input/output errors specified following
the optional ON keyword:

FILENAME All inputfoutput errors for the file.

INPUT All input/output errors for files OPENed for INPUT.

OUTPUT All input/output errors for files OPENed for OUTPUT.

1-0 All input/output errors for files OPENed for I-O.

The USE procedure is not executed when the input/output statement causing an
error contains a clause, such as AT END or INVALID KEY, to handle the

condition.

For additional rules concerning declaratives, see the section entitled
DECLARATIVES.

278 Chapter 13

13.4.6 WRITE Statement

WRITE record-name [FROM identifier |

[{BEFORE } ADVANCING { { identifir } [{LINES }] }
{ AFTER } { { number ¥y {LINE } }

{ b

{PAGE ¥

WRITE record-name [FROM identifier |

[; INVALID KEY imperative statement]

The WRITE statement is used to release a record to an OUTPUT or EXTEND
file. To release means that the record is conceptually transmitted to the file. The
record-name is the name of a logical record used in the FI for the file in question.

Immediately after a file is successfully OPENed for OUTPUT, the logical
record(s) in the FI) is available to receive data. A MOVE statement, for example,
may be used to move data to the logical record. A WRITE statement causes the
record in the FD to be conceptually transmitted to the file. The data in that record is
no longer available. Any data subsequently moved to a logical record(s) in the FD
will be used to compose the next logical record, if any.

When the FROM phrase is present, the statement is equivalent to the following
statements.

MOVE identifier TO record-name
WRITE record-name

when the ACCESS is SEQUENTIAL the record is written to the next position in
the file. The file must be OPEN with for OUTPUT. Otherwise, the file must be
OPENed for I-0. The position to which the record is written is determined by the
value of the data item given in the RELATIVE KEY phrase of the SELECT
statement. An INVALID KEY condition is detected when either

n the record already exists for the file; or
(2) an attempt is made to write a record beyond the boundaries established for
the file.

Relative Files 279

The actions performed when this condition is detected are described in the section
about the READ statement.

Chapter 14

"Tables

14.1 Overview

In many computer applications it is desirable to define rables of data. Each
element in the table has the same data description. In COBOL, this may be
accomplished with the OCCURS clanse:

01 cost-table.
05 cost pic 999V99 occurs 100 times.

These statements illustrate how to define a table “cost” which has 100 numeric
elements, each with five digits. A group item may also be repeated:

Ol part-information.
03 part occurs 500 times.
05 part-number pic 9(10).
05 cost pic 999V99.
05 price pic 999V99.

This example iilustrates how to specify a table "part” of 500 elements. Each element

consists of three items named “part-number”, "cost’ and “price”.

Individual elements in a table are referenced using subscripts:

cost{10)
cost(i)

The preceding illustration shows two examples of subscripting. The first example
shows how the tenth element of "cost” is referenced. The second reference uses the
value of "i" to determine which element to reference. If *i” has a value of 17, the
17-th element would be referenced.

282 Chapter 14

Subscripts are written enclosed by a pair of parentheses. Each subscript is
specified as a data item (not subscripted) or a numeric literal.

A subscripted data item can be used in most places that an item without
subscripts might be used:

move cost{i) to current-cost.
add cost(i) cost(j} giving price
add sales-tax cost(}) giving bill(k)

The preceding examples are intended to give the "flavour” of how subscripted items
might be used.

Items with a table may also be repeated with the OCCURS clause:

01 sales-data.
03 region occurs 10 times
05 salesman occurs 5 times.
10 salestotal pic 9(8)V99.
10 salescount pic 9(5).

The preceding example shows a table "region’ of 10 elements. Each element of
"region” is itself a table of 5 "salesman”. Each "salesman” element consists of two
items "salestotal” and "salescount”. In this case, two subscripts are required to
reference the elementary items;

salestotal(i, j)
salestotal in salesman(i, j)
salestotal in salesman in region(i, j)

The preceding examples illustrate three equivalent references to a "salestotal” data
item for the j-th "salesman” in the i-th "region”. Up to three levels of tables may be
defined. Thus, it is illegal to use a OCCURS clause for a data item which is
contained in three group items which all contain an OCCURS clause. A space
character should follow each comma (,) character when more than one subscript is

given for a data name.
The other features of COBOL table handling are:

nH the ability to specify tables whose size varies (QCCURS DEPENDING);
and

Tables 283
(2) an alternative (INDEXING) to subscripting as a means of referencing
elements in tables.

These features are described in the detailed portions of this chapter.

14.2 OCCURS

OCCURS integer [TO integer] TIMES
[DEPENDING ON identifier]

[INDEXED BY index-name [, index-name | ...]

The OCCURS clause is used to declare a number of repeated elements of the
same type. The simplest form of the clause

OCCURS integer TIMES

specifies that element is to be repeated the indicated number of times. An example
of this format of the clause is given in the preceding section.

A second form of the clause may be used when the number of elements in the
table is variable:

OCCURS integer TO integer TIMES
DEPENDING ON data-name

In this case, the number of elements in the table is determined by the value of the
data item given following the DEPENDING keyword. The positive integer value of
this data item must be in the range indicated by the positive integers following the
OCCURS keyword. The following notes apply to this format of the OCCURS

clause;

(N Storage is always reserved for the maximum number of elements; the data
item indicates the number of occurances of the items.

(2) No data may follow a variable-sized table in a record. Except for

subordinate items, the data item containing an QCCURS DEPENDING
clause must be the last data item in a record.

284 Chapter 14

3 This format of the OQCCURS clause cannot be specified if the data item to
which it applies is subordinate to a data item containing an QCCURS
clause.

(4 The data name following the DEPENDING keyword cannot be located in
the table being specified by the OCCURS clause.

(5 When a group item, having subordinate to it a data item with an OCCURS
DEPENDING clause, is referenced, only that part of the table indicated by
the DEPENDING data itern will be used in the operation. Thus, variable-
sized records can be read or written since only the defined part of the table
is transmitted.

The Waterloo microCOBOL Interpreter will treat as an error any attempt to
reference an element of a table that is beyond the bounds of the table.

The following rules apply to the QCCURS clause in general:

(1) The clause may not be specified for data items with level numbers 01, 66,
77 or 88.
{2) The OCCURS clause may also specify one or more index names. The use

of these items is discussed in the following section.

14.3 Indexing

Indexing may be used as an alternative to subscripting in order the reference
elements in a table. Subscripts are integer values, presented as a numeric literal or a
data item. Index values are contained in either index-names (specified by
INDEXED phrase of OCCURS clause) or in index data items (data items with a
USAGE IS INDEX clause). The normal arithmetic calculations of COBOL are used
to assign integer values to data items used a subscripts. Index values are assigned to
index-names or index data items using the SET or PERFORM statements.

Indexing is intended to provide an efficient mechanism to access elements in a
table. The index values are "hidden” from the COBOL programmer; they may be
implemented in whatever manner is efficient for the hardware on which the COBOL
program executes.

Index data items are used only to store index values. Indexing is accomplished
only with index names and/or with numeric literals. Consider the following COBOL
statements:

Tables 285

02 COST OCCURS 100 TIMES
INDEXED BY COST-INDEX
PICTURE 9(8)V99.

SET COST-INDEX TO 47.

MOVE 49.34 TO COST (COST-INDEX).

The SET statement causes the appropriate index value to reference the 47-th item of
"COST" to be assigned to the index-name "COST-INDEX”. The next statement
illustrates how "COST" can be indexed using this index name. The MOVE
statement would cause the value 49,34 to be assigned to the 47-th item of "COST".

