SuperPET

Waterloo microBASIC |

Waterloo microBasic

Tutorial and Reference Manual

J. Wesley Graham

K. Ian McPhee

Copyright 1981, by the authors.

All rights reserved. No part of this publication may be reproduced or used in any form
or by any means - graphic, electronic, or mechanical, including photocopying,
recording, taping or information storage and retrieval systems - without writtcn
permission of the authors,

Disclaimer

Waterloo Computing Systems Limited makes no representation or warranty with
respect to the adequacy of this documentation or the programs which it describes for
any particular purpose or with respect to its adequacy to produce any particular result.
In no event shall Waterloo Computing Systems Limited, its employees, its
contractors or the authors of this documentaticn be liable for special, direct, indirect
or consequential damages, losses, costs, charges, claims, demands, or claim for lost
profits, fees or expenscs of any nature or kind.

Preface

Waterloo microBASIC is an interactive BASIC language interpreter which
provides simple, comprehensive facilities for entering, running, debugging and
editing programs. The programming language supporls many important extensions
beyond standard BASIC such as structured programming control, long names for
variables and other program entities, procedures callable with parameters, multi-line
functions, sequential and relative file capabilities, integer arithmetic, MAT
statements for mairix operations, powerful character-string manipulation, and a broad
set of intrinsic functions. Waterloo microBASIC includes ANS BASIC as defined in
the 1978 X3.60 standard,

This manual describes the Waterloo microBASIC processor in a general manner
applicable to usc with various computer systems. Specific examples, in some cases,
lustrate its use with the Commodore SupcrPET microcomputer. System-specific
information, in general, can be found in the Waterloo System Overview manual
which applies to the system in use. This manual is organized into four parts. The first
part introduces the reader to the general characteristics of the system and conlains a
collection of annotated examples illustrating features of the programming language.
The next two parts comprise a comprehensive reference manual describing the
Waterloo microBASIC command and programming languages, respectively. The
fourth part consists of appendices summarizing the command and programming
languages and describing use of files with Waterloo microBASIC.

Acknowledgement

All members of the Computer Systems Group at the University of Waterloo have
made a significant contribution to the design of the Waterloo microBASIC
interpreter. The design is based upon ideas evolved and proven over the past decade
in other software projects in which the group has been involved. The actual design
and programming of the interpreter was performed by Fred Crigger, Carl Durance
and lan McPhee. Charlotte Ross was responsible for production of the manual.

J.W. Graham
K.T. McPhee

June 1981

Table of Contents

Tutorial

1. A Flavour of Waterloo microBASIC

1.1 Introduction

t.2 Command Language [mroductlon
1.2.1 Sign-on Procedure
1.2.2 Typingin a Program .
1.2.3 Listing Your Workspace
1.2.4 Running a Program
1.2.5 Saving a Program .
1.2.6 Retrieving a Program
1.2.7 Changing a Program .
1.2.8 Sign-off Procedure

1.3 Examples

Example |
Example 2
Example 3
Example 4
Example 5
Example 6
Example 7
Example 8
Example 9
Example 10
Example 't
Example 12
Example 13
Example 14
Example 15
Example 16
Example 17
Example 18
Example 19
Example 20
Example 21
Example 22
Example 23
Example 24
Example 25
Example 26
Example 27
Example 28

Infinite Loops .

Indentation, Scparators

Inmitial Value Outside Loops . .
Exiting Inlinite Loops, Relational Pxprcasmns
Expanding Previous Examples
Character Strings, Print Zones
Blanks in Character Strings

Square Root Function (SQR)
Sine/Cosine Functions (SIN,COS) .
Pl Function, Scientific Notation
Input .
Exiting a Program due to an Tnpul i
Nested Loops, QUIT Limitations
IF.. . ELSE...ENDIF

Concatenation . .

Substring Operation .

Expand on Example 17

Length Function (LEN) .

Expands Previous Examples
VALUE and VALUES

Matrices, Printing a Blank Line

' in a PRINT Statement

Matrix Element Zero .

OPTION BASE

Procedures . .
Procedures with Paramc,tc,rs .

User Functions

Line Numbers, Comments Vdnahlcs PR[NT

15
15
16
16
16
17
17
17
1%
18
18
18
19
21

22
23
24
23
26
27
28
29
30
31

32
33
34
36
37
38
39
40
41

42
44
45
46
47
49
51

Table of Contenls

Example 29 Files, OPEN, CLOSE, I0_STATUS, ONEOF . . 53
fixample 30 Multiple Field File Records . .~ 3
Example 31 Files using LINPUT . . 57
Example 32 Random Number Generator 58
Example 33 Integer-Part Function Py 59
Example 34 TInteger Variables 60
Example 35 Integer Arithmetic 61
Example 36 Integer Arithmetic - 62

Command Language Reference Guide

1. Commands 65
1.t Introduction -63
1.2 Starting and Finishing. 65
2. Entering a Program 69
3. Running a Program - 73
4. Editing a Program < . 77
4.1 LISTCommand « - . . .71
4.2 DELETE Command 78
4.3 ChangingLines 9
44 RENUMBER Command19
5, Storing and Retrieving a Program 83
51 Files 83
572 STORECommand 84
53 LOADCommand 8
54 SAVECommand85
5.5 MERGECommand 86
5.6 OLD Command N ¥
5.7 RUN Command NI
W1

Table of Contents

6. Debugging Programs 89
6.1 Immediate Mode 89
6.2 Interrupting Programs . . (4]
6.3 Resuming Execution after Intertuption 9]
6.4 Monitoring the Operation of a Program 62
6.5 Testing the Program in Small Parts 92
6.6 Editing An Interrupted Program 93
7. File Management _ _ _ . 9§
7.1 DIRECTORY Command 96
7.2 SCRATCHCommand 96
7.3 RENAME Corunand 97
7.4 MOUNT Command 98
7.5 TYPE Command99
7.6 SETUP Command 99
8. Using the General Editor _ _ _ 101

Programming Language Reference Guide

L AProgram 107
1.1 Introduction 107
1.2 Some Rules About Programs108
P21 TineNumbers 108
1.2.2 Keywords _ 109
1.2.3 UseofSpaces _ 109
1.2.4 Comments _ 109
1.25 Null Lines 109
1.2.6 Muliple Statements Per Line 110
1.2.7 Multiple-Line Statements 110
1.2.8 END Statement 110

Vil

Table of Contents

2, Types of Data . . . R B .
2.1 Numeric Comtants and Varmbles T
2.1.1 Numeric Variables114
2.1.2 Numeric Constants . . . e B
2.1.3 Internal Representation of Numerlc Ddtd B B
2.1.4 Tnteger Variableslls
2.2 String Constants and Var1ab]es .
2.3 Matrices. 117
2.3.1 DIM Statement1I8
2.3.2 Matrix Subscripts120
2.3.3 OPTIONBASELl120

3. Expressions . . e 122
3.1 Priority of Operators O 3.
3.2 Matrix Subscripting125
3.3 Function Reference125
3.4 Substring . . e]
3.5 Parenthesized Opcratlom e .
3.6 Exponentiationl126
3.7 UnaryPls 12
3.8 UnaryMious 127
3.9 Multiplication127
3.10 Division128
3.11 AdditionI28
3.12 Subtractiom128
3.13 ConcatenationLo128
3.14 Comparison (Relational Opcratmns) ... 129
3.15 LogicalNOT 130
3.16 LogicalAND130
3.17 LogicalOR130
3.1% Integer Operations13l

4, LET Statement . . . O K. &
4.1 Assignmentin General A K
4.2 Matrix Element AssignmentI134
4.3 Function Result Assignment134
4.4 Substring Assignment.13

viii

Table of Contents

5. Matrix Assignment . . .
5.1 Scalarto Matrix Asqlgnmem .
5.2 Special Matrix Constants .
5.3 Matrix to Matrix Assignment

5.4 Addition, Multiplication of Scalar and Matrlx

5.5 Addition, Subtraction of Two Matrices
5.6 Multiplication of Two Matrices |
5.7 Matrix Transposition .

6. Structured Control . .
6.1 Repetition Structures .
6.1.1 FOR-NEXT Loops
6.1.2 WHILE-ENDLOOP .
6.1.3 LOOP-UNTIL
6.1.4 WHILE-UNTIL
6.1.5 LOOP-ENDLOOP
6.2 Choice, Selection .
6.2.1 IF-THEN-statement .
6.2.2 IF Structure
6.3 QUIT Statement
6.4 GUESS-ADMIT- ENDGUESS

7. Procedures and CALL .
8. Functions .

9, Primitive Control .
9.1 GOTO Statement .
9.2 GOSUB and RETURN
9.3 ON-GOTO, ON-GOSUB
9.4 IF-THEN line number

10. Input/Output Statements
10.1 OPEN Statement .
10.2 CLOSE Statement
10.3 PRINT Statement . .
10.4 MAT PRINT Statement .
10.5 INPUT Statement .

ix

. 137
138
. 138
. 139
. 139
. 140
. 140
. 141

. 143
. 144
. 144
. 145
. 145
. 146
. 146
. 147
. 147
. 147
. 149
. 149

. 153

. 157

. 161
. 161
. 162
162
. 163

. 165
. 166
. 167
. 167
170
71

10.6
10.7
10.8
10.9

Table of Contents

MAT INPUT Statement .
LINPUT Statement

GET Statement
SCRATCH Statement

10,10 RENAME Statement
10.11 MOUNT Statement .
10.12 RESET Statement

11. READ, DATA, RESTORE

11.1
11.2
11.3
11.4

DATA Statements
READ Statement .
MAT READ Statement
RESTORE Statement

12. Error Handling

12.1
12.2
12.3
12.4

ON-Error IGNORE
ON-Error SYSTEM
ON-ENDON Structute
RESUME Statement .

13. CHAIN and USE

£3.1
13.2

CHAIN Statement
USE Statement

14. Miscellaneous Statements

4.1
14.2
14.3
4.4
14.5

STOP Statement

PAUSE Statement
RANDOMIZE Statement
POKE Statement .

SYS Statement

173
173
174
74
175
175
175

177
7T
. 178
179
179

. 181
. 183
. 183
. 184
. 184

. 187
. 187
. 188

.19
191
. 191
. 192
. 192
. 193

Table of Contents
Appendices

Appendix A. Command Langnage Summary
A.l Notation . .
A.2 System Command Summary .

Appendix B, Programming Language Summary
B.1 Line Numbers
B.2 Spacing .
B.3 Comments o
B.4 Multiple Statements Per Line
B.5 Multiple-Line Statements .
B.6 Names
B.7 Uppercase/Lowcrcase Alphabetics .
B.8 Expression Evaluation
B.9 Intrinsic Functions .
B.10 Statement Summary .
B.10.1 Notation
B.10.2 Statements
B.11 Keywords

Appendix C. Files

xi

. 196
. 196
197

. 198
. 198
. 198
. 199
. 199
. 199
. 200
. 200
. 201
. 201
. 205
. 205
. 206
L2102

.214

Waterloo microBASIC

Tutorial

15

Chapter 1

A Flavour of Waterloo microBASIC

1.1 Introduction

The following tutorial contains a sequence of examples meant to introduce the
reader to the "flavour” of the Waterloo microBASIC programming language. The
examples are preceded by a very brief introduction to some Waterloo microBASIC
commands to enable the reader to try the example programs on the computer.

This tutorial does not present a complete or rigorous freatment of any topic, as
this detaiied information is available in the reference sections of this manual. This
tutorial could be useful in the following situations:

. Someone already familiar with BASIC can determine some of the major
differences between Waterloo microBASIC and the dialect already known.

L] Teachers may find the examples useful as a progressive introduction of the

material to their students.

L] People who already know some other language can get an appreciation for

Waterloo microBASIC before reading the reference sections.

16 Chapter 1

L] Complete novices could run the various programs, and possibly learn some
of the material by exploring the various features in conjunction with the
reference material.

1.2 Command Language Introduction

If you have a flexible disk containing copies of these BASIC examples, you can
easily try each example without having to type it. If this flexible disk is placed in
drive 0 of your disk drive, each program can be copied into the workspace and
executed with a single command. For example, if the first BASIC example is in a file
named "BEX1”, the command

RUN "BEX!"

will copy it into the workspace and execute it.

1.2.1 Sign-on Procedure

When the computer is turned on, you are asked to select a processor. Type the
letter b for BASIC.
1.2.2 Typing in a Program

When you have signed on, you are alloted a workspace to hold your program.
This space is empty and the system is READY for typing in the first line of the
program. If you type

10 X=1

and press the RETURN key, the basic statement X=1 is entered into the workspace
as line 10. If you then type

5Y=1

and press RETURN the computer automatically places this statement in line 5 of the
workspace, ahead of the previous line,

A Flavour of Waterloo microBASIC 17

Example 1 is typed in as follows:
30x =12
40y = x*x

50 print x,y
60 stop

1.2.3 Listing Your Workspace

At any time, the current contents of the workspace can be seen on the screen by
typing

LIST

If you type LIST 20 then only line 20 is displayed, whereas if you type LIST 20-100
all lines from 20 to 100 inclusive are displayed. The LIST command and all other
commands can be typed in upper or lower case (c.g., LIST or list). Commands are
shown in uppercase here.

1.2.4 Running a Program

When a program has been entered into the workspace it is put into operation by
typing RUN. The program is still there even after it has been run and can be started
again by typing RUN.
1.2.5 Saving a Program

If you wish to store your program, type

SAVE 'CHARLIE’

and the whole workspace will be saved in your file on your disk with the name
'"CHARLIE'.

18 Chapter 1

1.2.6 Retrieving a Program
A previously saved program can be read into your workspace by typing
OLD 'CHARLIE’
This causes the previous contents of the workspace to be crased and the file named
'CHARLIE’ to be read in.
1.2.7 Changing a Program

(i) Adding Lines: New lincs can be added at any time by typing the line number
followed by the text.

(ii) Deleting Lines: If you wish to delete line 10, for example, type
DEL 10
To delete all lines between 10 and 100, inclusive, type
DEL 10-100
To delete all lines in the workspace, type
CLEAR

(iiiy Replacing Lines: A line can be replaced simply by retyping it.

1.2.8 Sign-off Procedure

To end your session, type BYE. Your workspace is lost.

1.3 Examples

The remaining pages of this chapter contain annotated examples which illustrate
several features and capabilities of the Waterloo microBASIC programming
language.

A Flavour of Waterloo microBASIC 19

Example 1 Line Numbers, Comments, Variables, PRINT

Function

This example sets a BASIC variable x equal to 12, squares this value placing the

result in

Notes:

y, and prints both x and y.

10 ! Example 1
20!

30 x =12

40 y = x*x
50 print x,¥
60 stop

Each BASIC statement starts with a ine number. These numbers are in
ascending sequence and have values ranging from 1 to 63329,

Line numbers 10 and 20 contain comments or remarks which are indicated
by the exclamation mark (!). The computer ignores remarks at execution
time.

x and y are BASIC variables. These variables begin with a letter and can
contain letters, digits and the underscore character. They can be up to 31
characters tn length.

The PRINT statement contains a printf list; in this case X and y. The values
contained in X and y are printed side by side on the screen.

Multiplication is denoted by an asterisk (*) symbol. The arithmetic operators
arc:

+ add

- subtract

* multiplication
/ divide

1 exponentiate

20

7.

Chapter 1

Expressions can be contained in parentheses:
e.g. Y=(X+3.2)*6.4

The order of priority of operators is as in algebra. Evaluation of operations
with equal priority proceeds from Teft to right.

A Flavour of Waterloo microBASIC 21

Example 2 Infinite Loops

Function

The computations of Example 1 are placed in a/loop which causes them to be repeated
endlessly. When you run this program, it must be stopped by depressing the "STOP”
key one or more times.

10 ! Example 2
20!

25 loop

30 x =12

40 y = x*x

50 print x,y

55 endloop

60 stop

Notes:
1. When the BASIC processor encounters the LOOP statement it indicates that
all instructions that follow, up to the ENDLQOP statement, are contained in

aloop and are to be repeated.