The following terms may be used as an index:

index-name
index-name + literal
index-name - literal
literal

where the literal is a positive numeric literal. As with subscripts, up to three indices
may be required depending upon the number of tables to which a data item is
subordinate. The general form of indexing is:

data-name (index, {, index [, index]] }

The next section describes the SET statement which may be used place values in
index names or index data items.

286 Chapter 14

14.4 SET Statement

SET { identifier [, { identifier F1...3TO { identifier }
{ index-name { index-name } { index-name }
{ number 1

SET index-name [, index-name | ... { UP BY

} { identifier }
{DOWNBY } { number }

The SET statement is used to assign values to index-names or to index-data
items. It may also be used to assign an integer value, representing the number of the
element in the table being referenced by a index name to a data jtem.

When the TO clause is present, the SET statement is used to assign a value
representing a position in a table. There are four possibilities for the item following
the TO keyword:

(1} elementary data item which is an integer: the value of the data item
represents the position in a table.

(2) elementary data item whose USAGE is INDEX: the value of the data item
indicates a position in any table.

(3> index name: the value of the index name represents a position in the table
which defined that index name.

4 numeric literal: the value of the literal is the table position.

The value representing this position is assigned to cach of the items following the
SET keyword. There are three possibilities for each of these items:

(H integer data item: this item may receive only an integer representing the
position indicated by an index name.

(2) index name: this item may receive a value representing a position in the
table for which it is defined, from any of the possibilities following the TO
keyword.

Tables 287

3) index data item: this item may receive only a value representing a position
in any table from either another index data item or from an index name.

Only the possibilities outlined above are permitted.

When the UP BY or DOWN BY clause is used, the values of index names
following the SET keyword are adjusted relatively by a number of positions in the
table for which they are each defined. The number of positions to be adjusted is
given by the value of the integer Iiteral or of the elementary integer data item:

SET COST-INDEX UP BY 2

The example shows how an index data item can be adjusted two onward in a table.
Thus, if "COST-INDEX" indicated the 47-th position in the table before the SET
statement was executed, it would indicate the 49-th position after execution of the
statement.

Chapter 15

String Manipulation

15.1 Overview
Three verbs are provided to manipulate data as strings:

INSPECT provides the capability to count and/or replace occurrances of
characters in a data item.

STRING provides the capability to compose part or all of a data item from a
number of strings.

UNSTRING provides the capability to extract the contents of parts of a data item
and assign these parts to other data items.

The INSPECT and UNSTRING verbs are often useful for scanning data which is
free-format and/or variable sized. Any COBOL data item may be used as a string.
The data items are viewed as sequences of characters to be manipulated using the
string verbs. The STRING verb is often useful for constructing output which is not
aligned upon field boundaries.

290 Chapter 15

15.2 INSPECT Statement

INSPECT identifier TALLYING

{sidentifiertFOR {, { { ALL } { identifier } }
{ { {LEADING }{ literal 1} }
{ { CHARACTERS }

[{ BEFORE } INITIAL {identifier } 1} ...} ...
{ AFTER } { literal 1

INSPECT identifier REPLACING

{CHARACTERSBY { identifier }

{ { literal }

{

{{,{ALL } {, identifier } BY { identifier }
{{ {FIRST ¥ { literal + { literal }

{{ {LEADING }

[{ BEFORE } INITIAL {identifier }1} ...} ...}
{ AFTER } { litersl }

INSPECT identifier TALLYING

{,identifier FOR

3

{, { { ALL } { identifier } }

{ { {LEADING } { literal 1y

{ { CHARACTERS }

[{ BEFORE } INITIAL {identifier }]} ...} ..
{ AFTER } { literal 3

String Manipulation 291
REPLACING
{CHARACTERSBY { identifier }
{ { literal }
{
{{.{ALL } {, identifier } BY { identifier }
{{ {LEADING } { literal 1 { literal }
{{ {FIRST)

[{ BEFORE } INITIAL {identifier }]} ...} ...}
{ AFTER } { literal 1

The INSPECT statement provides the capability to count and/or replace
occurrances of groups of characters in a data item. The TALLYING clause
specifies the character groups to be counted, the conditions under which they are
counted, and the data item to contain the count. The REPLACING clanse specifies
the character groups to be replaced, the replacement values, and the conditions
under which replacement takes place. When both clauses are present the statement is
treated as if it were two INSPECT statements, the first with an identical
TALLYING clause and the second with an identical REPLACING clause.

Both the TALLYING and REPLACING clauses specify a number of
character-group occurrances for which to search. The comparison cycle proceeds as
follows:

(N The comparison starts with the first character in the data item following the
INSPECT keyword.

(2) The character groups are processed, in order specified in the TALLYING
or REPLACING clause, searching for the first one to match the data item
starting with the current character position.

(a) If no match is found, the comparison position is advanced by
one,

(b) If a match is found, a TALLYING or REPLACING operation
is performed and the comparison position is advanced by the
size of the matched itemn.

3) The preceding step is repeated provided the entire data item has not been
inspected. Otherwise, the execution of the statement is completed.

292 Chapter 15

Thus, the comparison cycle proceeds a character at a time until a match is found.
The comparison resumes, {ollowing a match, at a position adjusted onward by the
size of the item matched.

Each of the TALLYING or REPLACING phrases may contain a BEFORE or
AFTER keyword to restrict the range over which the comparison cycle actively
considers the phrase. When the BEFORE keyword is given, the phrase is actively
considered only up to the character immediately preceding the character string given
as a literal or data item following that keyword. When the AFTER keyword is
given, the phrase is actively considered only following the last character of the
character string given as a literal or data item following that keyword. If neither
phrase is specified, the phrase is actively considered throughout the inspected data
item.

The character string to be matched by the comparison cycle may be specified in
a number of ways:

(D CHARACTERS : this is a one-character item which matches any character
in the data item being inspected.

(2) ALL data-name or literal ; the character string to be matched is the value of
the literal or data item.

3) LEADING data-name or literal : the character string to be matched is the
value of the literal or data item ; the match is valid only at the first position
for which the clause is to be actively considered, when a maich occurs,
each of the contiguous occurances of the matched string in the data item is
counted/replaced.

4 FIRST data item or literal : the character string to be matched is the value
of literal or data item; the clause is no longer actively considered after it has
been successfully matched.

String Manipulation 293

15.3 STRING Statement

STRING { identifier } [, { identifier }]. ..
{ literal L { literal I

DELIMITEDBY { identifier }
{ literal %

{ {identifier } [, { identifier }]. ..
{ literat ¥ {literal }

DELIMITEDBY { identifier } 1. . .
{ literal }

INTO identifier [WITH POINTER identifier]

[; ON OVERFLOW imperative statement |

The STRING statement is used to place one or more “small” strings of
characters into a "large” data item. The placement can start (POINTER phrase)
anywhere in the "large” string. For each of the "small” strings, a delimiting character
string may be given to specify only the portion of the string up to the delimiter are to
be placed into the “large” string.

The data item following the INTO keyword is the "large” string into which the
"small” strings are placed. The placement starts at the leftmost character of the data
itemn when the POINTER phrase is not specified. When the POINTER phrase is
specified, the data item following that keyword must contain a positive integer value
used as the offset (one represents the leftmost position of the data item) at which the
placement will start. This data item is incremented by one each time a character is
placed into the receiving data item. It may be noted that multiple STRING
statements, using the POINTER data item, may be used to construct single "large”
data item. The POINTER data item will contain the offset used in the next
STRING statement to place its characters immediately following those placed by
the preceding STRING statement.

Preceding the INTO keyword are given a number of sequences of data items or
literals, each followed by a DELIMITED phrase. Each of the data items or literals
are considered in the order they are given in the STRING statement, the portion of
these "small” strings placed into the "large” string depends upon the first
DELIMITED phrase which follows the character string:

294 Chapter 15
)] SIZE: the entire character string is placed in the "large” character string.
(2) literal or data item: only the portion of the "small” character string up to, but

not including, the value of the delimiting literal or data item is placed in the
"large” character string.

The placement of characters into the "large” character string proceeds a character at a
time. The process is completed when either

(¢))] the "small” character strings have all been moved to the “large” string; or

(2) the value of the POINTER data item is non-positive or large than the size
of the "large” string.

In the latter case, the imperative statement associated with the OVERFLOW clause
will be executed, if this clause is specified.

String Manipulation

15.4 UNSTRING Statement

295

UNSTRING identifier

[DELIMITED BY [ALL | { identifier }
{ literal ¥

[OR[ALL] { identifier }]...]

{ literal t
INTOidentifier
[, DELIMITER IN identifier |
[, COUNT IN identifier]
[, identifier
[, DELIMITER IN identifier |
[, COUNT IN identifier }] ...
| WITH POINTER identifier]

{ TALLYING IN identifier |

[; ON OVERFLOW imperative statement]

The UNSTRING verb may be used to create "small” strings from a "large”
string. The "large” string is given by the data item immediately following the
UNSTRING keyword. The UNSTRING process may start anywhere (POSITION
phrase) in the "large” string. The number of "small” strings created may be counted
using the TALLYING keyword. Each "small” string (named following an INTO
keyword) is created from characters in the "large” string, starting at the current
position and continuing to either the end of the string or to the point immediately
preceding the a delimiting character string (specified in a DELYMITING phrase).
For each such receiving string, the specific delimiter encountered may be saved
(DELIMITER IN) as may be the number of characters to be moved to the receiving
string (COUNT IN) The current position is advanced foliowing each movement to
the next position to the right of the delimiting character string in the "large” string.

296 Chapter 15

When the POINTER keyword is not given, the "large” string is processed
starting at the leftmost character of the string. When the keyword is present, the
value of the data item following the keyword is used as an offset (one represents the
leftmost position), in order to establish the point at which processing starts. At the
completion of the statement, the POINTER data item will contain the offset of the
next unexamined character in the "large” string. Thus, another UNSTRING
statement may then be executed with this POINTER wvalue to continue the
UNSTRINGing process at the point completed by the initial UNSTRING
statement.

The DELIMITED BY phrase is used to give one or more character sequences to
be used to delimit the characters to be moved to the current "small” data item. When
the ALL keyword is present, multiple occurrances of the delimiter value {given by
the data item or literal following the keyword) are treated as if the value occurred
once. Multiple delimiters may be given by separating the specifications with the OR
keyword.

When the TALLYING keyword is present, the value one is added to the data
item specified following the keyword, each time a "small” string has data moved to
it, In this way, a count of the number of UNSTRING operations can be maintained,
The UNSTRING statement does not initialize this data item in any way.

When the OVERFLOW clause is present, the imperative statement given in
that clause is executed under the following conditions:

(n the data item given following the POINTER keyword is non-positive or
greater than the size of the "large” character string; or

(2) all the "small” items have been processed and there still exist unexamined
characters in the "large” string.

String Manipulation 297

15.5 Formatting Example

In order to illustrate some of the features of string manipulation, a sample
program has been included in this section. The program reads a file (unformatted
text) of B80-character records and produces another file (formatted text) of
80-character records. An input record is composed of zero or more words separated
from one another by one or more space characters.

The program scans words and adds them to an output line. When the addition of
a word would exceed the capacity of a line, that line is written and the word is added
to the start of the next line. Thus, the program may be considered to be a primitive
text formatting program.

E

word/line problem

*
identification division.
program-id. WORDLINE.
environment division.
configuration section.
source-computer. IBM-4331.
object-computer. IBM-4331.

input-output section.

file-control.
select optional card-file
assign to 'unfmt’
file status is card-status.
select line-file
assign to 'fmted’.

data division.
file section.
fd card-file
label records are standard.

01 card-record.
02 filler pic x(80).

298

fd

01

line-file

label records are standard.
line-record.

02 filler pic x(80).

working-storage section.

77

77
77
T
77

77
77

77
77

card-status pic xx.
card-ptr pic 99.
line-ptr pic 99.
word-size pic 99.
word-count pic 99.
got-word piC XXXX.
card-data pic x(80),
line-data pic x(80).
word-data pic x(20).

procedure division,

open input card-file,
perform init-line.

move ‘00’ to card-status
perform read-card.
perform process-card

until card-status not equal ‘00’ .

perform fini-line.
close card-file.
stop run.

read-card.

read card-file into card-data
at end.
display card-data.

process-card.

move 1 to card-ptr.
perform get-word.
perform process-word

until got-word not equal "true’.

perform read-card.

Chapter 15

String Manipulation

get-word.
move zero to word-count.
move spaces to word-data.
unstring card-data
delimited by all space
into word-data
count in word-size
with pointer card-ptr
tallying word-count.
if word-count greater than zero
move 'true’ to got-word
add 1 to word-size
else
move 'nope’ to got-word.
display ‘word:' word-data.

process-word.

if word-size + line-ptr greater than 81
perform write-line
perform new-line.

string
word-data delimited by space
space delimited by size
into line-data
with pointer line-ptr.

perform get-word.

init-line.
open output line-file.
perform new-line.

new-line.
maove | to line-ptr.
move spaces to line-data,

fini-line.
perform write-line.
close line-file.

write-line.
write line-record from line-data.
display line-data.

299

Chapter 16

Interactive Debugger

16.1 Overview

The interactive debugger is an integral part of the microCOBOL interpreter
system. It is designed to be used to monitor the execution of a program. The
facilities provided include the capability to execute COBOL statements
immediately, to execute statements in the program one at a time and to continue or
terminate execution. The debugger is entered when an error occurs during the
execution of a program, when the BREAK key (or an equivalent key) is depressed,
or when an ENTER DEBUGGING statement is executed.

It should be noted that the microCOBOL interpreter will check the syntax of the
entire program before the actual execution of the program is commenced. Any
syntax errors detected at this point do not cause the debugger to be entered. The
debugger is entered only after the actual execution of the program has started.

When the debugger is entered, a number of messages are displayed at the
terminal. These messages show the sections or paragraphs which are being actively
performed at the time of the error. In addition, the statement in error is displayed,
with an indication of the position in the statement at which the error was detected. A
full English-text error message is also displayed.

Debugging commands are entered as single letters, optionally followed by extra
information. The following sections describe these commands.

16.2 Continue (¢) Command

The continue command causes the microCOBOL interpreter to resume
execution of the COBOL program starting with the current statement. This
command is typically used following an ENTER DEBUGGING statement or after
the user has replaced a data value which caused the error to be detected.

302 Chapter 16

The statement at which execution resumes is the one following the last one
executed, unless the debugger was entered because of an error. In the latter case,
execution resumes with the statement that caused the error.

16.3 Execute (¢) Command

€ sentence

The Execute command causes a COBQL sentence to be executed, as if the
sentence were inserted into the program (followed by an ENTER DEBUGGING
statement) at the point in the program at which the debugger was entered.

The debugger is normally re-entered, in the same state as existed before the
senteitice was executed, after successful execution of the sentence. An exception to
this rule is the successful execution of a GO TO statement. In this situation the
debugger is terminated and execution confinues normally at the target statement.

When an error occurs while executing the sentence, the debugper is not entered
recursively, It is re-entered with same state as existed before the sentence was began
execution with the Execute command. Thus, the suspended statement is the one at
which the debugger was originally invoked.