2. We learn how to stop loops automatically in later examples.

22

Chapter 1

Example 3 Indentation, Separators

Function

This example is identical to Example 2. However, all statcments in the loop are

indented three spaces to accent those which are to be repeated.

Notes:

10 ! Example 3

20!

25 loop

30 x=12
40 y = x*x
50 print x,y
55 endloop

60 stop

All statements can have as many leading blanks as are desired.

Blanks appear within statements as separators. For example, the blank
between PRINT and x not only makes the program more readable to the
human, but is necessary for proper understanding of the statement by the
BASIC processor.

Other separators are the operators such as + - * fetc., and special separators
include the) (= and ,. No blanks are necessary before or after these
separators. Thus, x=12 need not be written as x = 12, but it is legal to do
S0,

A Flavour of Waterloo microBASIC 23

Example 4 Initial Value Outside Loops

Function

Here x=12 is placed outside the loop and a new statement is inserted to increase x by
1 within the loop, thus causing a trable of squares to be printed. Note that the program
is in an endless loop which must be terminated with the "STOP” key.

10 ! Example 4

20!

30 x = 12

35 loop

40 y = x*x

50 print x,y

52 X = x+1

55 endloop

60 stop
Notes:
1. The statement x=12 gives an initial value to x, and is not in the loop.
2. The statement x=x-+1 causes the value of x to increase by 1 each time

through the loop.

24

Chapter 1

Example 5 Exiting Infinite Loops, Relational Expressions

Function

This example prints squares of the integers from 12 to 20, automatically terminating
when x is equal to 21.

Notes:

10 | Example 5

201

30 x = 12

35 loop

40 y o= X*X

50 print x,y

52 =x+1

53 if x=21 then quit
55 endloop

60 stop

The IF - QUIT statement
if x=21 then quit

causes the BASIC processor to end repetition of the loop if x has the value 21
when the IF is executed. Control of statement execution is transferred to the
statement following the ENDLOOP.

The IF - QUIT statement can appear anywhere in the loop.

The x=21 in the IF - QUIT statement is called a relarional expression and
has the valuc trie or false. The equal sign, ==, is a relational operator. The
relational operators are as follows:

equal to

greater than

greater than or equal to
less than

less than or equal to

> not equal to

il

i

ANAV VI

A Flavour of Waterloo microBASIC 25

Example 6 Expanding Previous Examples

Function

This example simply expands the previous examples to include the cube of the
integers from 12 to 20, inclusive.

10 ! Example 6

20!

30 x =12

35 loop

40 y = x*x
45 z = x¥*x*x

50 print x,v.z
52 x = x+1
53 if x=21 then quit

55 endloop
60 stop
Notes:
1. A third variable z is introduced.
2. The statement z=x*x*x could have been written as z=x%y.

26

Chapter 1

Example 7 Character Strings, Print Zones

Function

This example introduces a heading for the previous example,

Notes:

10 ! Example 7

20!

25 print 'x’,"y’, "2’
30 x = 12

35 loop

40 y == X¥x
45 7= XFXFY

50 print x,y,z

52 X =x+1

53 if x=21 then quit
55 endloop

60 stop

The 'x', 'y" and "2’ are called character string constants and will priat
literally as they appear in the program. Character string constants always
contain a "string” of characters between quotes.

e.g. '"ABCD:F

The character string cunnot contain a quote, but can contain any other legal
character.

When you run this program, you will not like the spacing. The headings do
not appear above the columns. This is because printing is done normally in
16 character zones . Character strings and numbers are printed lefi-justified in
the zone, however, numbers are printed with a space for a sign in front.
Negative numbers have a minus sign in this space. The next example
corrects the problem.

A Flavour of Waterloo microBASIC 27

Example 8 Blanks in Character Strings

Function

This example operates exactly as the previous one except that the headings ate

centered

Notes:

over the columns.

10 ! Example 8

20 !

25 print ' X', ¥, z
30 x =12

35 loop

40 y = x*x

45 z = X*X*X

50 print x,y,2

52 x = x+1

53 if x=21 then quit
55 endloop

60 stop

’

The character string constants contain a number of blank characters which
have the effect of shifting the x, y and z to the center of the column.

28

Chapter 1

Example 9 Square Root Function (SQR)

Function

This example calculates a table of square roots of x for x having integer values from 1
to 30, inclusive.

Notes:

10 ! Example 9

201

30 print "This is a table of Square Roots’
40 x =1

50 loop

60 y=sqr(x)

70 print x,y

80 X =x+1

90 if x=31 then quit
100 endloop

110 stop

The SQR is known as a built-in or intrinsic function and will compute the
square root of the quantity in parentheses, provided the quantity is not
negative.

Other intrinsic functions such as SIN and COS are available in BASIC.

Results are printed rounded, with at most 9 digits.

A Flavour of Waterloo microBASIC

Example 10 Sine/Cosine Functions (SIN,COS)

Function

Notes:

10 ! Example 10

20 !

30 print ‘This is a table of SINES and COSINES’
40 print © x',” SINx',"” COSx’
50x=0

60 loop

70 y = sin(x)

80 Z = cos{ X)

90 print x,y,z
100 x=x+.1
110 if x=3.1 then quit
120 endloop
130 stop

29

When you run this program, it does not stop and must be terminated using

the "STOP” key. This is because numbers are stored somewhat inaccurately
by computers. For example, the fraction "one third” is written as .3333333 to

seven figures in decimal notation; this is slightly incorrect. Computers work

internally in hinary notation and similar slight inaccuracies occur. Thus, 3.1

is probably stored something like

3.09599999

problem, replace line 110 with

110 if x>3 then quit

and run the program again.

Since x=3.1 is never true, the program does not terminate. To correct this

30

Chapter 1

Example 11 PI Function, Scientific Notation

Function

This example computes a table of sines and cosines of x for x ranging between PI/2
and PI radians in increments of 1.

Notes:

10 ! Example 11

20!

30 print "This is a table of SINES and COSINES’
40 print © x'," SINx',"” COSx'
50 x = pi/2

60 loop

70 y = sin(x)

80 z = cos(X)

90 print x,y,z
100 X=X+ .1
110 if x>pi then quit
120 endloop
130 stop

The output has an untidy appearance due to the use of scientific notation. In
this notation, the numbers are expressed with an exponent.

e.g. 1.23456789E12
means 1.23456789 times 10 to the 12th power

Pl is a known constant to BASIC, therefore, a value need not be assigned to
it in the program. True mathematical PI, 3.141592653589793..., is a
constant with an infinite number of decimal places. The microcomputer is
capable of representing only a nine-digit approximation of this value.
Consequently, COS(PI/2), as calculated by the computer, is a very small
number (approximately .0000000007) instead of zero.

A Flavour of Waterloo microBASIC 31
Example 12 Input

Function

This program is an endless loop which requests the user to “Type in x”, and it rcturns
the value of the cube of x.

10 ! Example 12

20t

30 print 'Test simple INPUT from keyboard’
40 loop

50 print *Type in x’

60 input x

70 y = X*X*X

80 print x, ‘cubed =,y

90 endloop
100 stop

Notes:
1. The purpose of the statement
print "Type in x'
is to prompr the user; that is, this statement reminds the user that a value
must be typed into the keyboard, followed by carriage return (RETURN
key).
2. The statement

print x, ‘cubed=".y

shows that character string constants can be placed along with variables in
the print list.

3. This program is an endless loop and must be terminated with the "STOP”
key.

32 Chapter 1

Example 13 Exiting a Program due fo an Input

Function

This program operates as Example 12 except that when you type -999 for x, the loop
is terminated.

10 ! Example 13

20!

30 print ‘Test simple INPUT from keyboard’
40 loop

50 print 'Type in x’

60 input x

65 if x = -999 then quit
70 y = X*X*x

80 print x, ‘cubed =",y
90 endloop

100 stop

A Flavour of Waterloo microBASIC 33

Example 14 Nested Loops, QUIT Limitations

Function

This example computes a set of tables of squares of x, with the starting value of x,
increment of x, and number of entries being prompted as input from the keyboard.

10 ! Example 14

20!

30 loop

40 print 'Start x at’
50 input x

60 if x = -999 then quit

70 print 'Vary x by’

80 input xvary

90 print 'Number of values for x is’

100 input n

110 print * x’," x*x’
120 loop

130 y = x*x

140 print x,y

150 X = X + xvary
160 =n-1

170 if n=0 then quit

180 endloop
190 print 'Job finished’

200 endloop
210 stop

Notes:

i. This example introduces a "loop within a loop”. The inside loop is the five
statements between the inside LOOP - ENDLOOP pair. The outside loop
contains all those statements between the outside LOOP - ENDLOOP pair,
which ircludes the inner loop.

2. The QUIT statement exits from the loop immediately containing it only. The
QUIT in line 170 transfers control to line 190.

3. To terminate, type -999 when the initial value of x is requested.

34 Chapter 1

Example 15 IF...ELSE...ENDIF

Function

In this example, the user is asked to input a "dividend” and a "divisor”. The "quotient”
is printed, unless the divisor is zero, in which case an appropriate message is printed.
To terminate, type -999 when the dividend is requested.

10 ! Example 15

20 !

30 loop

40 print "Input dividend”

50 input dividend

60 if dividend = -999 then quit
70 print “Input divisor”

80 input divisor

90 if divisor = 0

100 print "Divisor = ('
110 else
120 quotient = dividend / divisor
130 print quotient
140 endif
150 endloop
160 stop
Notes:
1. The purpose of this example is to illustrate the use of the IF - ELSE- ENDIF
construction.
a. The IF statement always contains a relational expression which,

when evaluated, is true or false.

b. If the relational expression is true, all statements between the IF and
ELSE are exccuted.

. If the relational expression is false, all statements between the
ELSE and ENDIF are executed.

A Flavour of Waterloo microBASIC 35

2. The ELSE statcment can be omitted. If so, all statements between the IF and
ENDIF are executed when the relational cxpression is truc.

3. 1F's can be nested, if desired; that is, an IF-EL.SE-ENDIF construction can
contain other similar constructions.

36

Chapter 1

Example 16 Concatenation

Function

The user is prompted to type in his first name, followed by his last name. The

computer "composes” the two names into a single string and prints it.

Notes:

10 ! Example 16

20!

30 print "INustrate CONCATENATION of strings”
40 loop

50 print "What is your first name”

60 input firstname$

70 if firstname$ = “quit” then quit

80 print "What is your last name”

90 input lastname$
100 fullname$ = firstname$ + " " 4 lastname$
110 print "Your full name is ", fullname$
120 endloop
130 stop

The two names are assigned to two string variables firstname$ and
lastname$. The dollar symbeol, $, at the end of a name indicates that it is a
string name.

The + operator causes the two strings before and afier it to be combined into
one string (concatenation}, with no space between them. Thus, in order to
have a blank space between the two names, it is necessary to "add” three
strings together, with the center one being a character string constant
containing a single blank.

A Flavour of Waterloo microBASIC 37

Example 17 Substring Operation

Function

This example assigns the value ABCDEFGHI) to the character variable x$, then
extracts 4 characters from within the string, beginning at the third character. This new
string is assigned to the string variable y$, and then printed.

Then, the program prints all the characters, one at a time.

10 ! Example 17

20 !

30 x$ = "ABCDEFGHILY”
40 y$ = x5(3:6)

50 print y$

60 n=1

70 loop

80 y$=x8(n:n)
90 print y$
100 n=n+ 1
110 if n=11 then quit
120 endloop

130 stop
Notes:
1. The substring operation is defined as follows:
character variable(M : N)
The operation causes the Mth through the Nth characters from the character
variable to form a new string. If M=N then the string consists of one
character (the Mth), If M>>N or N<<=0 or M > string-length then the result
is the "null” or empty string.
2. One can also assign a character string to a substring. To illustrate this try the

following assignment and print the new value of x$.

x$(5:5) = 'eec’

38 Chapter 1
Example 18 Expand on Example 17

Function

The character string ABCDEFGHII is assigned to x$. The first print line will contain
the first character, the second print line will contain the first two characters, etc., with
the 10th line conaining all 10 characters in the string.

10 ! Example 18

20!

30 x$ = "ABCDEFGHLY"
40 n =1

50 loop

60 ¥y =x%(1:n)
70 print y5$

80 n=n+ 1

90 if n=11 then quit
100 endloop

110 stop

A Flavour of Waterloo microBASIC

Example 19 Length Function (LEN)

Function

39

The user is asked to type in his name. The program prints the name vertically, one
character per line.

Notes;

10 ! Example 19

20!

30 loop

40 print "What is your name"”
50 input x$

60 if x$ = "guit” then quit
70 n = len{ x§)

80 t=1

90 loop

100 yb=x5(t:t)
110 print y$

120 if t=n then quit
130 t=t+1

140 endloop

150 endloop
160 stop

As each name will be of different length, we use the LEN function.

LEN({(character variable)

returns the number of characters in the string.

The program stops when the characters "quit” are entered as a name.

49 Chapter 1

Example 20 Expands Previous Examples

Function

This example asks the user to input a three letter word. The program prints the word
with the letters in reverse order.

10 ! Example 20

201

30 loop

40 print "What is the three-letter name”
50 input x$

60 if x$ = "quit” then quit

70 y1$ = x$(3:3)

80 y25 =x$(2:2)

90 y38 =x$(1:1)

100 backname$ = y1% + y2% + y33
110 print backname$

120 endloop

120 stop

A Flavour of Waterloo microBASIC 41

Example 21 VALUE and VALUE$

Function

The character string "1234567°, is converted to numeric, 2 is added and the result is
printed. A number 123 is converted to a string and is concatenated to 'CAT’ to
produce the string "123CAT’, which is printed.

10 ! Example 21

20!

30 x$ = "1234567"

40 y = value(x§)
50y=y+2

60 print y

70 x = 123

80 y$ = value$(x) + "CAT"
90 print y$

100 stop

Notes:
1. The intrinsic function
VALUE(character variable)

converts the value of the character variable to a numeric quantity. Note that
the string must contain only characters that form a valid representation of a
numeric constant value (e.g., 1.2 or -5).

2. The intrinsic function
VALUES{numeric variable)

converts the value of the numeric variable to a string which contains
characters representing the numeric value as it would be displayed with the
PRINT statement.

42 Chapter 1

Example 22 Matrices, Printing a Blank Line

Function

This example requests the user to input exactly 10 names. It then prints them back in
reverse sequence.

10 ! Example 22

20

30 dim x$(10)

401i=1

50

60 loop

70 print ‘Name please’
80 input a%

90 x$(i) = a$

100 i=i+ 1

110 if i=11 then quit
120 endloop

130

140 i = 10

150 print

160 print “The names in reverse order’
170

180 loop

190 print x$(1)

200 i=i-1

210 if i = 0 then quit
220 endloop

230
240 stop
Notes:
1. The names are stored in a matrix which is set up using the DIM statement in
line 30. This statement creates an eleven element array, with the elements
being

x$(0),x8(1),x3(2), ... ,x$(10)

Notice that element x$(0) is not used in this program.

A Flavour of Waterloo microBASIC 43
2, Each clement of the matrix is able to hold a character string, with each string
being of a different length, if desired.

3 Numeric matrices can be defined with a similar DIM statement. Note that
numeric names do not end with a dollar symbol, 5.

4. Matrices can have as many dimensions as are required.

5, Line 150 causes a blank line to be printed.

44

Chapter 1

Example 23 ’;’ in a PRINT Statement

Function

The user inputs 10 names. Then he is asked for an integer between 1 and 10. If he
enters 5, the 5th name is printed, etc.

10 ! Example 23
20
30 dim x&(10)
40i=1
50
60 loop
70 print 'Name please’
80 input a$%
90 x$(i) = a$%
100 i=i+1
110 if i = 11 then quit
120 endloop
130
140 loop
150 print 'Enter a number between I and 10
160 input i
170 if i = -1 then quit
180 print "Name "5 1; " is '; x$(1)
190 endloop
200
210 stop
Notes:
1. The semicolons, ;, used in line 180 indicate that the "16 character print zone”

is to be ignored and each value is printed immediately following the previous

value.