The Execute statement has many powerful uses when debugging programs. The
contents of data items may be inspected by executing a DISPLAY statement:

¢ display myvar

The preceding example causes the value of the data item "myvar” to be displayed
upon the screen. A section or paragraph may be executed by executing a
PERFORM statement. Values may be placed into data items by executing MOVE
statements:

e move 79.34 to amount.

The preceding example illustrates how the value 79.34 may be placed in the data
item "amount”.

Sometimes an error may be temporarily corrected by executing one or more
statements. For example, an atternpt to use an undefined value might be corrected by
executing a MOVE statement to place an appropriate value in the data item. It

Interactive Debugger 303

would then be possible to use the Continue (¢) command to resume execution of the
program. In other cases, the debugger should be terminated with the Quit (q)
command.

16.4 Quit (q) Command

The Quit command causes the execution of the program to terminate and the
editing subsystem to be re-entered.

16.5 Step (s) Command

The Step command causes the program to execute the single statement at which
the debugger has suspended execution. Depressing the RETURN key another time
causes the next statement to execute. In some implementations, keeping the
RETURN key depressed causes the program to execute with each line to be executed
displayed immediately before it is executed. Thus, the flow of control can be
precisely viewed.

16.6 Where-am-I (w) Command

The Where-am-1 command causes the messages displayed, when the debugger
was initially entered, to be displayed again on the terminal. The command may be
used to remind a user where the program is suspended and of the error that caused
the debugger to be entered.

16.7 ENTER DEBUGGING

ENTER DEBUGGING ENVIRONMENT

The ENTER DEBUGGING statement is used to enter the debugging at points
specified by the programmer, This statement is an extension to standard COBOL is
intended to be used only when debugging programs using the microCOBOL
interpreter.

Chapter 17

CALL Statement

CALL { identifier } USING identifier
{ literal }

[, {identifier }7]...
{ literal }

The CALL statement, as implemented, is an extension to COBOL. It is intended
to be used only to invoke machine-language subroutines. Waterloo microCOBOL
provides no support for the Inter-Program Communication module described in the
COBOL language.

The integer data item or literal following the CALL keyword is used as the
address of the subroutine to be invoked. The integer data item following the USING
keyword contains a return value, if any, from that subroutine. The remaining data
items or literals are passed to the invoked subroutine as parameters.

The method by which parameters and return values are communicated with the
called subroutine is dependent upon the computer system on which the COBOL
program executes (see SYSTEM DEPENDENCIES). In general, the convention
used is compatible with that used by the WSL (Waterloo Systems Language)
programming language.

Chapter 18

System Dependencies:

18.1 Overview

System dependencies arise because the hardware and controlling programs differ
from computer system to computer system. A COBOL processor will, in general,
buffer the user from many of these dependencies. In some cases, however, it is
better that a programmer be aware of these dependencies in order that a program is
able to execute on various systems.

System dependencies are most often encountered in the following areas:

(n file system

{2) collating sequence
(3) hardware constraints of peripherals
{4) calling assembiy-langnage subroutines

These issues are discussed in cach of the system dependent sections. As well, a
section on portability is included to act as a guide for those who wish to execute
programs on multiple computing systems.

308 Chapter 18

18.2 Portability
Essentialty, portability is the ability to move a program from one computing
environment to another. The amount of effort this entails is a measure of the degree

of portability of the program in question. A number of techniques can be used to
increase the portability of a program.

18.2.1 File Names

The file naming conventions differ from system to system. However, most
systems support short file names (say 6 characters) composed of uppercase letters.

18.2.2 Use of Files

Files should be used in the most straight-forward way possible. Technigues to be
avoided include:

(D creating a file with SEQUENTIAL organization and then processing it
with RELATIVE organization.

(2) extending the size of a file with RELATIVE organization.
3 creating a RELATIVE file with RANDOM access.
These techniques work on many systems, but not all. It is often expensive to
reprogram an application which uses one or more of these capabilities.
18.2.3 Code Set

Waterloo microCOBOL supports only the native (hardware) implementation of
the collating sequence. There are two principal code sets in popular use; EBCDIC
(larger IBM computers) and ASCIH (most other computers). Since characters are

arranged differently in these code sets, writing programs to depend upon a specific
ordering should be avoided.

System Dependencies: 309

18.3 Commodore SuperPET

This section outlines the system dependencies for the Commodore SuperPET.
More detail is found in the System Overview Manual for that computer.

18.3.1 Code Set

The Commaodore SuperPET uses the ASCII collating sequence.

18.3.2 Date Support

In order that the ACCEPT FROM DATE verb produce the correct result, the
current date (see DATE command in EDITOR description) should be set as
"YYMMDD" where "YY" is the last two digits of the year, "MM" is the number of
the month, and "DD” is number of the day. Thus, September 25, 1983 is entered as
"830925".

18.3.3 Files

Files are completely described in the System Overview manual. This section
deals with the aspects that pertain directly to microCOBOL.. There are two formats
of files which may be stored on Commodore 2040 or 8050 diskettes, "seq” and "rel”.
These files correspond, roughly, to the COBOL sequential and relative
organizations.

A file name, on a diskette system, is given in the format:

(type:size)device:namel, {seq }1

{rel }

where "name” is given as up to 16 characters, including special characters and
spaces. If omitted, "seq” is assumed.

Because "seq” files may be processed only in a sequential manner, they should
be used only with ORGANIZATION IS SEQUENTIAL. When
ORGANIZATION IS RELATIVE, "rel” files must be used since only these files
permit random access.

310 Chapter 18

There are three types of files which may be stored in either of the two formats:

text A text file consists of variable-sized records, containing only
"printable” characters. This file type is chosen by default when the type
is not mentioned.

variable A variable file consists of variable-sized records which may contain
arbitrary characters.

fixed A fixed file consists of fixed-sized records which may contain arbitrary
characters.

Fixed files should be used when all records in the file have the same size; otherwise,
variable or text files should be used. Text files should not be used to store files in
which there are index data items or signed numeric values in which the SIGN IS
SEPARATE is not given.

The size is the maximum size, in characters, of a record in the file. For fixed
files, this size is the size of all records.

The file system with the SuperPET does not store file type or size information.
Consequently, each time a file is used, the type, size and format specifications
should be given as part of the file name. The safest convention is to use the identical
file specification each time the file is mentioned.

18.3.4 Listing Files

When the ADVANCING keyword is used with a WRITE statement, it must be
used for all WRITE statements for that file. Record descriptions should reserve an
extra character at the start of each record for carriage-control information. This
character is filled in automatically by microCOBOL.,

When the ADVANCING keyword is not used for a file and that file is
recognizable as a listing file, the first character in each record written is assumed to
be a character used for vertical positioning. The only such file recognized on the
SuperPET is the file "printer”.

The control characters '1’, '0’, '+/, ’-', and ' ' are translated to ASCIH form-
feed, line-feed and carriage-return characters, or combinations of characters,
automatically by microCOBOL. Where large numbers of lines are skipped, blank
records may be written to the file to ensure proper vertical spacing.

System Dependencies: 311

18.3.5 Call Interface

The execution of the CALL statement causes an assembly-language subroutine
to be invoked. The parameters, if any, given in the CALL statement are passed to
the invoked routine as follows:

integer An integer data item or literal is passed as a two-byte binary value.

other The data item or literal is copied to a temporary location and a byte with
hexadecimal zeroes is appended to the end of the copied value. The address
of the temporary copy is passed to the assembly-language routine.

All parameters are passed upon the stack pointed at by the SP register. The address
to which the assembly-language routine should return is pushed on the stack
following the parameters, if any. The address to which control is passed is obtained
by taking the integer value given following the CALL keyword and treating that
value as an address.