A Flavour of Waterloo microBASIC 45

Example 24 Matrix Element Zero

Function

This program is identical to the previous example except that 11 names are input,
utilizing the Oth element of the matrix x$.

10 ! Example 24

20

30 dim x$(10)

40i=10

50

60 loop

70 print 'Name please’
80 input a$

0 x$(i) = a$

100 i=i+1

110 if i = 11 then quit
120 endloop

130

140 loop

150 print 'Enter a number between 0 and 10’
160 input i

170 if i = -1 then quit

180 print ‘Name ’; ;" is "; x$(1)
190 endloop

200

210 stop

46 Chaptcer 1

Example 25 OPTION BASE

Funetion

The program oncc again asks the user for 10 names. However, only 10 elements are
allocated since we use OPTION BASE 1.

10 ! Example 25

20

23 option base 1

26

30 dim x$(101

40 i =1

50

60 loop

70 print ‘Name please’
80 input a%

90 x5 1) = a$

100 i=1i+1

110 it 1 = 11 then quit
120 endloop

130

140 loop

150 print 'Enter a number between | and 10
160 input i

170 if i = -1 then quit
180 print "Name “; 1; " is '; x$(1)
190 endloop

200
210 stop
Notes:
1. In line 25 we introduce the statement
QPTION BASE 1
2. This causes a// matrices in the program to begin with the first element having

an index of | rather than zero. Thus, the matrix x$ contains 10 elements
rather than 11.

A Flavour of Waterloo microBASIC 47

Example 26 Procedures

Function

This example invites the user to submit 10 names which are stored in an matrix and
then are printed in reverse order.

10 | Example 26

20

30 dim x$(10)

40 call read._names

50 print "Names in reverse order”
60 call print_names

70 stop

80

90 proc read_names

100 i=1

110 loop

120 print "Name please”
130 input a$

140 x$(i) = a8

150 i=1+1

160 if i = 11 then quit
170 endloop

180 endproc

190
200 proc print_names
2101 = 10
220 loop

230 print x5(i)

240 i=i-1
250 if i = 0 then quit
260 endloop

270 endproc

Notes:

1. The main purpose of this example is to introduce the procedure definition
facility in BASIC. We define two procedures; namely, read.names and
print_names.

48

Chapter 1
Procedure names are defined with the PROC statement as illustrated in lines

90 and 200.

The procedure definition is the group of statements between the PROC and
ENDPROC statements.

The procedure is invoked by including it in a CALL statement. For example
call read_names
causes the read_names procedure to be executed. This use of a procedure

call permits one to modularize the program and is a matter of programming
style.

A Flavour of Waterloo microBASIC 49

Example 27 Procedures with Parameters

Function

This example is similar to Example 26 but permits the user to indicate the number of
names which are to be entered.

10 ! Example 27

20

30 dim x$(10)

34 print "How many names”
36 input n

40 call read_names{ n }

50 print "Names in reverse order”
60 call print_names{ n)

70 stop

80

90 proc read_names(count)
100 i=1

110 loop

120 print "Name please”
130 input a$

140 x$(i) = a$
150 i=1+1

160 if i > count then quit
170 endloop

180 endproc

190
200 proc print_names(count)
210 i = count
220 loop
230 print x$(i)
240 i=1i-1
250 if i = O then quit
260 endloop
270 endproc

50

Notes:

Chapter 1

The purpose of this example is to introduce a parameter in the procedure.
The PROC statement now contains not only the procedure name, but a
parameter list “(count)”. The parameter variable, count, is assigned the value
of variable n when the procedure is called in line 40. The value of n is
established in line 36 when the user types a number.

When the procedures arc called in lines 40 and 60, the parameter list must be
included with the procedure name.

There can be as many parameters in the list as are required, Commas are
used to separate multiple parameters in a list.

A Flavour of Waterloo microBASIC 51

Example 28 User Functions

Function

This example permits the user to input up to 10 numbers, then computes and prints
the average of these numbers,

10 ! Example 28

20

30 dim x(10)

40 print “How many numbers”
50 input n

00 call read numbers(n)

70 print "Average of numbers”
80 print fn_average(n)

90 stop

100

110 proc read_numbers(count)
1201 = 1

130 loop

140 print "Number please”
150 input number

160 x(i) = number

170 i=i+1

180 if i > count then quit
190 endloop
200 endproc

210

220 def fn_average(count)
230 i =1

240 total = 0

250 loop

260 total = total + x(1i)
270 i=i+1

280 if i > count then quit
290 endloop

300 fn_average = total / count
310 fnend

52

Notes:

Chapter 1

The purpose of this example is to introduce the function definition facility in
BASIC. We define a function named "fir.average’. The function has one
parameter, count, which performs a similar role to the parameter used with
procedures in the previous example.

Function names are defined with a DEF statement as illustrated in line 220.
The function definition is the group of statements between the DEF and
FNEND statements.

The primary difference between functions and procedures is that function
names are assigned a value within the furction definition, as illustrated in
line 300. If this was not done, the function name fn_average would be
assigned the value zero when the function completed its work.

The function is invoked by including the function name in a statement where
an expression or value can appear, as illustrated in line 80.

Note that all function names must begin with fn or FN. Functions can be
numeric, string or integer functions. String function names always end with
a $. Integer function names end with a % (integers are discussed in later
examples).

A Flavour of Waterloo microBASIC 53

Example 29 Files, OPEN, CLOSE, I0_STATUS, ON EOF

Function

This program creates a file on disk called "namefile”. The program requests the user
to type names af the terminal. These names are printed as records on the disk file.
When the name quit is entered, the program halts.

10 ' Example 29
20
30 on eof ignore
40 open #2,"namefile’,output
50
60 loop
70 print ‘"Name'
80 input name$
90 if name$ = ‘quit’ then quit
100 print #2, name$
110 endloop
120
130 close #2
140 open #2,’namefile’,input
150
160 loop
170 input #2, name$
180 if io_status <<> 0 then quit
190 print name$
200 endloop

210
220 close #2
230 stop
Notes:
1. In statement 40 we open the file. If there is no such file as namefile, a new

file is automatically created. We indicate that the file will be used as output;
thus if this is not a new file, all old information will be destroyed. The #2 in
the open statement 1s a unit number assigned to the file for this program
only. All other references to the file in this program are done using this
number rather than the file name.

54

Chapter 1

The file name (e.g., namefile) is always a character string of 16 or fewer
characters.

When we want to write data into the file, we use a statement like line 100.
This causes a "record” containing the single field name$ to be written onto
unit #2.

When the file has been written, it must be closed as in line 130. A special
"end of file indicator” is written at the end of the file.

When the file is reopened for input in line 140, it is automatically positioned
at the beginning .

As the records are read, orle name at a time is assigned to the variable name$
in line 170.

When the "end of file indicator” has been read, the built-in function
10_STATUS will have a non-zero value. Thus, we use this as a test for
termination.

The built-in function IO_STATUS reflects the status of the latest
input/output operation performed. The "system” will automatically alter the
value of IO_STATUS when an INPUT or PRINT encounters special
conditions such as end-of-file or an error.

In line 30 we have the statement
ON ECGF IGNORE

This is needed to prevent the system from taking automatic action when end
of file occurs.

A Flavour of Waterloo microBASIC 55

Example 30 Multiple Field File Records

Function

This program creates two fields in each record in the file "namefile”.

Notes:

10 ! Example 30
20
30 on eof ignore
40 open #2, namefile’ output
50
60 loop
70 print ‘Input name and age’
80 input name$, age
50 if name$ = 'quit’ then quit
100 print #2, name$ + ',’, age
110 endloop
120
130 close #2
140 open #2, namefile’,input
150
160 print "Age’,’Name’
170 loop
180 input #2, name$, age
190 if io_status <> 0 then quit
200 print age, name$
210 endloop
220
230 closc #2
240 stop

Each time line 80 is executed you will need to type a name and age. These
must be separated by a comma or entered on separate lines.

Each time line 100 is executed, both NAME$ and AGE are written to the
file, collected into 16 character "windows” as they would appear on the
screen. A comma is concatenated to NAMES$ to separate the values for
subsequent input.

56

Chapter 1
When the data is read in line 180, we use exactly the same number and type
of ficlds as when the data was written.

Note that in line 200 we print age to the left of name to show that this
ordering is independent of the order of the {iclds in the record.

To terminate, you must type quit and some numeric value, as the INPUT
statement is expecting two values to be entered.

A Flavour of Watetloo microBASIC 57

Example 31 Files using LINPUT

Function

Here we create a file, "namefile”, and subsequently read each record as a character
string with the LINPUT statement.

10 ! Example 31

20

30 on eof ignore

40 open #2, namefile’,output

50

60 loop

70 print ‘Input name and age’
80 input name$, age

90 if name$ = 'quit’ then quit
100 print #2, name$,’--'";age
110 endloop

120

130 close #2

140 open #2,'namefile’,input

150

160 loop

170 linput #2, a$

180 if io_status <<= 0 then quit
190 print a$
200 endloop

210
220 close #2
230 stop

Notes:

1. Line 170 introduces the input statement LINPUT. This causes the entire
record to be rcad and assigned to the character variable a$. When a$ is
printed, we sce the image of each record as it was printed to the file in line
100.

2. LINPUT allows us to read an entire record into a character variable, INPUT

allows us to read the record by specifying all of its ficlds.

58 Chapter 1

Example 32 Random Number Generator

Function
This program prints 20 random numbers between 0 and 1.

10 ! Example 32

20

30 randomize

4i=1

50 loop

60 print rnd

70 i=i+1

80 if i = 21 then quit

90 endloop

100 stop
Notes:
1. The function RND causes a random number to be generated and returned.
2. The statement in line 30; namely, RANDOMIZE, causes the random

number generator to be “sceded” with a special starting value.

A Flavour of Waterloo microBASIC 59

Example 33 Integer-Part Function (IP)

Function

This program produces 20 random integers in the range 0 to 9, inclusive.

Notes:

10 1 Example 33

20

30 randomize

401 =1

50 loop

60 print ip(rnd * 10)
70 i=1i+1

&0 if i = 21 then quit
90 endloop

100 stop

The built-in function IP is used to obtain the integer part of the argument.
Thus, IP(1.8) returns 1 and IP(96.74) returns 96.

We multiply RND by 10 to bring the value into the range from 0 to 10, not
including 10.

60

Chapter 1

Example 34 Integer Variables

Function

This program performs the same function as the previous example making use of an
integer variable in place of using the IP function.

Notes:

10 ! Example 34

20

30 randomize
40i1=1

50 loop

60 n% = rnd * 10
65 print n%

70 i=1i+1

80 ifi = 21 then quit
90 endloop

100 stop

Integer variables are used to represent "whole numbers” whereas normal
numeric variables can represent whole or fractional numbers.

Integer variable names end with a % character (for example, n% used in
lines 60 and 65).

Integer variables can be used for values in the range from -32768 to +32767.

A Flavour of Waterloo microBASIC 61

Example 35 Integer Arithmetic

Function

This program illustrates a peculiarity of integer arithmetic compared to normal
arithmetic.

Notes:

16 ! Example 35
20

30 i% =1
40 two% = 2
50 loop

60 print i%, i% / 2, i% / two%
70 i% = i% + 1
80 if 1% = 11 then quit
90 endloop
100 stop

An arithmetic operation, such as i%/two%, which has only integer variables
as operands, is evaluated according to the values of integer arithmetic and
produces an integer result.

An arithmetic operation, such as 19%/2, which has both an integer variable
and a normal numeric value, is evaluated according 1o normal arithmetic
rules and produces a normal numeric value.

The division operations performed in line 60 illustrate one of the major
differences between normal and integer arithmetic. In the case of integer
division, fractional results are truncated to the integer part of the value.

62

Chapter 1

Example 36 Integer Arithmetic

Function

This program distinguishes between even and odd integer values making use of the

peculiari

Notes:

ties of integer division described in the previous example.

10 ! Example 36

20

30 i% =1

40 two% = 2

50 loop

60 i (i% / two%) * two% = 1%
70 print i%, ‘even’

80 else

90 print 1%, ‘odd’

100 endif

110 1% = i% + 1

120 if 1% = 11 then quit
130 cndloop

140 stop

The result of division by integer 2 is multiplied by integer 2 and compared
with the eriginal intcger. Odd numbers produce fractional results truncated
to integer which do not match the original values when multiplied and
compared.

Similar techniques can be used to compute the modulus of integer values
using different number bases.

Waterloo microBASIC

Command Language Reference Guide

Waterloo Computing Systems Newsletter

The software described in this manual was implemented by Waterloo Computing
Systems Limited. From time-to-time enhancements to this system or completely new
systems will become available.

A newsletter is published periodically to inform users of recent developments in
Waterloo software. This publication is the most direct means of communicating
up-to-date information to the various user. Details regarding subscriptions to this
newsletter may be obtained by writing:

Waterloo Computing Systems Newsletter
Box 943,

Waterloo, Ontario, Canada

N2J 4C3

65

Chapter 1

Commands

1.1 Introduction

Commands may be issued to the Waterloo microBASIC system by typing them at
the keyboard. Generally speaking, the commands recognized by the system are used
to prepare programs, modify programs and store or retricve copies of programs.

Abbreviated forms of most commands can be used. For the sake of clarity,
abbreviations are not used in introducing these commands. An appendix of this
manual contains a command swmmary which shows acceptable command
abbreviations.

1.2 Starting and Finishing

When your personal computer’s power is turned on, a message is displayed
requesting that you select a processor. To select BASIC, type the letter b and press
the RETURN key. A heading will be displayed indicating that Waterloo microBASIC
has been activated.

66 Chapter 1

In this initial state the BASIC workspace in the computer is empty. At this point a
program can be entered as will be described in subsequent chapters. Whenever you
have completed working with one program and wish to enter a new one, you should
type the command

CLEAR

to re-initialize the workspace to the empty state. Commands are shown here in
uppercase, but can be entered in either upper or lower case {(e.g., CLEAR or clear).

When you are finished working with BASIC and wish to use another processor,
type the command

BYE

to return to processor selection level. A message will be displayed requesting
selection of a processor, similar to when you turned on the computer's power.

Of course, if you are finished working with the computer and do not wish to use
another processor, you can simply turn off the power and nced not type the BYE
command.

69

Chapter 2

Entering a Program

A program consists of lines which contain statements. Each line has a number on
the front. This number must be a whole number (integer) and can be in the range of 1
through 65529.

When a line with a number on the front is typed, it is recognized to be a line of a
program and is not treated as a command. Lines of a program are kept in the computer
workspace in order of line number. The statements of a program are also executed in
order of line number in normal circumstances.

Regardless of the order in which lines are typed, BASIC always maintains them
in ascending order of line number. The following example shows a program with line
numbers 1 through 6. Whether these lines were typed in order 1,2,3,4,5,6 or
2,5,4,3,6,1 the result would be identical.

1 ! Example Program

2 ! Calculate Fahrenheit temperature from Centigrade
3 C=100

4 F=(C* %5+ 32

5 oprint C,F

6 stop

70 Chapter 2

Normally, lines are typed more or less in order by line number. Frequently,
however, it is necessary to go back and type a line between two existing lines to
correct an etror of omission or siniply to enhance the function of a program.

It would be difficult to add lines to the previous example, except at the end of the
program, since no line numbers were left unused in the range 1 through 6. It is
common practice, therefore, {0 leave gaps between line numbers as illustrated in the
following example.

10 1 Example Program
20 ! Calculate Fahrenheit temperature from Centigrade

a0 C =100

40 F=(C*9)/5+ 32
50 print C,F

60 stop

If a line is entered with a line number that matches an existing line in a program,
the new line replaces the existing one. For example, if the line

50 print F,C

was entered when the above program was in the workspace, the old line 50 would be
replaced and the program henceforth would display the values of F and C in the new
order. This is an example of ediring a program. Further means of editing programs are
introduced in a later chapter.