The assembly-language subroutine should return to the address pushed at the top
of the SP stack. When that return takes place, that address should have been nopped
from the stack. The parameters should still reside upon the stack. The contents of the
hardware D register are used as the return value. This value is placed in the data
item, if present, given following the USING keyword.

Consider the following example:

77 ADDR PIC 99999.
77 INT-VAL PIC 9.
77 CHR-VAL PIC X(5).
77 RET-VAL PIC 9(5).

MOVE 27 TO INT-VAL.

MOVE "ABCDE" TO CHR-VAL.

MOVE 21346 to ADDR.

CALL ADDR USING RET-VAL, INT-VAL, CHR-VAL.
DISPLAY RET-VAL.

The execution of the CALL statement will cause a temporary copy of "CHR-VAL”
to be placed in memory (say at location 19437). A zeroed byte is appended
following the five characters "ABCDEF” at this location. The contents of the SP
stack when the routine at location 21346 receives control are as follows, (all entries
are two-byte values):

312 Chapter 18
{top) 16457 (return address)
27 (value of INT-VAL)
(bottom) 19437 (address of temporary string)

When the assembly-language subroutine returns to address 16457, at the completion
of its execution, the stack contents will appear:

(top) 27 (value of INT-VAL)
(bottom) 19437 (address of temporary string)

If the hardware D register contains 963, then that value is placed into "RET-VAL".
Consequently,

00963

will be DISPI.AYed by the statement following the CALL statement in the
example.

Notes:

(1) It is the responsibility of the programmer to load the assembly-langnage
subroutine into memory and to supply the correct address of that routine.

(2) The library routines described in Waterloo 6809 Assembler : Tutorial and
Reference Manual may be called using the CALL statement.

(3) The Waterloo 6809 WSL compiler generates subroutines in 6809 assembly
language which may be invoked with the CALL statement.

System Dependencies: 313

18.4 VM/CMS

This section outlines the system dependencies for the IBM VM/CMS operating
system.

18.4.1 Code Set

The computers on which VM/CMS executes use the EBCDIC collating
sequence.

18.4.2 Files
File names in the VM/CMS file system are given as
name type mode

and are described completely in the documentation written by IBM for this operating
system. Generally, users will specify only the name and occasionally the rype.
These names may be up to 8 characters in length and composed of letters and digits.

When creating files it is not necessary to specify any information about the size
of records or the format of the files. This information is automatically determined by
microCOBOL.

There is no difference between files organized sequentially and randomly.
Carriage control characters are the normal EBCDIC characters ‘1, '0’, ' *, '-" and
"+'. Where large numbers of lines are ADVANCED, blank lines may be inserted in
the file.

18.4.3 Listing Files

When the ADVANCING keyword is used with a WRITE statement, it must be
used for all WRITE statements for that file. Record descriptions should reserve an
extra character at the start of each record for carriage-control information. This
character is filled in automatically by microCOBOL.

When the ADVANCING keyword is not used for a file and that file is
recognizable as a listing file, the first character in each record written is assumed to
be a character used for vertical positioning. The files recognized in the VM{CMS are
the file “printer” and files with a type of "LISTING".

314 Chapter 18

The control characters "1’, '0’, "+*, ’'-' and ' ' are not translated to any other
character as most IBM printers use these characters for vertical spacing. Where large
numbers of lines are skipped, blank records may be written to the file to ensure
proper vertical spacing.

18.4.4 Call Interface

The execution of the CALL statement causes an assembiy-language subroutine
to be invoked. The parameters, if any, given in the CALL staterment are passed to
the invoked routine as follows:

integer An integer data item or literal is passed as a four-byte binary value.

other The data item or literal is copied to a temporary location and a byte with
hexadecimal zeroes is appended to the end of the copied value. The address
of the temporary copy is passed to the assembly-language routine.

All parameters are passed using a list pointed at by register 12. The address to which
the assembly-language routine should return is contained in register 14. The address
to which control is passed is obtained by taking the integer value given following the
CALL keyword and treating that value as an address.

The assembly-language subroutine should return to the address contained in
register 14. The contents of the register 11 are used as the return value. This value is
placed in the data item, if present, given following the USING keyword.

Consider the following example:

77 ADDR PIC 99999.
77 INT-VAL PIC 99.
77 CHR-VAL PIC X(5).
77 RET-VAL PIC 9(5).

MOVE 27 TO INT-VAL.

MOVE “ABCDE" TO CHR-VAL.

MOVE 21346 to ADDR.

CALL ADDR USING RET-VAL, INT-VAL, CHR-VAL.
DISPLAY RET-VAL.

The execution of the CALL statement will cause a temporary copy of "CHR-VAL”
to be placed in memory (say at location 19437). A zeroed byte is appended

System Dependencies: 315

following the five characters "ABCDEF" at this location. Register 12 points at a list
as follows:

27 (value of INT-VAL)
19437 (address of temporary string)

If register 11 contains 963 when the assembly-language subroutine completes
execution, then that value will be placed in "RET-VAL" and

00963

will be DISPLAYed by the statement following the CALL statement in the
example.

Notes:

(N It is the responsibility of the programmer to load the assembly-language
subroutine into memory and to supply the correct address of that routine.

(2) The Waterloo VM/CMS WSL compiler generates subroutines in /370
assembly language which may be invoked with the CALL statement.

Appendix A

Language Skeleton
This appendix gives the skeleton for the syntax accepted by Waterloo
microCOBOL. It is organized by division.
A.1 IDENTIFICATION DIVISION.

A.l1.1 Skeleton

IDENTIFICATION DIVISION.
PROGRAM-ID. name.

[AUTHOR. [comment]]

[INSTALLATION. [comment]]

[DATE-WRITTEN. [comment]]

| DATE-COMPILED. | comment | |

[SECURITY. [comment |]

318

A.2 ENVIRONMENT DIVISION

A.2.1 Skeleton

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. name [WITH DEBUGGING MODE |.

OBJECT-COMPUTER. name.
{ WORDS }
[MEMORY SIZE number { CHARACTERS }]
{ MODULES)}

(,PROGRAM COLLATING SEQUENCE is name]

[SPECIAL-NAMES.
[,CURRENCY SIGN 1S literal]

[,DECIMAL-POINT IS COMMA] |.

[INPUT-QUTPUT SECTION.

FILE-CONTROL.

{select clause} . . .]

Appendix A

Language Skeleton 319

A.2.2 SELECT Clause
SELECT [OPTIONAL] file-name
ASSIGN TO literal

[; ORGANIZATION IS { RELATIVE }]
{ SEQUENTIAL }

[; ACCESS MODE IS { SEQUENTIAL [RELATIVE KEY IS name]

{
{ {RANDOM } , RELATIVE KEY IS name
{ {DYNAMIC }

[; FILE STATUS IS name 1.
A.3 DATA DIVISION

A.3.1 Skeleton

DATA DIVISION.
{ FILE SECTION.

f FD filename
(FD entry)

(record-description entry) . . . 1. ..]

[WORKING-STORAGE SECTION.