This means of line replacement can be convenient, but is also somewhat
dangerous. It is easy to inadvertently replace lines when entering programs this way.
For example, instead of adding a line 300 to a program, it is casy to miss a digit and
replace line 30.

Another facility is provided for entering lines of program which reduces the
probability of such errors and eliminates the tedium of manually typing line numbers.
The AUTOLINE command automatically generates line numbers for program entry.
The generated number for a Hne is displayed and the rest of the line can be typed.
When one line is completed and entered, the next line number is displayed.
Automatic line number generation is terminated by pressing the STOP key or by
erasing the generated number and pressing RETURN.

The line number to start automatic generation and the amount to increment for
each new line may be specified as follows:

Entering a Program 71

AUTOLINE start#, increment

where start# is a valid line number and increment is a suitable integer value. If no
start# is specified, the first generated line numbers will be 10 greater than the highest
line number of the program in the workspace. 1f the workspace is emply, the default
start# is 10. If no Increment is specified, a default of 10 is assumed.

For example,

AUTOLINE generates lines 10, 20, 30, ...
AUTOLINE 110 generates lines 110, 120, 130, ...,
AUTOLINE 230, 5 generates lines 230, 235, 240, ...

Lines added to a program with AUTOLINE are handled in the same manner as
lines with manually typed line numbers. Thus, lines with numbers between existing
line numbers will be inserted between the existing lines, and lines with numbers
matching existing line numbers will replace existing lines. Although inadvertent
replacement of existing lines is less likely with AUTOLINE, caution must be
exercised to avoid this.

73

Chapter 3

Running a Program

When a program has been entered into the computer workspace, the command

RUN

can be entered to execute or run it. The computer begins processing at the lowest
numbered line and performs the actions specificd by execcutable statements.
Statcments are normally exccuted sequentially, in order of ascending line number,
however, this order can be altered by control statements in the program. Control of
statement execution in a program is described in the Programming Language portion
of this manual.

The program will normally exccute until it is termingted by a STOP or END
statement. If the end of the program is encountered, the program is terminated as if an
END statement appeared there. The program will be interrupted if an error is
encountered, or it can be intentionally interrupted by pressing the STOP key.

Before executing a program, the BASIC system examines the program’s
statements, resolving information concerning control structures. Tf control structures
are found to be incomplete or invalid, diagnostic messages are displayed pointing out
the problems and the program is not run.

74 Chapter 3

If no problems are detected the message
Executing. ..

is displayed and program execution commences. When program execution ends, the
message

Ready
is displayed indicating that the system is again ready to accept commands.

The RUN command initializes the program such that it executes each tinte cxactly
as if it had been freshly entered. This is true regardless of what state the program may
be in as a result of previous program execution. That is, any numeric data items are
set to zero, character data items are set to the empty or null string, data files are
closed, and outstanding statement-control information is purged.

Other means of exccuting portions of programs and continuing interrupted
exccution without initialization are introduced in the chapter entitled "Debugging
Programs”.

77

Chapter 4

Editing a Program

Frequently it is necessary to change or edit a program that has been entered into
the computer workspuce. It has been explained that lines may be added to a program,
or existing lines replaced, simply by typing the lines with appropriate line numbers or
entering them with the AUTOLINE facility.

4.1 LIST Command

When editing, it is useful to be able to examine the current lines of a program.
The command

LIST

provides a means of listing the lines of a program on the computer's display screen.
This command, as shown, will display all of the lines of the program. If there are
more lines to be listed than can be displayed on the screen, the LIST command pauses
each time a screen is filled. LISTing continues if just the RETURN key is pressed. If
another command is entered while LISTing is paused, LISTing terminates and the
new command is processed.

78 Chapter 4

In some cases you may wish to examine a single line. This can be accomplished
with the form of the LIST command shown below

LIST line#

where line# is a valid line number. The following examples demonstrate commands
to display lines 100 and 15 respectively.

LIST 100
LIST 15

The general form of the LIST command permits a range of lines to be displayed as
shown below

LIST start#-end#

where start# is the first line number in the range and end# is the last line number in
the range. If start# is not specified, it is assumed to be the first line of the program.
Similarly, if end# is not specified, it is assumed to be the last line of the program.
The following examples illustrate use of line ranges with the LIST command.

LIST 100-200 display lines 100 through 200

LIST -200 display from start of program through line 200
LIST 100- display from line 100 through end of program
LIST - display all lines of the program

Note that the last example is equivalent to the simple form of the LIST command
with no line or line range specified.

4.2 DELETE Command

The DELETE command provides a means of removing lines from a program. A
line number or line range must be specified with the DELETE command in the same
manner as the LIST command. The following examples illustrate use of this
command:

DELETE 10 delete line 10

DELETE 10-40 delete lines 10 through 40

DELETE -40 delete from start of program through line 40
DELETE 900- delete from line 900 through end of program

Editing a Program 79

4.3 Changing Lines

Any line of a BASIC program can be changed by retyping the entire line. Some
computer systems, however, support screen editing features which allow changing of
lines without retyping. The remainder of this section describes use of these features to
change lines of a program on such systems.

Any line displayed on the screen can be modified and re-entered using special
editing keys to insert, delete and replace characters. To accomplish this, position the
cursor to the line you wish to modify with the “cursor-up” (upward arrow) key or
"cursor-down” (downward arrow) key. Position the cursor within the line using the
"cursor-right” (rightward arrow) key and “cursor-left” (leftward arrow) key.
Characters can be replaced simply by typing the new characters. Pressing the
"delete-character” key causes a character to be removed from the line. The
"insert-character” key can be used to add characters in the middle of a line.

Once the line has been suitably modified on the screen, it may be entered to the
computer by pressing the "RETURN" key. Note that only the fine at which the cursor
is positioned is entered into the computer. If changes to other lines of the screen
display have been made without pressing the "RETURN" key for those lincs, the
modified lines will not have been entered to the computer.

This type of editing is typically used to change the contents of a line. However, it
can also be used to make a copy of a line in another part of the program. This may be
accomplished simply by altering the line number at the front to designate the position
of the new copy, and pressing "RETURN".

Similarly, previously issued commands that remain on the screen can be
re-issued, perhaps after slight modification, with this technique. Editing of the screen
display and re-entry of lines in this manner provides a simple but powerful editing
capability.

4.4 RENUMBER Command

As noted earlier, it is often necessary to add new lines to a program between
existing lines. It was recommended that gaps be left between line numbers used to
facilitate such additions later. Even where gaps are left, however, it is sometimes
necessary to insert more lines than have been allowed for in the gaps. Faced with this
type of situation, one quickly learns how to use the RENUMBER command.

RENUMBER changes the line numbers at the front of each program line without
changing the relative order. In addition to changing the numbers on the front of each

80 Chapter 4

line, it appropriately updates any primitive control statements in the program that
refer to line numbers. Any references to non-existent lines are displayed for
inspection, but are not changed.

The general form of this command is shown below:

RENUMBER start#, increment
where start# is the number to be generated for the first program line, and increment is
the amount to add in generating each successive line number. An increment of ten is
assumed if increment is not specified. If neither start# nor increment are specified, a

starting line number of ten (10) and increment of ten is used.

The following examples illustrate the assignment of new numbers to the lines of a
program.

RENUMBER assign numbers 10, 20, 30, ...
RENUMBER 100 assign numbers 100, 110, 120, ...
RENUMBER 100, 20 assign numbers 100, 120, 140, ...

Thus, RENUMBER may be used to eniarge gaps for inserting lines between
existing lines. Programmers often RENUMBER the lines of their program for
aesthetic purposes, or for consistency before storing a copy for later use.

33

Chapter 5

Storing and Retrieving a Program

Once a program has been entered, tested and edited to the programmer’s
satisfaction, a copy of the program can be stored on an external storage medium such
as a disk. This copy may be subsequently loaded back into the computer workspace to
be used again.

As a program is entered, each line is compressed into an encoded form to make
optimal use of the limited workspace available in the computer. When the program is
displayed with the LIST command, each line is decoded as it is displayed so that it is
presented in source form, that is, the form in which it was originally typed. Different
commands are provided to store and retrieve copies of programs in both encoded and
source forms for reasons that will be explained as the commands are introduced.

5.1 Files

Programs are stored on the disk as files. Each program file is identified by a
name. In the case of the Commodore disk units used with this system, each file name
can consist of up to 16 characters. For example, a program file could be named
MYFIRSTPROGRAM.

84 Chapter 5

Each disk unir has two drives. A flexible disk can be placed in each drive. The
rightmost drive of a unit is designated as drive 0 and the leftmost as drive 1. The
system will handle multiple disk units and consequently, each unit is identified by a
number or address. When only one disk unit is attached to a system, its address is
normally set to 8.

The term filename, as used in the description of commands in this manual, can
consist of a simple name such as MYFIRSTPROGRAM. In this case, the file is
assumed to reside on a disk with unit address 8 and drive 0. If the file in question does
not conform to these assumptions, it is nceessary to qualify the filename further. A
description of general filenames is presented in the appendix entitled ‘Files'. For our
current purposes, use of simple names will suffice.

5.2 STORE Command
The command
STORE ‘filecname’

copies the program which currently resides in the computer workspace to the file
specified. The copy is in encoded form just as the program is represented in the
computer workspace. This form of program copy is advantageous for two rcasons:
the program in compressed format requires minimal space on the external medium;
the entire program is copied in one step from the workspace, resulting in fast
operation.

If a program is copied to the disk with the command

STORE 'MYFIRSTPROGRAM’

a new file is created with this name. If a program has previously been copied with the
STORE command to a file with this name, the old program copy will be replaced
when the STORE command copies the current program. If another type of file alrcady
exists with the filename used, the STORE command will fail and an appropriate
diagnostic message will be displayed.

Storing and Retricving a Program 85

5.3 LOAD Command
The command
LOAD 'filename’

retrieves a program copy from a file into the computer workspace. The LOAD
command retrieves copics created with the STORE command. Since the copy of the
program 18 in encoded {orm, it can be transterred quickly into the workspace in a
single step.

When a program is LOADed into the workspace, for example,
LOAD "MYFIRSTPROGRAM’'

the workspace is first initialized, clearing any program currently resident, before the
program copy is transferred from the file.

5.4 SAVE Command
The command
SAVE line range ’filename’

copies a program, or portion of a program, from the computer workspace to the file
specified. The copy is in source or character format, that is, program lines are
decoded into the form in which they were originally typed. The file created appears
exactly like a character data file, where the data is the source lines of the program.

A portion of a program may be SAVEd by specifying a line range just as with the
LIST command iniroduced earlier. I no line vange is specificd, all lines of the
program are SAVEd.

Since each program line is decoded and transferred individually, the SAVE
operation can be considerably slower than STORE. In addition, SAVEd files
generally occupy more space than STOREd files.

The SAVE command, however, provides some capabilities that cannot be
accomplished with the STORE command. Since the lines of the program are SAVEd
in character format, a copy of the program can be printed by specifying a titename of
printer. In addition, portions of a program can be SAVEd in a disk file and later
incorporated into other programs with the MERGE command. This technigue

86 Chapter 5

provides a convenient means of duplicating a common sequence of statements in
several dificrent programs.

The following examples illustrate use of the SAVE command.

SAVE 'PROGRAMSOURCE’ copy all lines of the program to disk file
PROGRAMSOURCE
SAVE ’printer’ print a copy of the program

SAVE 300-800 'COMMONLINES’ copy lines 300 through 800 of the program
to disk {ile COMMONLINES

If lines of a program are copied to a disk file with the SAVE command, and no
files exist with the specified filename, a new character data file is created. If a
character data filc already exists with this filename, the old file is replaced. If another
type of file already cxists with the filename used, the SAVE command will fail and an
appropriate diagnostic message will be displayed.

5.5 MERGE Command
The command
MERGE ‘filename’

adds lines from the specificd file to the current program in the workspace as if they
were typed at the keyboard. The lines from the file are inserted into the program in the
position indicated by the line number at the front of each line. If incoming lines have
line numbers matching existing lines of the program, the existing lines are replaced.

The file specificd must be a character data file and typically is created with the
SAVE command. Each line of the file must have a valid line number at the front. If a
line is encountered without a valid line number, the MERGE command quits and
lines which follow are not copied into the workspace.

This facility is particularly useful when several programs perform some
operations in common. The statements which perform these operations can be
SAVEd in a file and MERGEC into other programs without being retyped. Care must
be taken that the lines to be MERGEd fall in a line number range that does not conflict
with the rest of the line numbers of the program. The RENUMBER command can be
useful in sorting out such conflicts if they arise.

Storing and Retrieving a Program 87

5.6 OLD Command
The command
OLD 'filename’

initializes the workspace, clearing any program currently resident, and then adds lines
from the specified file to the workspace as if they were typed at the keyboard. Except
that it first initializes the workspace, the OLD command operates exactly as the
MERGE command.

The file specified must be a character data file (usually created by the SAVE
command). The OLD command is useful for retrieving programs from files which
may have been copied from other computer systems in character or source format.

Each line of the file is transferred, encoded and inserted into the workspace
individually. Consequently, this operation is slower than LOADing a program from a
file created with the STORE command. In general, it is recommended that STORE
and LOAD commands be used to create and retricve copies of programs when using a
disk directly attached to your computer system. SAVE and OLD commands can be
used to accomplish this function but are slower and the source representation of the
program occupies more file space.

5.7 RUN Command
The command
RUN
was introduced in an earlier chapter. An extended form of this command
RUN ‘filename’
will retrieve a copy of a program from the specified file and then execute it in the
same manner as the simple RUN command. The file containing the program copy can

have been created with the STORE command or can be a character data file as created
by the SAVE command.

89

Chapter 6

Debugging Programs

Developing BASIC programs would be fairly straight-forward if they always
performed as expected. Unfortunately, human beings frequently make mistakes when
writing programs and when typing them at the keyboard. The process of finding
errors in a program is know as debugging, that is, eliminating the "bugs”. This
process includes many different techniques for testing programs and locating errors.
The tools provided by Waterloo microBASIC for debugging and some fundamentals
of debugging methodology are introduced in this chapter. A strategy and style of
debugging will be developed by the user as he or she gains experience.

6.1 Immediate Mode

Most statements in the BASIC programming language can be executed directly or
immediately by typing them at the keyboard without a line number. For example, if

you type
print ‘Hello’

the word Hello will be displayed on the screen as soon as the statement is entered.
This immediate mode of operation extends the command language available at the
keyboard to include most statements of the programming language. In addition,

90 Chapter 6

immediate mode statements can operate on the data items of the current program in
the workspace. The role that immediate mode statements fulfill in debugging
programs will be illustrated in the remaining sections of this chapter.

Generally speaking, any executable statement that is meaningful by itself is valid
for immediate mode execution. Examples of statements that are not meaningful by
themselves are LOOP and ENDLOOP. These two statements delimit a group of
statements in one type of control structure available for repetitive exccution of
staternents.

6.2 Interrupting Programs

When the microBASIC system recognizes an error as a program is executing, it
will interrupt the program, display a diagnostic message indicating the type of error
and then display the line that was exccuting when the error occurred. A mark is
displayed underneath the program line indicating the position where the error was
detected. When a program has been interrupted, commands can be entered, the
program edited, and immediate mode statements executed. For example, a program
might be interrupted because it attempted to input data from a file which had not been
opened. In this case, an OPEN statement could be executed in immediate mode and
execution could be allowed to continue to test the remainder of the program.

The type of crrors recognized by microBASIC are, generally speaking, violations
of rules or requests to perform operations which cannot be accomplished for one
reason or another. Unfortunately, these are not the only types of problems that can
arise with programs. It is very easy and very common to erroneously define a
program that will carry on executing indefinitely, repeating the same valid sequence
of operations. If the sequence being repeated contains no PRINT statements, nothing
will appear on the screen regardless of how long you wait. Execution of such infinite
loops can be interrupted manually by pressing the STOP key. When this is done, the
microBASIC system displays a message and displays the line which was just about to
be executed.