{ 77 (data-description) oo
{ (record-description entry) }

320 Appendix A

A.3.2 FD entry

{; BLOCK contains [number TO] number { RECORDS H
{ CHARACTERS }

[; RECORD CONTAINS { number TO] number CHARACTERS |

[; LABEL {RECORD IS 1 { STANDARD }]
{RECORDS ARE }{OMITTED }

[; VALUE OF literal is literal

[;DATA { RECORD IS } name, name ... |
{ RECORDS ARE }

[; CODE-SET IS name]
A.3.3 Data-description entry: Level 66
66 name-1; RENAMES name-2 [{THROUGH } name-3 |

{THRU }

A.3.4 Data-description entry: Level 88

B8 name; { VALUE IS } literal [{ THROUGH } literal]
{ VALUES ARE } [{ THRU 2
[, literal [{ THROUGH }literall]. ..
{ THRU 3

Language Skeleton 321

A.3.5 Data-description entry: Levels 01-49

level-number { data-name }
{ FILLER }

[; REDEFINES data-name |

[; { PICTURE } IS character string |

{PIC }

{ COMPUTATIONAL }

I USAGEIS] { COMP 1]
{ DISPLAY }

{ INDEX }

.SIGNIS1 {LEADING } [SEPARATE CHARACTER]
{ TRAILING }

—

OCCURS { number TO number TIMES DEPENDING on name }]
{ number TIMES }

-

>

[INDEXED BY name [, name] |

—

>

{ SYNCHRONIZED }[{ LEFT }]]
{ SYNCH + {RIGHT }

[; { JUSTIFIED } RIGHT]
{ JUST }

[; BLANK WHEN ZERO]

[; VALUE is literal] .

322

A.4 PROCEDURE DIVISION

A.4.1 Skeleton
PROCEDURE DIVISION.
[DECLARATIVES.
{ section-name SECTION. declarative sentence
[paragraph-name. [sentence] ... | .o
END DECLARATIVES. |

{procedure body)

A.4.2 Procedure Body

{ paragraph-name. [sentence }. ..}

or

{ section-name SECTION.

[paragraph-name. [sentence] ... | ... o

Appendix A

Language Skeleton 323

A.4.3 Statements
ACCEPT identifier [FROM {DATE }]
{ TIME }
ADD { identifier } [, { identifier }] ...
{ literal } { literal }
TO identifier [ROUNDED] [, identifier | ROUNDED | ...
[; ON SIZE ERROR imperative statement]
ADD {identifier }, {identifier } [, {identifier }] ...
{ literal } o { literal ¥ {literal]
GIVING identifier [ROUNDED] [identifier [ROUNDED |]...
[ON SIZE ERROR imperative statement |
ADD { CORRESPONDING } identifier TO identifier [ROUNDED]
{ CORR)

[; ON SIZE FERROR imperative statement]

ALTER procedure-name TO [PROCEED TO] procedure-name
[, procedure-name TO [PROCEED TO] procedure-name | ...
CALL { identifier } USING identifier
{ literal }

[, {identifier }1 ...
{ literal ~ }

324 Appendix A

CLOSE file-name [{{REEL } [{ WITHNOREWIND 1] }]
{{UNIT } {FORREMOVAL } }
{ b
{ WITH {NO REWIND } }
{ { LOCK } }

[, file-name ...] ...

COMPUTE identifier [ROUNDED] [, identifier | ROUNDED]] ...
= arithmetic-expression
[; ON SIZE ERROR imperative statement |

DISPLAY { identifier } [, {identifier }] ...
{ literal ¥ { literal }

DIVIDE ({ identifier } INTO identifier [ROUNDED]
{ literal }
[, identifier [ROUNDED |] ...
[; ON SIZE ERROR imperative statement |
DIVIDE {identifier } INTO { identifier }
{ literal 1 {literal }
GIVING identifier [ROUNDED] [, identifier [ROUNDED | |...
[; ON SIZE ERROR imperative statement |
DIVIDE { identifier }BY { identifier }
{ literal } { literal 1
GIVING identifier [ROUNDED] {, identifier | ROUNDED]]...

[; ON SIZE ERROR imperative statement]

Language Skeleton 325
DIVIDE { identifier } INTO { identifier }
{ literal } { literal }
GIVING identifier { ROUNDED] REMAINDER identifier
[; ON SIZE ERROR imperative statement]
DIVIDE { identifier }BY { identifier }
{ literal } { literal ¥
GIVING identifier [ROUNDED | REMAINDER identifier

{; ON SIZE ERROR imperative statement]

ENTER DEBUGGING ENVIRONMENT

EXIT

GO TO [procedure-name]

GO TO procedure-name [, procedure-name] ...

DEPENDING ON identifier

IF condition; { statement +[; ELSE { statement }]
{ NEXT SENTENCE } { NEXT SENTENCE

INSPECT identifier TALLYING

{,identifier FOR {, { {ALL } { identifier } }
{ { {LEADING + { literat 1}
{ { CHARACTERS }

[{ BEFORE } INITIAL {identifier }]} ..} ...
{ AFTER)} { literal ~ }

326

Appendix A

INSPECT identifier REPLACING

{CHARACTERSBY { identifier }

{ { literal }

{

{{,{ALL Y {, identifier } BY { identifier }
{{ {FIRST } { literal } { literal ¥

{{ {LEADING }

[{ BEFORE } INITIAL {identifier } 1} ...} ...}
{ AFTER } { literal 1

INSPECT identifier TALLYING

{,identifier FOR {, { { ALL } { identifier } }
{ { {LEADING } { literal T}
{ { CHARACTERS ¥
[{ BEFORE } INITIAL {identifier } 1} ...} ...
{ AFTER } { literal h
REPLACING
{CHARACTERSBY { identifier }
{ { literal ¥
{
{{.{ALL } {, identifier } BY { identifier }
{{ {LEADING } { literal ¥ { literal b
{{ {FIRST }

[{ BEFORE } INITIAL {identifter }]} ...} ...}
{ AFTER } { literal }

MOVE { identifier } TO { identifier } {, identifier | ...
{ literal }

MOVE { CORRESPONDING } identifier TO identifier
{ CORR }

Language Skeleton 327
MULTIPLY { identifier } BY { identifier } [ROUNDED]
{ literal }
[, identifier [ROUNDED |] . . .

[; ON SIZE ERROR imperative statement]

MULTIPLY { identifier } BY { identifier }
{ literal P { literal ¥

GIVING identifier [ROUNDED]
[, identifier [ROUNDED]] . ..
[; ON SIZE ERROR imperative statement |
OPEN {INPUT } file-name, [, file-name] ...
{OUTPUT }
{0 ¥
{EXTEND }
[{INPUT } file-name, [, file-name] ...] ...

{OUTPUT }

{10 ¥
{EXTEND }

PERFORM procedure [{ THROUGH } procedure |
{ THRU }
[{identifier } TIMES]
{ number }
PERFORM procedure [{ THROUGH } procedure]
{ THRU +

[UNTHLL condition]

328 Appendix A

PERFORM procedure [{ THROUGH } procedure |

{ THRU ¥
VARYING {identifier } FROM { identifier }
{ literal } {index-name }
{ literal T

BY { identifier } UNTIL condition

{ literal ¥
[AFTER { identifier } FROM { identifier }
{ index-name } {index-name }
{ literal }

BY { identifier } UNTIL condition

{ literal }
[AFTER { identifier =} FROM {identifier }
{ index-name } {index-name }
{ literal I

BY { identifier } UNTIL condition]]
{ literal }

READ file-name [NEXT RECORD] [INTO identifier]

[; AT END imperative statement]

READ file-name RECORD [INTO identifier]

[INVALID KEY imperative statement |

REWRITE record-name [FROM identifier]

[; INVALID KEY imperative statement]

SET { identifier [, { identifier 11...}TO { identifier
{ index-name { index-name } { index-name
{ number

]

Language Skeleton 329

SET

index-name [, index-name | ... { UP BY 1 { identifier
{ DOWNBY } { number

STOP { RUN }

{ literal }

STRING { identifier } [, { identifier }]. ..