One method of finding the bug is to stare at the program until it occurs to you
what went wrong. A better way is to examine the current contents of key data items to
see if this gives you a clue. In particular, you should examine the values of any data
items used in decisions which control repetition. For example, if a group of
statements is to be repeated until the value of I becomes 100, type

print I

to immediately display the current value of L. If the value does not make sense,

Debugging Programs 9]

examine the program to determine how the value of 1 is calculated.

In some cases it helps to alter the value of a data item using an immediate mode
assignment statement, and then let the program continue executing to observe its
behaviour.

6.3 Resuming Execution after Interruption

Some programs are expected to operate for scveral hours before they produce the
required output. For example, you might want the computer to sort the names of all
the people in Canada into alphabetical order, and then produce a list. You may
become worried, after 30 minutes have elapsed with no output, that the program is in
an infinite loop. In such circumstances, you can interrupt the program with the STOP
key and "browse” around looking at partial results with BASIC immediate mode
statements. If you are satisfied, you can use the command

CONTINUE

to resume execution at the beginning of the line where the program was interrupted.
Unlike the RUN command, CONTINUE does not re-initialize the progrant but rather
resumes execution where the program was interrupted with data and
staterment-control information preserved.

The CONTINUE command can also be used to resume executing programs which
were interrupted by BASIC when it recognized an error. The error might be corrected
by ediiing the program, or by altering data values with immediate mode statements.

If you wish to resume program exccution at a different point than where it was
interrupted, the primitive GO TO statement mav be used in immediate mode to
accomplish this. For example,

GO TO 50

will resume execution, with program state preserved as with CONTINUE, at line 50
of the program.

92 Chapter 6

6.4 Monitoring the Operation of a Program

"Browsing” at program data does not always present enough clues to solve a
problem. The command

STEP

can be used to resume an interrupted program, but execute one line at a time. Each
program line is displayed before it is executed. After execution of each line, the
computer waits until the RETURN key is pressed. If the STOP key is pressed instead
of RETURN, execution is interrupted and microBASIC returns to Ready status. Note

that commands can only be entered when microBASIC is in Ready status, commands
are not recognized in STEP mode.

Another form of this command,

STEP line number

can be used to resume execution in STEP mode at a point other than where the
program was interrupted. In fact, this form of the command allows STEP mode
execution of a program that was not in an interrupted state.

Another method of monitoring execution is to insert PAUSE statements at
selected locations within the program. The program is interrupted when a PAUSE
statemnent s executed. This technique is more precise than using the STOP key with
respect to where the program is interrupted. In many cases, strategic use of PAUSE
statements can be more effective than STEPping through large programs one line at a
time.

When a program is CONTINUEd after interruption by a PAUSE statement,
execution resumes at the line after the PAUSE.

6.5 Testing the Program in Small Parts

As you might expect, the difficulty of debugging programs increases as they
become larger and more complex. Programs which have been written in a modular
fashion are typically easier to debug since different modules often can be tested
indcpendently.

In Waterloo microBASIC, this can be done by organizing major functiona)
operations of the program into procedures or functions. These can be called
(executed) with immediate mode statements to test them. For example, typing

Debugging Programs a3

call Display_menu

will immediately invoke execution of the procedure named ‘Display_menu’.

6.6 Editing An Interrupted Program

When a program is interrupted the microBASIC system remembers which ling to
execute when resuming with CONTINUE or STEP. In the case of an error
interruption, this line is that in which the error occurred. When the STOP key is used
to interrupt execution, the line at which to resume is that which was about to be
executed, that is, the line which is displayed. The line following a PAUSE statcment
is the point at which execution resumes after a PAUSE interruption.

If the program is edited after being intcrrupted, the position of resumption can be
affected. If the line at which to resume is replaced, the new line becomes the
resumption point. If it is deleted, the line with the next higher number becomes the
resumption point. When the interrupt was the result of a PAUSE statement and a line
is inserted between the PAUSE and the resumption point, the inserted line becomes
the new resumption point,

Editing can cause problems with return to outstanding procedure, function and
GOSUB calls. If the line which exccuted the call is deleted, changed or replaced, the
program will be interrupted with an error when the return is exccuted.

95

Chapter 7

File Management

Some devices, such as disks, provide external storage on which files may be kept.
Copies of programs may be stored in these files as described in earlier chapters. In
addition, files may be created and accessed by BASIC programs for the purpose of
storing, retrieving and updating data. A file might contain data such as marks for the
students in a particular class. Data in files is retrieved with input operations and stored
or updated with eurpur operations. Devices which provide file storage are referred to
as file-oriented devices,

Sooner or later, every user encounters the finite storage capacity limitations of the
file storage device being used. The need for file management becomes painfully
obvious when there is no space left to store important data or a large program that has
been arduously typed and debugged. The DIRECTORY command provides a means
of examining what files are stored on a device, how much space they occupy and how
much space is available. Other commands allow files to be scratched in order to free
space, and filenames to be changed. These commands are described in the following
sections of this chapter.

96 Chapter 7

7.1 DIRECTORY Command

The command

DIRECTORY 'filename’
displays a list of the files which are stored on the device or file-arca specified. The
format of the list produced depends upon the type of device or file-area specified.
Usually, the amount of space occupied by each file and the amount of space available

is indicated.

In the case of the Commodore disk, the dircctory listing is in column format. The
first column indicates the number of 256-character blocks occupied by each file. The
second column contains the file names. The third column identifies the file type.
Copies of programs created with the STORE command have a file type of FRG.
Ordinary data files and program copies created with the SAVE command have file
type SEQ. Relative files have file type of REL. The last line of the directory listing
indicates the number of blocks remaining unused.

Examples follow which illustrate use of the directory command with the
Commodore disk.

command meaning

directory List files on drive
0 of disk unit §

directory 'disk’ same as above

directory 'disk/1’ list files on drive
1 of disk unit 8

directory 'disk9/1’ list files on drive
1 of disk unit 9

7.2 SCRATCH Command
The command
SCRATCH ’filename’

erases the file specified. When a Commodore disk file is SCRATCHed, its space is

File Management 97

made available for use with other files. Actually, SCRATCH is a BASIC
programming language statement. It is used as a command with immediate-mode
execution, but can be used in a program.

scratch ‘charlie’
scratch 'disk8/0.charlie’

The above examples are equivalent. Both erase the file named “charlie” on drive 0
of disk unit 8.
7.3 RENAME Command

'The command

RENAME ‘filename’ TO ‘name’
changes the name of the file specified by "filename” to "name”. This command does
not physically move the file and consequently the device parameters of the filename
cannot be changed. The entire string "nam¢” is uscd as the namc of the file within the
device; this string should not contain a device specification such as disk or host. For
example, the command

rename "disk/1.customer’ to ‘oldcustomer’

changes the name of file “customer” on drive 1 of disk unit 8 to "oldcustomer”,

The following example illustrates the confusion that can result from improperly
including a device specification as part of the new name.

rename 'disk/1.abe’ to 'disk/1.xyz’

The result is that file "abc” now has the name "disk/l.xyz"; that is, it would be
referenced as disk/1.disk/1.xyz.

Like SCRATCH, RENAME is actually a programming language statement. It is
used as a command with immediate-mode exccution, but can also be used in a
program.

98 Chapter 7

7.4 MOUNT Command

The Commodore disk unit maintains information concerning the frec space of
each flexible disk in its drives. This information is kept in a table called the Block
Availability Map (BAM). The BAM keeps track of how many blocks of space are
available and where they arc located. When a different disk is placed in a drive, a new
BAM must be read with information for the new disk to avoid allocation of data
blocks over existing files. Newer models of Commodore disks such as the 8050
automatically detect when a disk is placed in a drive and automatically read a new
BAM. Older models, however, do not detect a change of disk and the MOUNT
command must be used to instruct the disk unit to read a BAM. The MOUNT
command is specified as follows:

MOUNT 'filename’

where the filename indicates the disk unit and drive number. Examples follow which
Hlustrate the MOUNT command.

MOUNT "disk’
MOUNT 'disk8/0

The above commands are equivalent. Both cause a new BAM to be read for the disk
in drive O of disk unit 8.

Note that the MOUNT command corresponds to the INITIALIZE command
described in the Commodore disk manuals. Since the term "initialize” has the
connotation of erasing or reformatting a disk on many computer systems, Waterloo
microBASIC uses the command MOUNT instead.

Like SCRATCH and RENAME, MOUNT is actually a programming language
statcment. It is used as a command with immediate-mode execution, but can also be
used in a program.

File Management 99

7.5 TYPE Command
The command
TYPE 'filename’

displays the contents of the specified file. If the file contains more records than can be
displayed on the screen, the TYPE command pauses cach time a screen is filled.
Displaying of records continues if just the RETURN key is pressed. If another
command is entered while TYPE is paused, TYPE terminates and the new command
is processed.

7.6 SETUP Command
The command

SETUP

displays the SETUP menu to allow setting of appropriate characteristics for serial and
host communications. Refer to the System Overview manual for further information
concerning SETUP and serial/host communications.

101

Chapter 8

Using the General Editor

In addition to the editing capabilities provided by the microBASIC system, it is
possible fo make use of the general text editor. The gencral editor provides some
powerful text manipulation fucilities. For example, it is possible to change all
occurrences of a name to another name in an entire program using only one
command.

The command

EDIT

invokes this cditor from microBASIC. The current program in the workspace can
then be moditied using the [acilities of the general editor. The capabilities of the
general editor are documented in the Warerloo System Overview manual. The editor's
BYE command can be used to return to BASIC level.

Warnings:

1. When the editor is used, certain information about the current program state
is lost. Because of this, a program is initialized, as with the RUN command,
upon returning to microBASIC. Consequently, an interrupted program ¢ould
not be modified with EDIT and have its execution resumed with the

102

Chapter 8

CONTINUE command.

One shortcoming regarding use of the general editor for a BASIC program is
that it does not recognize line numbers. Should you enter a line at a point in
the program that is inconsistent with its line number, the editor will not
diagnose this or reposition the line for you. Similarly, lines can be added
without line numbers. These problems are noted by microBASIC when you
attempt to exccute the program.

The BASIC level RENUMBER command can be used to assign line
numbers based upon the actual position of the line as entered with the
general editor. Thus lines can be added to the program with the general
editor without regard to line numbers and assigned numbers with
RENUMBER.

The general editor, invoked from microBASIC, shoutd not be used to edit
data files. Used from microBASIC, the editor always provides space for line
numbers since it is intended for BASIC programs. This can cause extra
spaces to be inserted automaticalty at the front of data file records. To edit
data files, leave microBASIC using the BYE command and select the
general editor for stand-alone use.

Waterloo microBASIC

Programming Language Reference Guide

Waterloo Computing Systems Newsletter

The software described in this manual was implemented by Watertoo Computing
Systems Limited. From time-to-time enhancements to this system or completely new
systems will become available.

A newsletter is published periodically to inform users of recent developments in
Waterloo software. This publication is the most direct means of communicating
up-to-date information to the various user. Details regarding subscriptions to this
newsletter may be obtained by writing:

Waterloo Computing Systems Newsletter
Box 943,

Waterloo, Ontario, Canada

N2J 4C3

107

Chapter 1

A Program

1.1 Introduction

A program consists of a set of instructions which define actions to be performed
by the computer. These instructions must be expressed in a language which the
computer can recognize and understand. BASIC is a language which is designed to be
a straightforward means of cxpressing instructions to the computer. A BASIC
program is composed of starements: a statement which instructs the computer to
perform an action is termed executable;, one which defines characteristics of the
program is termed declarative; and one which provides descriptive information to a
person examining the program is termed a comment. Typically, each BASIC
staternent appeats on a separate line. The order of lines in the program is determined
by a line number which appears on the left side of each line. Consider the following
example:

108 Chapter 1

10 ! Simple Example

20 ! Print the number 3, its square and cube
30 print 5

40 print 5* 5

50 print 5*5*35

60 stop

70 end

Lines 10 and 20 contain comments describing the program. Lines 30-50 contain
executable statements which cause the numbers 3, 25 and 125 to be printed on the
computer's terminal display. Note that the numbers 25 and 125 are calculated in an
algebraic-like formula, or expression, wherein the asterisk (*) represents
multiplication. The STOP statement in line 60 is executable and causes the program
to terminate. The END statement in ling 70 serves as a declarative, marking the end
of the program.

The actions specified by a program’s statements are performed when the program
is executed or run. Refer to the Waterloo microBASIC Command Language portion
of this manual for information concerning entering and running programs. The
following output will be printed on the computer's display when this program is run:

Executing...
5
25
125

Ready

The first message indicates that program execution has begun. The last message
signals that the program has terminated and the computer is ready to accept
commands.

1.2 Some Rules About Programs

1.2.1 Line Numbers

Line numbers must be specified for each line in a BASIC program. These
numbers must be integer values in the range 1 through 65529. Leading zeroes are
ignored in line numbers; i.e., 100, 0100 and 00100 are all treated as the same line
number.

A Program 109

1.2.2 Keywords

Certain words, known as keywords, have a special meaning to BASIC. These
include (i) words which define statement types such as STOP, (i) special words used
in statements such as TO, and (iii) intrinsic function names such as VALUES. A
complete list of Waterloo microBASIC keywords is given in an appendix of this
manual. Keywords cannot be used as names of variables, arrays, functions or
procedures.

Keywords can be entered in upper or lower case or in a combination of both; that
is, Print, print and PRINT all represent the same keyword. Regardless of which way
keywords are entered, they will always appear in lower case when the program is
listed because of the manner in which the program is encoded as it is entered.

1.2.3 Use of Spaces

Spaces should be used in statements to improve readability of the program.
Spaces cannot occur within line numbers, keywords, multi-character operators, Of
names of variables, arrays, functions or procedures. Spaces are required to separate
keywords from names, numeric constants and other keywords.

1.2.4 Comments

Comments may be placed at the end of most lines. A comment starts with an
exclamation mark, '!’. This indicates that the remainder of the line contains
documentation that is to be ignored by the BASIC system. An entire line can be made
a comment by placing an exclamation mark at its start.

In addition, comments may be entered into a program with the REM (remark)
statement. When a statement starts with the keyword REM, the remainder of that line
is treated as a comment.

1.2.5 Null Lines

It is permissible to enter a line containing only a line number and spaces or a
comment. Such a line which contains no statements is called a null linc. Null lines
may be used to enhance the readability of programs.

1o Chapter 1

1.2.6 Multiple Statements Per Line

More than one statement can be entered on one line, if sufficient space exists, by
separating the statements with a colon, "', character. This practice is generally
considered to be a poor programming technigue since it tends to render programs less
readable and more difficult to modity.

Several statement types cannot be entered this way and must appear as the only
statement on a line. These include DATA, DEF, ENEND, FOR, NEXT, IF, ELSE,
ELSEIF, ENDIF, WHILE, LOOP, ENDLOOP, UNTIL, GUESS, ADMIT,
ENDGUESS, PROC and ENDPROC statements.

Users of multiple statements per line should consider with care the ramifications
with respect to error-handling facilities described in a later chapter. In general, it is
recommended that only one statement be entered per line.

1.2.7 Multiple-Line Statements

A statement can be entered using multiple tines. A line containing a statement,
which is to be continued on the following line, must contain an ampersand, '&’,
character as its last non-blank character. The following line must contain an
ampersand as the first non-blank character after the line number.

100 PRINT #4, SITE_REVENUE, ! SITE SUMMARY&
110 & REGION. REVENUE, ' REGION SUMMARY&
120 & COUNTRY_REVENUE, ' COUNTRY SUMMARY

The above example illustrates continuation of a statement over three lines. Note
that comments can appear, as illustrated, on cach line of a continued statement.

DATA statements cannot be continued. Program enlities, such as keywords,
constants, names and operators cannot span continued lines,

1.2.8 END Statement

The strict rules of BASIC require that every program have an END statement as
its last statement. A program will, however, cxecute properly if the END statement is
missing. It is an error to place an END statement anywherc in the program c¢xcept as
the last statement.