{ literal t { literal ¥

DELIMITEDBY { identifier }
{ literal }

[{identifier } [, { identifier } 1. ..
{ literal 1 {literal 1

DELIMITEDBY { identifier } 1. ..
{ literal }

INTO identifier [WITH POINTER identifier]

[; ON OVERFLOW imperative statement |

SUBTRACT { identifier } [, { identifier } ...]

{ literal } { literal }
FROM identifier | ROUNDED] [identifier [ROUNDED] 1. ..

[ON SIZE ERROR imperative statement |

¥
}

330
SUBTRACT { identifier } [, { identifier } ...]
{ literal } {literal ¥

FROM { identifier }
{ literal ¥

GIVING identifier [ROUNDED]
[, identifier [ROUNDED] 1] ...
[; ON SIZE ERROR imperative statement]
SUBTRACT { CORRESPONDING } identifier
{ CORR }
FROM identifier [ROUNDED]

[; ON SIZE ERROR imperative statement]

Appendix A

Language Skeleton

UNSTRING identifier

{ DELIMITED BY [ALL] { identifier }
{ literal }

[OR[ALL] { identifier }]...]
{ literal }

INTOidentifier
[, DELIMITER IN identifier]
[, COUNT IN identifier]
[, identifier
[, DELIMITER [N identifier]
[, COUNT IN identifier 1] ...
[WITH POINTER identifier]
[TALLYING IN identifier]
(; ON OVERFLOW imperative statement]
USE AFTER STANDARD {EXCEPTION } PROCEDURE
{ ERROR }
ON { file-name [, file-name] ...
{INPUT
{ OUTPUT

{I-0
{ EXTEND

it gt St gt e

WRITE record-name [FROM identifier]

[{BEFORE } ADVANCING { { identifier }[{LINES }] }]
{ AFTER } { { number 3} {LINE }

{
{ PAGE

331

¥
}
}

332

WRITE record-name [FROM identifier |

[; INVALID KEY imperative statement |

Appendix A

Processors.

ACCEPT
ACCESS
ADD
ADVANCING
AFTER

ALL
ALPHABETIC
ALSO
ALTER
ALTERNATE
AND

ARE

AREA
AREAS
ASCENDING
ASSIGN

AT

AUTHOR
BEFORE
BLANK
BLOCK
BOTTOM

BY

CALL
CANCEL

CD

CF

Appendix B

Reserved Words

The following is a list of reserved words in the full COBOL language, Waterloo
micreCOBOL. treats all the words as reserved, even though many are not required in
the current language definition. This ensures compatibility with other COBOL

CH

CHARACTER
CBARACTERS
CLOCK-UNITS
CLOSE

COBOL

CODE

CODE-SET
COLLATING
COLUMN

COMMA
COMMUNICATION
COMP
COMPUTATIONAL
COMPUTE
CONFIGURATION
CONTAINS
CONTROL
CONTROLS

COPY

CORR
CORRESPONDING
COUNT
CURRENCY
DATA

DATE
DATE-COMPILED

DATE-WRITTEN FOR

DAY FROM

DE EMI
DEBUG-CONTENTS ENABLE
DEBUG-ITEM END
DEBUG-LINE END-OF-PAGE
DEBUG-NAME ENTER
DEBUG-SUB-1 ENVIRONMENT
DEBUG-SUB-2 EOP
DEBUG-SUB-3 EQUAL
DEBUGGING ERROR
DECIMAL-POINT ESI
DECLARATIVES EVERY
DELETE EXCEPTION
DELIMITED EXIT
DELIMITER EXTEND
DEPENDING FD
DESCENDING FILE
DESTINATION FILE-CONTROL
DETAIL FILLER
DISABLE FINAL
DISPLAY FIRST

DIVIDE FOOTING
DIVISION FOR

DOWN FROM
DUPLICATES GENERATE
FOOTING GIVING

334

GO

GREATER
GROUP
HEADING
HIGH-VALUE
HIGH-VALUES
I-O
I-O-CONTROL
IDENTIFICATION
iF

IN

INDEX
INDEXED
INDICATE
INITIAL
INITIATE
INPUT
INPUT-OUTPUT
INSPECT
INSTALLATION
INTO

INVALID

18

JUST
JUSTIFIED
KEY

LABEL

LAST
LEADING
LEFT

LENGTH

LESS

LIMIT

LIMITS
LINAGE

LINAGE-COUNTER

LINE
LINE-COUNTER
LINES
LINKAGE

LOCK
LOW-VALUE
LOW-VALUES

MEMORY PROGRAM-ID
MERGE QUEUE
MESSAGE QUOTE
MODE QUOTES
MODULES RANDOM
MOVE RD
MULTIPLE READ
MULTIPLY RECEIVE
NATIVE RECORD
NEGATIVE RECORDS
NEXT REDEFINES
NO REEL

NOT REFERENCES
NUMBER RELATIVE
NUMERIC RELEASE
OBIECT-COMPUTERREMAINDER
OCCURS REMOVAL
OF RENAMES
OFF REPLACING
OMITTED REPORT

ON REPORTING
OPEN REPORTS
OPTIONAL RERUN

OR RESERVE
ORGANIZATION RESET
OUTPUT RETURN
OVERFLOW REVERSED
PAGE REWIND
PAGE-COUNTER REWRITE
PERFORM RF

PF RH

PH RIGHT

PIC ROUNDED
PICTURE RUN

PLUS SAME
POINTER SD
POSITION SEARCH
POSITIVE SECTION
PRINTING SECURITY
PROCEDURE SEGMENT
PROCEDURES SEGMENT-LIMIT
PROCEED SELECT
PROGRAM SEND

Appendix B

SENTENCE
SEPARATE
SEQUENCE
SEQUENTIAL
SET
SIGN
SIZE
SORT
SORT-MERGE
SOURCE
SOURCE-
COMPUTER
SPACE
SPACES
SPECIAL-NAMES
STANDARD
STANDARD-1
START
STATUS
STOP
STRING
SUB-QUEUE-1
SUB-QUEUE-2
SUB-QUEUE-3
SUBTRACT
SUM
SUPPRESS
SYMBOLIC
SYNC
SYNCHRONIZED
TABLE
TALLYING
TAPE
TERMINAL
TERMINATE
TEXT
THAN
THROUGH
THRU
TIME
TIMES
TO
TOP

Reserved Words

TRAILING UPON
TYPE USAGE
UNIT USE
UNSTRING USING
UNTIL VALUE
Up

VALUES
VARYING
WHEN
WITH
WORDS

335

WORKING-
STORAGE
WRITE
ZERO
ZEROES
ZEROS

ACCESS, 181
dynamic, 181
random, 181
relative, 181
sequential, 181
ADVANCING, 268, 310, 313
ALL, 171
alphabetic, 190, 219
alphanumeric, 191
edited, 191
AND, 90-91, 221
area
A, 169, 212
B, 169, 212
arithmetic, 95, 105, 214, 235
accuracy, 216
gxpression, 214
expressions, 106
operators, 106, 214
priority, 107, 215
assembly language, 311, 314
ASSIGN, 181
AT END, 44, 46, 180, 265
AUTHOR, 174

BLANK WHEN ZERO, 202, 207
BLOCK CONTAINS, 185

carriage

control, 268
carriage control, 64
category, 190, 195
COBOL, 4, 167

program, 4
CODESET, 186
collating sequence, 103, 178,

308-309, 313

column, 169
comma, 167, 179
comment, 7, 169-170
COMP, 202, 210
comparison

nonnumeric, 17, 218

Index

numeric, 217
composite of operands, 236
COMPUTATIONAL, 202, 206,

210
condition, 17, 73, 91

abbreviated, 223

class, 219

combined, 222

complex, 220

compound, 90

evaluation, 224

name, 209, 22(}

relation, 217

sign, 220

simple, 216

variable, 209, 220
conditional

expression, 216

statement, 212
constant, 171

ALL, 171

figurative, 171
control, 212
CORR, 226, 231, 236, 242
CORRESPONDING, 226, 231,

236, 242
currency symbol, 179, 195

DATA

FD, 186

VALUE, 207
data name, 10, 169
DATE, 230, 309
DATE-COMPILED, 175
DATE-WRITTEN, 174
debugger, 301

continue, 301

execute, 302

quit, 303
step, 303
where, 303

decimal point, 179, 194
DECLARATIVES, 212-213, 245

Index

division, 5, 168
DATA, 168, 183
ENVIRONMENT, 168, 177,
262, 271
IDENTIFICATION, 168, 173
PROCEDURE, 168, 211
dollar-sign, 179

editing, 195
fixed insertion, 196
floating insertion, 196-197
insertion, 196
simple insertion, 196
Zero suppression, 196, 198
elementary
item, 187
MOVE, 232
elementary item
size, 192
ELSE, 78, 253, 255, 257
end of file, 43, 45, 265, 274

false range, 81, 253, 255-256
ED, 34, 62, 184
figurative constant, 47, 171
size, 171
file, 33
creating, 36
example, 48
introduction, 33, 261
name, 34-35, 58, 180
names, 308
OPTIONAL, 180
random, 261
reading, 40, 52
relative, 146, 149, 153, 156,
271
SECTION, 183, 205, 207
sequential, 261
STATUS, 181
student, 48
file name, 169

337

FILE-CONTROL, 180
files
portability, 308
SuperPET, 309
system dependent, 313
VM/CMS, 313
FILLER, 27, 202, 226

group item, 187

HIGH-VALUE, 171
HIGH-VALUES, 46, 17i

IF, 82, 253, 255-256, 258
multiple choice, 82, 258
nested, 256, 258
range, 76, 253
simple, 254

imperative statement, 212

IN, 188

indentation, 17, 81, 87, 254-256,

258

index, 153, 156, 206, 210, 231

Indexing, 284

INPUT-OUTPUT, 179

INSTALLATION, 174

INVALID KEY, 152, 181

JUST, 202
JUSTIFIED, 202-203, 207, 210

LABEL., 184-185
level number, 10, 187
66, 208, 210, 226
77, 202
88, 209, 226
literal, 171
numeric, 100, 103, 171
logical operator, 88, 221
LOW-VALUE, 171
LOW-VALUES, 171

338

machine-language
subroutines, 305
MOVE
conversion, 233
elementary, 232
group, 234
legal, 234

name, 10, 169
COBOL, 169
lowercase, 170
paragraph, 13, 169, 245
procedure, 245
section, 169, 245
uppercase, 170
NEGATIVE, 220
nested IF, 258
NEXT SENTENCE, 254, 257
NOT, 221
numeric, 190, 219
edited, 192
sign, 104
numeric edited, 110

OBJECT-COMPUTER, 178

OCCURS, 130, 140, 144,
204-205, 207, 227,
281-283

OF, 188

OR, 90-91, 221

ORGANIZATION, 181

paragraph, 13, 212
PIC, 20, 202
PICTURE, 96, 202
Clause, 203
string, 190
PICTURE clause, 10, 24, 29
picture string
+, 195, 199
$, 115, 117, 195, 199
*, 193, 199
-, 113, 195, 199

Index

/, 194

. 115, 194

A, 193

B, 193

CR, 115, 195

currency symbol, 115, 117,

195, 199

DB, 195

decimal point, 99, 109

floating character, 199

P, 193, 236

period, 194

precedence, 199

S, 103, 193

V, 104, 193

X, 194

Z, 112, 117, 194, 199

0, 194

9, 112, 117, 194
portability, 308
POSITIVE, 220
printer spacing, 64
PROGRAM-ID, 5, 7, 173-174

Qualification, 188, 246
QUOTE, 171
QUOTES, 171

range

false, 81

true, 81
record, 22, 24, 188
RECORD CONTAINS, 185

REDEFINES, 137, 202, 204, 207,

227

relational operator, 73, 217
RELATIVE KEY, 181
RENAMES, 208, 227
report

example, 52
reserved word, 11, 169, 317
rounding, 100, 235

Index

SECURITY, 175
SELECT, 148, 151, 180, 262, 271
examples, 182
semicolon, 167
sentence, 7, 212
separator, 168
SIGN, 205
SIZE ERROR, 101, 236
SOURCE-COMPUTER, 178
SPACE, 171
SPACES, 171
SPECIAL-NAMES, 179
statement, 4, 212, 253, 323
ACCEPT, 10, 14, 229, 309
ADD, 97, 226
ALTER, 246
arithmetic, 235
CALL, 305, 311, 314
CLOSE, 39, 42, 263, 272
comment, 7, 169-170
COMPUTE, 105, 238
conditional, 212
DISPLAY, 7, 21, 205, 230
DIVIDE, 97, 239
ENTER, 301, 303
EXIT, 247
GO, 247
GOTO, 247
IF, 70, 74, 78, 253
imperative, 212
INSPECT, 290
MOVE, 28, 226, 231
MULTIPLY, 97, 241
OPEN, 38, 41, 264, 273
PERFORM, 12, 15, 136, 213,
248, 284
READ, 41, 44, 152, 265, 274
REWRITE, 266, 276
SET, 284-285
STOP, 7, 252

339

STRING, 293
SUBTRACT, 97, 226, 242
summary, 323
UNSTRING, 295
USE, 213, 266, 277
WRITE, 39, 267, 278
strings, 289
student file, 48
description, 50
subscripts, 127, 141, 231, 281
SYNC, 202
SYNCHRONIZED, 202, 206-207,
210
syntax conventions, 167
system dependencies, 307
SuperPET, 309
VM/CMS, 313

tables, 127, 281
terminal, 268

textfile, 51
THROUGH, 202
THRU, 202

TIME, 230

true range, 81, 253-256

undefined value, 227
UNTIL clause, 15, 249
USAGE, 206-207, 210

VALUE, 205
data, 25, 27, 207
FD, 185

verb, 7

WORKING-STORAGE, 10, 187

ZERO, 171, 220
ZEROES, 171

Waterioo microCOBOL
U

Waterloe microCOBOL is a substantial implementation of the standard COBOL
language and is suitable for teaching purposes and for the programming of many
business problems. The language includes many features described in COBOL
Standards ANSI X3.23-1974 and SO 1989-1978.

This book is divided into two sections, In the first part, a collection of annotated
examples to Infroduce the reader 1o microCOBOL is given. Examples include
implementation of;

B Introductory examples
Reading and writing files

Arithmelic

|
a
N Printing & editing numeric values
H Subscripted data names

M Relative files

H and more

The second sechon is a detalled reference manual describing the language
supported by Waterloo microCOBOL. Waterloo microCOBOL is implemented in a
number of different compiler systems. While most of this manual applies to all
implemenigltions, a chapter on System Dependencies is also included to describe
teatures particular to a specific system. Hems covered include:

B The tour divisions of Waterloo microCOBOL programs — IDENTIFICATION
DIVISION, ENVIRONMENT DIVISION, DATA DIVISION, and PROCEDURE DIVISION.

B Discussions of the various statements used in microCOBOL and explanations of
theilsr use.

B Compiete explanations of Sequential Files, Relative Files, Tables and String
Maonipulaion — and their use.

@ e use of he interactive Debugger in monitoring program execution,

DISTRIBUTED BY
Howard W. Sams & Co,, Inc.

4300 WEST 62ND ST. INDIANAPOLIS, INDIANA 48268 USA

$9.95/21909 ISBN: 0-672-21909-3