113

Chapter 2

Types of Data

All programs use information or data. There are two classes of data in a BASIC
program. One class is numeric data, that is information consisting of numbers. The
other class is string data, that is sequences of alphabetic and other characters. These
types of data can be represented in various ways. This chapter describes the manner in
which data can be represented with microBASIC.

2.1 Numeric Constants and Variables

A numeric constant is a numeric value, such as 12 or 3.5, which does not change
during the execution of a program. A numeric variable is a name, such as Total,
which represents one specific value at any given instant, but can be assigned different
values throughout the execution of a program. Variables are used in a manner similar
to the manner in which symbols or names are used in scientific and business equations
or formulae. In this section, the rules for numeric constants and variables are given.

114 Chapter 2

2.1.1 Numeric Variables

A numeric variable is written as a sequence of alphabetic characters, digits and
underscore ("_") characters. The variable must start with an alphabetic character and
can be up to 31 characters in length. It is advisable to use names which are descriptive

of the usage of the variable, Examples of numeric variables follow:

Sum_of Squares
Page Number
LINE.COUNTER
Student_average

As illustrated, both upper and lower case alphabetic characters may be used in a
variable name. Note that upper and lower case letters are not treated as if they are
equivalent; that is, TOTAL represents a different variable than Total. Keywords
cannot be used as variable names.

At any particular time there is one value associated with a variable. When a
program is run, each variable is automatically assigned a value of zero. Other values
may be assigned to the variable by execution of BASIC statements such as
assignment statements. Programs should not be written with the assumption that
variablcs are initially assigned zero values. It is good programming practice to assign
explicitly an initial value to each variable in a program before the variable is first
used.

2.1.2 Numeric Constants

Numeric constants are entered in BASIC programs in a number of formats, as
illustrated below:

8152
400.37
36945
-63
-.00395
894871,

Each constant can consist of a sign (+ or -), followed by a sequence of integer digits,
a decimal point and a sequence of fractional digits. These elements are combined to
represent a numeric value in the manner that people normally write numbers except
that commas cannot be used in a numeric constant:

Types of Data 115

7,194,632.79
7,432
6.479.321,437

The preceding specifications are all incorrect and will cause errors.

Numeric constants may also be entered in scientific notation. In this notation, a
constant as described above is followed by an 'E’ or ‘e’ and a second integer value.

Scientific Notation Value
7.36E2 736
21.437e-6 .000021437
-.098E+4 -980

In the preceding example, the first column illustrates numeric constants in scientific
notation and the second column gives the corresponding values. The actual value to
be represented is determined by taking the number preceding the 'E” and multiplying
it by ten raised to the power of the integer following the 'E’. The number preceding
the "E’ is called the mantissa and the integer following the 'E’ is called the exponent.
Scientific notation is commonly uscd when the magnitude of numbers is either very
large or very small.

There are no rules in BASIC which specify where scientific notation should or
should not be used. A programmer should use whichever format makes the program
more easily understood by another person.

2.1.3 Internal Representation of Numeric Data

Numeric variable and constant values are represented internally in a form called
floating-point. Floating-point representation differs from one type of computer to
another. Every computer has a maximum absolute numeric value that can be
represented. This is sometimes called machine infinity. A special function, named
INF, gives this maximum value for the computer being uscd. To display this value,
enter the following statement:

print inf

Likewise, every computer has a minimum absolute non-zero numeric value that can
be represented. This value, called machine epsilon, can be similarly displayed using
the special function, EPS.

116 Chapter 2

When values with an absolute magnitude greater than machine infinity are
calculated, an overflow condition results and the maximum value is substituted.
Similarly, when values with an absolute magnitude smaller than machine epsilon are
caleulated, an underflow condition results and zero is substituted. Refer to the chapter
entitled ERROR HANDLING for further information regarding these error
conditions.

Floating-point representation of numbers is approximate for many values;
however, the amount of error is normally quite small. When a numeric constant is
converted to this internal format, it will be correct to a number of significant digits
that is dependent upon the type of computer used (9 digits for your personal computer
and 16 digits for an IBM Series/1 minicomputer or IBM 370 computer). The
evaluation of an expression can compound this error causing it to become greater than
when the initial conversion occurred. It is beyond the scope of this manual to discuss
this phenomenon thoroughly. In most cases the amount of error is too small to impact
the computations in a program. Error-free representation of numbers and
computational results can be attained using integer variables, introduced in the
following section, for the class of values that can be represented as integer variables.

2.1.4 Integer Variables

A special type of variable can be used to represent integer values in the range
-32768 to +32767. This seemingly strange value range results from the fact that
integer variable values are represented internally in binary (base 2) integer format.
Sixteen bits, each defining a binary digit, 0 or 1, are used to represent integer variable
values. The most significant bit (conceptually, the farthest-left bit) indicates the sign,
with zero representing plus, one representing minus. The remaining 135 bits can
represent 2 raised to the power 15 unique positive values (0 through 32767) and equal
number of negative values (-32768 through -1).

Integer variable names are similar to numeric variable names with a percent
symbol, '%’, appended to the end of the name. That is, an integer variable name must
start with an alphabetic character and consists of up to 31 alphabetic characters, digits
and underscore characters, '_’, followed by a percent symbol. Examples of integer
variables follow:

Page_Number%
COUNT%
Part_number%

Integer variables arc automatically assigned a value of zero each time a program is
TUun.

M W e e

Types of Data 117

2.2 String Constants and Variables

A string value is a sequence of characters. A string constant is a string value that
does not change during the execution of a program. A string constant is enclosed by a
pair of quotation marks; single (") or double (") quotation characters can be used. The
same character must be used to delimit the start and end of a particular string
constant. If one type of quotation mark is a character in the string, the other type must
be used to enclose the string. Examples of string constants follow:

"This is a string.’

"SALES TOTAL"

“There isn’t enough”
'Digits: 0123456789

L3

A string containing no characters, such as the last example, is called a null string
and has length zero. The maximum size of a string value is usually restricted by the
size of the computer's memory available for storing the characters; however, when
large computers are used, a string value is limited to a maximum of 65535 characters.

A string variable is a name which represents one specific string value at any given
instant, but can be assigned different valucs doring the execution of a program. A
string variable name must start with an alphabetic character and has up to 31
alphabetic characters, digits and underscore characters, followed by a dollar symbol.
Keywords cannot be used as variable names. The following are examples of siring
variable names:

Name$
STREETS$
City_State$

String variables are automatically assigned the null string as an initial value each
time a program is run.

2.3 Matrices

A matrix is used to represent a list or table of values. Another name for a matrix is
an array. Like simple variables, which only represent a single value, matrices can be
numeric, integer or string, Matrix names start with an alphabetic character and can
contain up to 31 alphabetic characters, digits and underscore characters. Integer
matrix names end with a percent symbol '%’. String matrix names end with a dollar
symbol '$’.

118 Chapter 2

Matrix values can be referenced individually or collectively. All elements of
matrices are automatically set to an initial value each time a program is run: the initial
value for numeric and integer matrix clements 1s zero; the initial value for string
matrix clements is the null string.

Matrices can be various shapes and sizes according fo their dimensions. A matrix
of one dimension is a list or vector of valucs, the number of which are defined by the
matrix dimension. A two-dimensional matrix is a table of values, the nuniber of rows
being determined by the first dimension and the number of columns being determined
by the second dimension. A three-dimensional matrix can be considered as a number
of tables, the number being determined by the third dimension. Matrices can have
four or more dimensions, but matrices with more than three dimensions become
difficult to conceptualize and are scldom used. The number and size of dimensions
that can be specified is limited practically by the amount of memory available lor the
matrix values.

The number and size of dimensions for a particular matrix are defined the first
time a refercnce to the matrix is encountered during execution ol a program.
Thereafter, all references to elements of that matrix nust be consistent with respect to
the number of dimensions and the bounds of each dimension as defined.

2.3.1 DIM Statement

Syntax: DIM name(dimensions), name(dimensions) ...

where
name is a matrix namc
and
dimensions is a list of numeric valucs, separated by commas

The DIM (dimension) statement is used to define the number and size of the
dimensions for one or more matrices. The numeric values which specify the
dimensions can be numeric constants, varizbles or expressions which yield numeric
results when evaluated. The numeric values are rounded to the ncarest integer to
define the size of a dimension. The number of dimensions for a matrix corresponds to
the number of values, separated by commas, between the parentheses.

Types of Data 119

40 DIM PRICE(100)

The above example shows a DIM statement which defines a numeric matrix
named PRICE with one dimension and 101 values or elements. The individual
elements of this matrix can be referenced as PRICE(0), PRICE(1), PRICE(2), ...,
PRICE(100).

The following example defines a string matrix NAME$ and an integer matrix
AGE%, each having 21 elements.

100 DIM NAME$(20), AGE%(20)

The number of elements in a multi-dimensional matrix is calculated as the product
of each dimension incremented by 1. Thus, the matrix defined below to have 11 rows
and 4 columns, has a total of 44 clements.

80 DIM SCORE(10,3)

The number of elements required in a particular matrix may differ each time a
program is tun. In this type of sitvation, variable dimensions are useful. The
following matrix definition might be used to keep track of the scores for a number of
contestants each competing in a number of events.

80 DIM SCORE(CONTESTANTS, EVENTS)
Rules:
(1) The dimensions of each matrix can only be defined once in each program.

(2) If a DIM statement is used to define the dimensions of a matrix, the DIM
statement must be exccuted prior to any other references to that matrix.

(3) When a matrix is referenced in a program without the dimensions having been
defined by a DIM statement, dimensions are defined by default to a value of
10. Tndividual elements of a matrix are referenced with subscripts as described
in the next section of this manual, If an individual element of a matrix is
referenced before its dimensions are defined, the number of dimensions is
defined to correspond to the number of subscripts used. Some statements, such
as MAT assignment, support operations involving entire matrices. When a
matrix as a whole is referenced in this manner, without its dimensions having
been established, an error results.

120 Chapter 2
{4) The value for each dimension must be a non-negative number.

2.3.2 Matrix Subscripts

Some BASIC statements support operations involving entire matrices.
Frequently, however, it 1s useful to reference individual values or elements of a
matrix in the same contcxt that simple variables are used in a program. This is done
using subscripts. For example, element 3 of a one-dimensional matrix PRICE could
be referenced as PRICE(5). In this example the subscript is 5.

Subscripts are enclosed in parentheses followir;g the matrix name. If the matrix
has more than one dimension, a list of subscripts is specified separated by commas.
The number of subscripts must equal the number of dimensions defined for the
matrix.

Subscript values must be numteric and can be constants, variables or expressions
which yield numeric results when evaluated. Each subscript value is rounded to the
nearest integer and must not exceed the corresponding dimension value or be less than
ZEr0.

An element in the two-dimensional matrix SCORE might be referenced as
SCORE(ATHLETE, SPORT). The row and column of the element are established by
the vatues of variables ATHLETE and SPORT, respectively.

2.3.3 OPTION BASE 1

Mathematicians and scientists often express formulae in terms of vectors which
have an element 0 or arrays with 0-th rows and columns. Many other people prefer to
number ¢lements of a list starting with 1. The statement

OPTION BASE 1

specifies that @/l matrices in a program have 1 as the first element in each dimension.
If this statement is used, it must be executed before any matrices are referenced in a
program.

30 OPTION BASE]
40 DIM PRICE(100)
50 DIM SALESMANS(5)

Types of Data 121

The above example defines a numeric matrix PRICE having 100 elements,
PRICE(1), PRICE(2),...,PRICE(100), and a string matrix SALESMANS having 5
elements SALESMANS(1), SALESMANS(2),..., SALESMANS(S5).

123

Chapter 3

Expressions

An expression defines the computation of a new vatue from other values using
operators such as + which specifies addition. Constants, variables, matrix elements
and function references can be used as values in an expression. The simplest form of
an expression involves no computation and is simply a value with no operators.
Examples of simple expressions follows:

1234.567
"characters’
Price

Evaluation of expressions which have only one operator is straightforward and
intuitive. For example, the value of the expression

Price + Tax
is computed by adding the values of two numeric variables, Price and Tax.
The rules for evaluating expressions with a number of operators are more

complex. The order in which operations are performed is determined not only by the
order in which they appear (Icft to right), but also by each operator’s priority.

124 Chapter 3

For example,
1+2+4

is evaluated by adding 1| and 2 giving 3, then adding 4 giving 7; whereas
1 +2*4

is evaluated by multiplying 2 * 4 giving 8 and adding 1 to give 9.

3.1 Priority of Operators

Operations of higher priority are performed tn an expression betore operations of
lower priority. Operations are performed in a left to right order in cases of equal

priority.

Priority Operation Example

i1 matrix subscripting table(i,])
function reference tha(x,y)

10 substring name$(start : end }

9 enclosed in parentheses 3F(1+1)

3 exponentiation T,** value T 3

7 unary plus + +5
unary minus - -2

6 multiplication * quantity * unit_cost
division / gallons / 4

5 addition + total + amount
subtraction - total - credit
concatenation + province$ + ", Canada”

4 relational operators
==, <, <> e e total > = 50

3 logical NOT NOT age% > 30

2 logical AND price > 10 AND quantity < 3

1 logical OR errors > 5 OR average << 50

These operations are described in the next several sections of this chapter.

Expressions 125

3.2 Matrix Subscripting

As introduced in the previous chapter an individual element of a matrix can be
specified by subscripting. Each subscript must be an expression which yields a
numeric result. Each subscript value is rounded to the nearest integer and then used as
an index to identify the individual element.

3.3 Function Reference

BASIC provides a number of intrinsic functions which yield a value when
referenced in an expression. For example, the LEN function yields a numeric value
cotresponding to the length of the string which is specified as a parameter for this
function. The value of LEN('abc') is 3, that is, the number of characters in parameter
'abc’. Some intrinsic functions return string values. These have names ending with a
dollar symbol, $. A programmer can define functions as well which can be referenced
in expressions in the same manner as intrinsic functions. Definition of functions is
described in a later chapter.

Parameters in function references are expressions. Each parameter expression is
evaluated and passed to the function which normally uses these values in computing a
result.

3.4 Substring

A portion of a string value can be extracted using the substring operation. The
string value to which the substring operation applies must be a string variable or a
subscripted element of a string matrix.

var$(start : end)
matrix$(subscripts)(start : end)

The portion of the string to be extracted is specified by the position of its starting
and ending characters, as two numeric valued expressions separated by a colon. Both

start and end values are rounded to integers.

For example, if the value of string variable Letter$ is "abcdef’ the value of
substring

Letter$(2 : 4)

is ‘bed’. If the end value exceeds the number of characters in the string, the last

126 Chapter 3

character of the string is treated as the end. Thus, the value of
Letter$ (3 : 20)

is "cdef”. Similarly, if the start value is less than 1, the first character of the string is
treated as the start.

The null string results from any of the following situations: the original string is
null; start value exceeds end value; start value exceeds the length of the string; end
value is less than [.

3.5 Parenthesized Operations

The normal priority of operations can be pre-empted by enclosing operations in
parentheses, with the exception of subscripting, function references and substring
operations. For example, the expression

1+2%4
is evaluated by multiplying 2 and 4, then adding 1 giving 9; whereas the expression

{1+ 2)*4
1s evaluated by adding 1 and 2, then multiplying by 4 giving 12. More generally,
subexpressions can be enclosed by pairs of parentheses. Parenthesized operations
within a parenthesized subexpression are said to be nested. For example, the
expression

10 * (48 - (45-3))
is evaluated by subtracting 3 from 45 giving 42, subtracting this from 48 giving 6 and
multiplying by 10 to give 60.

3.6 Exponentiation

Exponentiation computes a numeric value raised to a numeric powet. This is
expressed in the form

value T power or value ** power

For example, 2 T 3 is 8. Fractional and negative powers are permitted. For example,

Expressions 127

4 1.5 is the square oot of 4, namely 2, Similarly, 8 1 (-1) is the reciprocal of 8,
namely .125 or one-eighth.

A number of special cases exist and are shown in the table following.

Special Case Result Condition
nto 1 forn<0,n=0,n>0
O0Tn 0 forn>0,n<0
nfm error for n << 0 if m not an

integer value

3.7 Unary Plus
Unary plus,
+ value

produces a numeric result identical to the numeric value operated upon.

3.8 Unary Minus
Unary minus,
— value
produces a numeric result which is the numeric value operated upon with its sign
reversed.
3.9 Multiplication
Multiplication,
value * value

gives a numeric result which is the product of two numetic values.

128 Chapter 3

3.10 Division
Division,
value / value

gives a numeric result which is the quotient obtained from dividing the first numeric
value by the second. Division by zero is an error.

This error condition can be handled by the ON ZDIV statement described in the
chapter concerning Error Handling. If no ON ZDIV handling of this error is
specificd, a message is displayed, machine infinity is substituted as the result and the
program continues.

3.11 Addition
The result of addition,

value + value

is the numeric sum of two numeric values.

3.12 Subtraction
The result of subtraction,
value - value

is the numeric difference of two numeric values, subtracting the second from the first.

3.13 Concatenation
The result of concatenation,
value + value

is a string consisting of the characters of the first string value followed by the
characters of the second string value. For example,

'John" + 'son’

Expressions 129

produces the string

'JTohnson'

3.14 Comparisen (Relational Qperations)

Values can be compared using the relational operators listed below:

relation meaning

value = value equals

value > value greater than

value < value less than

value <<= value not equal to

value >= valuc greater than or equal
value <= value less than or equal

Note that the last three operators are composed of two characters each. These
operators can also be entered as >, => and =<; however, since the operators are
encoded when a statement is entered, the operators always appear as shown in the
table when the program is LISTed.

The result of a comparison is a numeric value of ! if the relation is true, and 0 if
the relation is false. String valucs must be compared with string values and numeric
with numeric. It is an error to compare numeric with siring values.

Tests for equality can produce surprising results when non-integer numeric values
are compared. This is caused by the approximation of values in the internal
representation of numbers and the rounding emors that can accumulate when
arithmetic is performed using these approximate values. Refer to the description of
numeric internal representation in the chapter concerning types of data.

Characters are represented internally in computers by numeric codes. Each
character is assigned a unique code in the character ser used by the computer system.
Characters are compared according to their relative position in the character set, that
is, according to their numeric code values. Strings are compared character by
choracter, from left to right. If the strings differ in length, they are compared using
the shorter length; if they match, the longer string is considered greater than the other
string.

130 Chapter 3

3.15 Logical NOT
Logical NOT,
NOT value

operates on a numeric value, giving numeric result T (true) if the value is 0, and
giving result O {falsc) if the value is non-zero.

When the value is an integer variable, each bit (binary digit) of the value is
operated upon independently, resulting in an tnteger value composed of individual bit
results. The reader should have a thorough understanding of binary representation and
operations when using this feature.

3.16 Logical AND

Logical AND,

value AND value

operates on two numeric valucs, giving numeric result 1 (true) if both values are
non-zero, and giving result O (false) if cither value is zero. '

When both values are integer variables, corresponding bits (binary digits) of the
values are operated upon independently, resulting in an integer value composed of
individual bit results. The reader should have a thorough understanding of binary
representation and opcrations when using this feature.

3.17 Logical OR
Logical OR,
value OR value

operates on two numeric values, giving numeric result | {true) if cither value is
non-zero, and giving result 0 (false) il both values are zero.

When both values are integer variables, corresponding bits (binary digits) of the
values arc operated upon independently, resulting in an integer value composed of
individual bit results. The reader should have a thorough understanding of binary
representation and operations when using this featurc.

Expressions 131

3.18 Integer Operations

Arithmetic expressions involving only integer variables are evaluated using
integer computations and produce integer results. For example, the operation

three% [two%

where three% has value 3 and two% has value 2, producces a result of 1 rather than
1.5.

Any arithmetic operation involving a numeric constant or a non-integer nemeric
variable is evaluated using floating-point computations. If an integer variable is used
in a operation with another type of numeric value, the integer value is converted
automatically to floating-point representation before the operation result is computed.

Manipulation of binary values, bits, can be accomplished using integer variables
with AND, OR and NOT operations.

Chapter 4

LET Statement

4.1 Assignment in General

The LET statement is used 10 assign a valuc to a variable, a matrix element, a
function result, or a substring of either a string variablc or matrix element. The value
to be assigned is specified as an expression following the equals symbol “=". The
receiving item precedes the equals symbol. The keyword, LET, can optionally
precede the receiving item. The following examples are equivalent.

letx = 5*y
x=23%y

In practice, the keyword LET is scldom used.

Only numeric expression results can be assigned to numeric or integer receiving
ttems. Similarly, only string expression results can be assigned to string receiving
items. When a non-integer value is assigned to an integer receiving item, the
fractional portion of the value is truncated (discarded).

134 Chapter 4

4.2 Matrix Element Assignment

Matrix clements are assigned a value by specifying a matrix subscript preceding
the equals symbol. Matrix subscripts are described in an carlier chapter concerning
types of data. Examples follow,

table(i,j) = 10 #1 + j
name$(student_number) = 'charlie’

4.3 Function Resolt Assignment

Function results are assigned by specifying the function name as the recciving
item. It is valid to assign a value to a function name only if it is the name of the
currently active function. Examples of assignment to a function name follow.

fna =x*y
fna% = result%
fna$ = 'abc’

Recfer to the chapter entitled "Functions” for further information.

4.4 Substring Assignment

Substring recetving items are specificd in a manner similar to substrings in
expressions. The characters defined by the substring are replaced in the receiving
string by the resulting value of the expression. The pew string is formed by
concatenating three component strings:

M the characters, if any, preceding the subsiring in the original string;

(ii) the result of the expression following the "=" symbol;

1l the characters, if any, following the substring in the original string.
¥ b4 g g

For example, if variable a$ had the value 'abedef’, the statement
a%(3:4) = 'CD’

causes a$ to have the value "abCDef’; that is, characters “cd” in the original string are
replaced by "CD".

LET Statement 135
The string value assigned need not have the same length as the receiving
substring. For example, the statement
a$(5:5) = 'EEE’

now causes the value of a$ to be 'abCDEEE(’ ("e” is replaced with "EEE". Similarly,
the statement

a$(5:7) = 'E’
now results in a$ having the value ‘abCDEf" ("EEE" is replaced by "E").

As described in the chapter concerning expressions, some substring specifications
define a null string. When such substrings are assigned a value, the effect is that the
value assigned is "inserted” in the receiving string in front of the character defined by
the substring start position. The following examples illustrate insertion in the middle,
at the front, and at the end of a string:

as$(4:3 ="0
gives a$ the value 'abCODE(’; then

a$(0:0) = "0
gives a$ the value '0abCODES"; and then

a$(99:0)= "0’
gives a$ the value '0abCODESf0’.

The last example illustrates that regardless of how large the start value is

specified, if it exceeds the length of the original string, the substring is treated as a
null string adjacent to the end of the original string.

137

Chapter 5

Matrix Assignment

Assignment of values to individual matrix elements and use of individual matrix
elements in expressions has been described in earlier chapters. A special set of matrix
statements support assignment to an entire matrix including special expressions with
operations involving entire matrices. In a particular matrix assignment statement, all
matrices involved must have identical dimensions, with the exception of transposition
and matrix by matrix multiplication,

All matrix assignment statements have the following form:
MAT matrix-name = matrix-expression
Each matrix expression can be one of the forms described in subsequent sections of

this chapter. The different forms of matrix expressions cannot be combined in one
statement to form more complex expressions.

138 Chapter 5

5.1 Scalar to Matrix Assignment
Syntax: MAT matrix = (expression)

An expression which results in a scalar (single) value can be specified enclosed in
parentheses. This value is assigned to each element of the matrix specified. Examples
follow to illustrate this type of matrix assignment.

MAT QUANTITY = (1)
MAT A$ = (')
MAT X = (5*p + q

In each of these examples, a single value is derived from evaluating the parenthesized
expression. This value is assigned to all clements of the matrix in each case.

Note that only a string value can be assigned to a string matrix and only a numeric
value can be assigned to a numeric or integer matrix.

5.2 Special Matrix Constants

Syntax: MAT numeric-matrix = ZER
MAT string-matrix = NULL$
MAT numeric-matrix = IDN

Special matrix constants ZER, NULL$ and IDN can be assigned to matrices.
These constants can only be used in maltrix assignment staterments. The first special
constant ZER, when assigned to a numeric matrix causes all elements to have the
value 0. The following two statements are equivalent:

MAT A = ZER
MAT A = (0)

When the matrix constant NULLS$ is assigned to a string matrix, all elements of the
matrix are assigned a null string. The following two statements are equivalent:

MAT AS$ = NULL$
MAT A$ = (un)

Matrix constant IDN represents the identity matrix. This constant can only be
assigned to a square numeric matrix, that is, a two-dimensional matrix with both
dimensions being equal. The identity matrix has value 1 in all diagonal elements, that
1s, elements with equal row and column positions. All other elements of the identity

Matrix Assignment 139

matrix have value 0. The following example shows assignment of the identity matrix
to a 9-element square matrix.

10 DIM A(2,2)
20 MAT A= IDN

After execution of these statements, matrix A would represent valucs as illustrated
below.

1 0 0
0 1 0
0 0 1

5.3 Matrix to Matrix Assignment
Syntax: MAT matrix = matrix

This type of matrix assignment copics the values of one matrix to the
corresponding elements of another matrix. String matrices can only be assigned to
string matrices. Numeric or integer matrices can be assigned to numeric or integer
matrices. When appropriate, conversions between floating-point and integer internal
representations are performed for each element. Examples follow:

MAT A =B
MAT X =1I%
MAT 1% =X
MAT S$ =T$

5.4 Addition, Multiplication of Scalar and Matrix

Syntax: MAT numeric-matrix = (expression) + numeric-matrix
MAT numeric-matrix = (expression) * numeric-matrix

A parenthesized expression which results in a scalar (single) numeric value can be
added to, or multiplied by, each element of a numeric matrix individually. The
arithmetic results are assigned to the corresponding elements of the numeric matrix
specified preceding the equals symbol.

MAT Interest = (.18) * Capital
MAT Count% = (1) + Count%®
MAT Canadian_funds = (1 + US_exchange) * US_funds

140 Chapter 5

5.5 Addition, Subtraction of Two Matrices

Syntax:

!

MAT numertc-matrix = numeric-matrix + numeric-matrix
MAT numeric-matrix = numeric-matrix - numeric-matrix

il

Corresponding elements of two numeric matrices can be added or subtracted
using this form of matrix assignment statement, and assigned to corresponding
elements of the numeric matrix specified preceding the equals symbol. Examples
follow.

MAT Total_Sales = New_Sales + Total _Sales
MAT Profit = Price - Cost
MAT Inventory% = Inventory% - Quantity_Sold%

5.6 Multiplication of Two Matrices
Syntax: MAT numeric-matrix = numeric-matrix * numeric-matrix

Multiplication of two numeric matrices, as mathematically defined, can be
performed using this type of matrix assignment statement. The numeric matrix
receiving the result cannot be one of the two matrices multiplied. Each of the three
matrices must have two dimensions. The receiving matrix must have the same
number of rows as the first matrix multiplicand, and the same number of columns as
the second matrix multiplicand. The numbcer of columns of the first matrix
multiplicand must equal the number of rows of the second.

10 DIM A(p.qg), B(p.n, C(r.q)
20 MATA =B *C

The above statements conform to the rules regarding dimensions for matrix
multiplication. The element of matrix A in row i (0<{= 1 <{=p) and column j (0<=

J <=q)} is calculated as follows.

AL, = BG,00*C05) + BE,DH*C(LY) + ... + BAr*C(r.j)

Matrix Assignment 141

5.7 Matrix Transposition
Syntax: MAT numeric-matrix = TRN(numeric-matrix)

The mathematical transpose of one numeric matrix can be assigned to another
numeric matrix using this form of matrix assignment statement. Both matrices must
have two dimensions and the number of rows in each must equal the number of
columns in the other. The elements of each row of the receiving matrix are assigned
the elements of the corresponding column of the other matrix.

10 DIM A(p.q), B{q.p)
10 MAT A = TRN(B)

The above statements conform to the rules regarding dimensions for matrix
transposition. Each element A(i,j) is assigned the value of B(}.i), for values of i

between 0 and p inclusive and values of j between 0 and q inclusive.

Note that the receiving matrix cannot be the sume matrix that is transposed.

143

Chapter 6

Structured Control

Statements of a BASIC program are executed one at a time. Normally, statements
are executed sequentially in order of ascending line number. This order of exccution
is satisfactory for very simple programs, however, most program applications require
that different actions be chosen under different circumstances,

Control statements can be used to alter or control the order in which statements
are executed. A set of control statements, described in this chapter, can be used to
delimit groups of statements which are to be repeated or optionally executed. These
statement groups and the statements which delimit them are known as control
Structures.

Several of these control statements are uscd to select or repeat a statement group
conditionally based upon the value of an expression. Such expression results are
numeric, but are treated as logical values trie or false; any non-zero result is treated
as true and a zcro result is treated as false.

Primitive control statements exist which permit arbitrary transfer of control to any
line of a program. Primitive control statements are described in a later chapter.

The group of statements delimited by control statements forming a structure can
include other control structures. This is called nesting of control structures. Control

144 Chapter 6

structures of the same or different types can be nested within a given structure. Tt is a
common practice to indent statements within a structure, using leading spaces, to
make programs more readable. Further indentation is used with each level of nesting
to emphasize the structure of the program.

6.1 Repetition Structures

A structure which defines a group of statements that are to be repeated is often
called a Joop. Several means of defining loops exist. Different loop types are
appropriate according to when information for control decisions is available.

6.1.1 FOR-NEXT Loops

Sometimes it can be determined before starting a loop, how many times the loop
is to be repeated. The FOR-NEXT control structure provides a convenient means of
controlling repetition of such loops.

Syntax: FOR variable = expression TO expression STEP expression
statement(s)
NEXT variable

The FOR-NEXT loop uses a variable as an index or control variable. When the FOR
statement is encountered, the index variable is assigned the value of the expression
following the equals symbol. The other expressions in the FOR statement are also
evaluated at this time and are not re-evaluated during repetition.

The keyword STEP and its expression are optional and need not be specified. The
STEP expression specifies the value by which the index variable is to be incremented
or decremented after each repetition of the loop, that is, when the NEXT statement is
encountered. If no STEP value is specified, an increment value of 1 is used.

Before each repetition of the loop, including the first, the index variable is
compared with the value of the TO expression. If the index is past this value, the
statements in the loop are not executed and control passes to the statement in the line
following the NEXT statement. If the STEP value is negative, the loap is not repeated
when the index is less than the TO value; otherwise, the loop is not repeated when the
index exceeds the TO value.

Structured Control 145

Execution of a NEXT statement without first exccuting its corresponding FOR
statement causes an error. Note that the NEXT statement must have a variable which
matches that used as the index of the corresponding FOR statement. Either numeric or
integer variables can be used as indices.

6.1.2 WHILE-ENDLOOP
Syntax: WHILE expression
. statement(s)
ENDLOOP
The WHILE and ENDLOOP statements delimit a group of statements that is to be
repeated. Before cach execution of the statement group, including the first, the
numeric expression in the WHILE statement is evaluated. If the value is true the

statement group is executed; otherwise, control passes to the statement in the line
following the ENDLOQP.

6.1.3 LOOP-UNTIL
Syntax: LOOP
: statement(s)
U.NTIL expression
The LOOP and UNTIL statements delimit a group of statcmeats that is to be
repeated. After cach execution of the statement group, the numeric expression in the

UNTIL statement is evaluated. If the value is truc the statement group is not repcated
and control passes to the statement in the following line.

146 Chapter 6

6.1.4 WHILE-UNTIL
Syntax: WHILE expression
: statement(s)
Ul\.ITIL expression

The WHILE and UNTIL statements delimit a group of statements to be repeated.
Before each execution of the statement group, including the first, the numeric
expression in the WHILE statement is evaluated. If the value is true the statement
group is executed; otherwise, control passes to the statement in the linc following the
UNTIL.

After each execution of the statement group, the numcric expression in the
UNTIL statement is evaluated. If the value is true control passes to the statement in
the following line; otherwise, control passes to the WHILE statement where ifs
conditional expressicn is evaluated again.

6.1.5 LOOP-ENDLOOP
Syntax: LOOP
: statement(s)
Ei\IDLOOP

The LOOP and ENDLOOP statements delimit a group of statements that is to be
repeated. This structure defines aninfinite loop, a loop that will be repeated endlessly
unless the STOP key is pressed or the electrical power turned off. Many applications
exist in which infinite loops are uscful. Consider, for example, a program to control a
digital clock.

This structure is also useful for non-infinite loops. Often information required to
decide when to terminate a loop is not available at its beginning and is not appropriate
to test at its end. These programming situations can be handled using a
LOOP-ENDLOOP structure and an exit from the middle of its statement group using
a QUIT statement. A QUIT can be conditionally executed by making it the object of
an [F-THEN statement. The QUIT and the IF-THEN statements are described later in
this chapter.

Structured Control 147

6.2 Choice, Selection

Control statements and structures are available which allow a program to choose
if a single statement or statement group is to be executed. Additional control
structures permit choice or selection of one statement group among several to be
exccuted.

6.2.1 IF-THEN-statement
Syntax: IF expression THEN statement

The IF-THEN statement supports the choice of whether or not to execute the
statement which follows the keyword THEN. The numeric expression is evaluated
and if its value is true the statement following THEN is executed. This statement must
be one which is meaningful by itself; for example, it could not be a structure delimiter
such as LOOP or NEXT. The QUIT statement can be used with IF-THEN to
conditionally exit from within an enclosing structure’s statement group. The QUIT
statement is described later in this chapter.

Another form of the IF-THEN statement is described in a later chapter concerning
Primitive Control.

6.2.2 IF Structure
Syntax: IF expression
statement(s)

ELSEIF expression
statement(s)
ELSEIF expression
statement(s)
ELSE
statement(s)
ENDIF

This structure permits choice of one or none of possibly several different
statement groups. The ELSEIF and ELSE statements are optional. If neither are
specified, the structure appears as follows:

148 Chapter 6

IF expression
. statement(s)

ENDIF

In this case, the numeric expression in the IF statement is evaluated and if its value is
true the statement group is executed. If the value is false control passes to the
statement in the line following the ENDIF.

One of two statement groups can be selected by using an ELSE statement in this
structure as follows:

[F expression

. statement(s)
ELSE

. statement(s)
ENDIF

In this casc, a true value of the expression causes the statement group following
the IF statement to be executed after which control is passed to the statement in the
line following the ENDIF; otherwise, the statement group following the ELSE is
executed.

Use of the ELSEIF statement permits one of multiple statement groups to be
selected for execution. When ELSEIF is used, the IF expression is evaluated and if
false the ELSEIF expressions are evaluated one at a time in order of appearance. The
first IF or ELSEIF expression to be found true has its statement group executed and
control is passed to the statement in the line following the ENDIF without evaluating
any further ELSEIF expressions. If none of the expressions are found to be true,
control passes to the line after the ENDIF unless an ELSE statement is part of the
structure. If an ELSE is specified, its statement group is executed when all IF and
ELSEIF expressions are found to be false.

Only one ELSE can appear in a single IF structure, however, an arbitrary number
of ELSEIF statements can be used. An ELSE statement in an IF structure must follow
any ELSEIF statements used in the same structure.

Structured Control 149

6.3 QUIT Statement
Syntax: QUIT

The QUIT statement is used to exit from a statement group defined by a control
structure. The QUIT statement is normally vsed as the object of an IF-THEN
statement to specify a conditional exit from a statement group. The stalement group
defined by the immediately enclosing structure is that from which QUIT exits.

In the case of repetition or loop structures, QUIT passes control to the statement
in the line following the delimiter statement that ends the structure. A QUIT from a
staternent group of an IF structure passes control to the statement in the line after the
ENDIF, regardless of whether the statement group followed an IF, ELSEIF or ELSE
statement.

The use of QUIT within a GUESS structure is presented with that structure’s
description.

6.4 GUESS-ADMIT-ENDGUESS
Syntax: GUESS
. statement(s)

ADMIT

. Statement(s)
ADMIT

. statement(s})
ENDGUESS

The GUESS structure provides another form of choice or selection control
structure. For much the same reasons that LOOP-ENDLOOP with QUIT is more
suitable than WHILE or UNTIL loops in some circumstances, the GUESS structure
provides a selection mechanism that is somewhat more flexible than the IF structure.
The IF structure requires that control information for selecting a statement group be
known on entry to the structure. In many practical situations this ideal availability of
information is not attainable.

The GUESS structure permits execution of a statermnent group to be started on the
assumption that it will be the correct choice. In the course of executing a statement
group, if this assumption is determined to be false, QUIT may be used to begin
executing the next statement group defined by an ADMIT statement. If no ADMIT

150 Chapter 6
statement group follows the current one, QUIT passes control to the statement in the
line following the ENDGUESS.

If the end of the statement group is reached (that is, an ADMIT or ENDGUESS
statement is encountered), control passes to the statement in the line following the
ENDGUESS.

GUESS

IF error THEN QUIT

iF error THEN QUIT
ADNiIT
: "handle error”
END.GUESS
Situations abound in which an object of data must be analyzed and validated

while it is being processed. The above illustrates a technique that can be used to
handle errors that are detected at various stages in the processing of a data object.

153

Chapter 7

Procedures and CALL

A program can be organized into components using procedures. A procedure is a
group of statements delimited by PROC and ENDPROC statements. Each procedure
is identified by a unique procedure name. This name must start with an alphabetic
character and can have up to 31 alphabetic characters, digits and underscore ('’
characters. A procedure name is defined with the PROC statement.

A procedure is invoked by referencing its name with a CALL statement. This
causes the statements of the procedure to be executed. When the procedure is
completed (that is, when the ENDPROC statement is encountered) control returns to
the end of the invoking CALL statcment. The simple form of the CALL statement is
shown below.

CALL procedure-name
The corresponding form of procedure definition follows:

PROC procedure-name

. statement(s)

ENDPROC

154 Chapter 7

Procedure definitions cannot be nested within other procedure definitions or
function definitions.

Statements within a procedure can access all variables, matrices, functions,
procedures and files defined elsewhere in the program. Procedures can be defined to
have formal parameters, that is, variables which have values unique to a particular
mnvocation of a procedure. Initial values of these parameter variables are specified by
a parenthesized list of expressions, separated by comumnas, which follows the
precedure name in a CALL statemnent. This form of the CALL statement is shown
below.

CALL procedure-name(expression, ..., expression)
The corresponding form of procedure definition follows.
PROC procedure-name(variable, ..., variable)
statement(s)

ENDPROC

When such a CALL statement is executed, parameter-value CXpressions are
evaluated in left-to-right order and formal parameter variables are assigned the
positionally corresponding values specified by the expression list. Note that data
types of expression values and formal parameter variables must be compatible. Rules
concerning this value assignment match those for the LET statement.

The values of variables uscd as formal parameters for an active procedure apply
throughout the program until the procedurc is terminated by exccution of an
ENDPROC statement., When the ENDPROC is executed, variables used as formal
parameters are restored {o have the values which were in effect prior to executing the
CALL statement; control is then returned to the statement following the CALL
statement. These rules concerning access to variables and formal parameters are
identical to those which traditionally apply to functions in the BASIC language.

One procedure can be CALLed from within another procedure. A procedure can
be called from ancther procedure that was invoked by the first. In f{act, a procedure
can invoke itsclf directly. Direct or indirect invocation of a procedure by itself is
called recursion or recursive calling. Note that each recursive activation of a
particular procedure will have its own unique formal parameter values.

Chapter 8

Functions

Like procedures, functions provide a means of organizing a program into
components that can be executed or invoked from various places within the program.
A function is invoked by a reference to its name in an cxpression. Execution of a
function results in a value, associated with the function name, which is used in the
invoking expression evaluation.

A function name starts with the characters FN, which can be followed by up to 31
alphabetic characters, digits and underscore characters. The FN prefix can be entered
in upper case, lower case or mixed case characters. When a program is listed, the
prefix characters are always displayed in lower case.

Like variables, a function can be one of three data types, namely, numeric,
integer or string, Integer function names end with a percent symbol (%). String
function names end with a dollar symbol ($). Numeric function names have no
postfix.

A function can be invoked from any valid expression in a program, simply by
referencing its name. If parameter values are required by a function definition, these
are specified as a parenthesized list of expressions, separated by commas, following
the function name. Parameter values and variables are treated in the same manner as
those for procedures described in the previous chapter. Similar to procedures again,

158 Chapter 8

functions can be invoked recursively. Likewise, statements within a function
definition can access all variables (which are not formal parameters), matrices,
functions, procedures and files defined elsewhere in the program.

Two types of function definitions can be used, namely single-line or multi-line
functions. The single-line form of function definition follows.

DEF function-name(variable, ..., variable) == expression
The parenthesized variable list defines formal parameters and is optional. When such
a function is referenced, the expression following the equals symbol is evaluated and
returned as the function value to be used in the invoking expression.

The multi-line form of function definition follows.

DEF function-name(variable, ..., variable)

statement(s)

FNEND
The parenthesized variable list defines formal parameters and is optional. When such
a function is referenced, the statements within the function definition are executed.
Normally, one of these statements is a LET statement of the following form,

function-name = expression
The last such LET statement exccuted defines the value to be returned for use in the
invoking expression when the FNEND statement is ¢ncountered. If no value is
assigned to the function-name a default valuce is returned. The default value is O for

numeric and integer functions; it is the null string for string functions.

Note that it is only valid to assign a value to a function name if it corresponds to
the currently active function.

161

Chapter 9

Primitive Control

The statements described in this chapter can be used to control the order in which
the statements of a program are executed. These statements are historically a part of
the BASIC language, but are more primitive than the control facilities described in
the preceding three chapters. GOSUB and RETURN provide a control facility which
is equivalent to CALL and procedures (without parameters). Use of procedures,
however, forces a programmer to define clearly the limits of a program component.
In addition, one is able to identify a procedure with a name that is indicative of its
purpose, in contrast to GOSUB’s use of a line number to identify a program
component.

9.1 GOTO Statement

Syntax: GOTO line-number
or GO TO line-number

Execution of the GOTO statement transfers control to the statement in the line
with the specified line number. No statement can follow a GOTO on the same line.

It is an error to exit from an active procedure or function definition using a
GOTO. Exit from an active FOR-NEXT terminates the loop, causing the index

162 Chapter 9

control information to be purged.

9.2 GOSUB and RETURN

Syntax: GOSUB line-number
or GO SUB line-number

RETURN
Execution of the GOSUB statement transfers control to the statement in the line
specified by the line number. Subsequent execution of a RETURN statement passes
control back to the statement following the most recent GOSUB statement executed.
If a FOR-NEXT loop, procedure or function is activated and not completed

between execution of the GOSUB and a corresponding RETURN, an error will
result.

9.3 ON-GOTO, ON-GOSUB

Syntax:
ON expression GOTO line-number, ..., line-number
ON expression GO TO line-number, ..., line-number
ON expression GOSUB line-nutnber, ..., line-number
ON expression GO SUB line-number, ..., line-number

When one of these statements is executed, the numeric expression is evaluated
and rounded to the nearest integer value, This value is used as an index to select a line
number from the line number list. Control is then passed to the statement specified by
the selected line number, according to the rules of either the GOTO or GOSUB
statements, whichever is appropriate. If the integer value resulting from the
expression is zero, negative or greater than the number of line numbers specified in
the list, an error results. Execution of a RETURN statement subsequent to an
ON-GOSUB passes control to the statement following the ON-GQOSUB statement.

Primitive Contro! 163

9.4 IF-THEN line number
Syntax: IF expression THEN line-number
This form of the IF-THEN statement is equivalent to the following:
IF expression THEN GOTO ling-number

Refer to the chapter concerning Structured Control for an understanding of this
statement’s meaning,.

165

Chapter 10

InputOutput Statements

All useful programs are concerned with the processing of information or data in
one form or another. In some cases, a program’s data is generated or defined
internally, but more frequently data is obtained or input from an external source.
Input staternents can be used to obtain data from the computer’s keyboard, from an
external storage media, such as disk, or from another computer. Using ourpur
statements, the results of processing this data can be transmitted to the computer's
display screen, to printer paper, to an external storage medium or to another
computer.

Both the source of input data and the destination of autput data ace regarded as
Jiles. The types of files that can be accessed and their characteristics are described in
the Files appendix of this manual. A file to be accessed is identificd by its filename in
an OPEN statement. A filename is specificd as a string-valued expression. Valid
filename strings are described in the Files appendix of this manual.

Execution of an OPEN statement associates the filename with a file number.
Other input/output statements identify the file to be accessed using this file number.
File numbers are specified as numeric-valued expressions which, when evaluated, are
rounded to the nearest integer. File numbers 0 and 1 are reserved for terminal input
(keyboard) and output (screen), respectively, and are automatically OPENed by the
microBASIC system. Other valid file numbers are the integers in the range from 2 to

166 Chapter 10

32767, inclusive.

The CLOSE statement 15 used to terminate access to a file and release the file
number (so that it can be used with other files). INPUT, LINPUT and GET
statements each provide different input facilities. All output is performed with the
PRINT statement. Other statemenis which support the management of files are
SCRATCH, RENAME and MOUNT.

10.1 OPEN Statement
Syntax: OPEN #file-number, filename, modce
where mode is one of
INPUT, OUTPUT, INOUT or APPEND.

The OPEN statement identifies a file, and performs appropriate initial preparation
for the type of access specified. The file is tdentilicd by a filename string expression
and is associated with a positive integer file number. Other input/output statements
such as PRINT or INPUT can access a file by specifying this {ile number.

Some devices that are treated as files do not support both input and output of data.
For example, a keyboard supports only input and a prinicr supports only output. Files
stored on disk can be accessed for input or output. The type or mode of access to a file
is specified in the OPEN statement.

A mode of OUTPUT or APPEND indicates that data can only be transmitted to
the file using the PRINT statement. APPEND mode applics only to files on storage
devices such as disk that retain data for subsequent input. OPENing a file in APPEND
mode locates the end of existing data in such a f{ile, so that new data is added to its
end. OPENing a storage device file for OUTPUT creates a new file, replacing any
existing file with the same name. Some storage device files can be OPENed in
INOUT mode, allowing both input and output of data. The Files appendix of this
manual describes which modes are possible with different types of files.

Examples:
OPEN #2, 'Names', INPUT

OPEN #File_count + 2, File_name$, APPEND

Input/Output Statements 167

File numbers 0 and 1 cannot be specified in an OPEN statement. These numbers
are reserved for primary terminal input and output, respectively, and arc
automatically OPENed by the microBASIC system.

1.2 CLOSE Statement
Syntax: CLOSE #file-number
The CLOSE statement terminates access to the file associated with the specified

{ile number. The file number is released and can then be associated with other files in
subsequent OPEN statements. File numbers 0 and I cannot be CLOSEd.

10.3 PRINT Statement
Syntax: PRINT #file-number, REC=expression, output-list

where output-11st is a series of items separated by cormas or semi-colons,

and an item is: expression
MAT matrix-name
or TAB (expression)

The PRINT statement transmits the data values specified in the output list to a
file. The output file can be identified by a file number. A file number of 1 is assumed
if no file number is specified and the data is displayed on the terminal screen.

For example, the statement

print ‘Hello'

will display the string "Hello” on a line of the compuier’s terminal screcn. The
statement

print #2, "Hello’

will transmit the string ‘Hello’ to the file associated with file number 2 by a prior
OPEN statement.

A PRINT statement normally transmits one line or record of data to a file.
Records are normally PRINTed sequentially, that is, they are transmitted 1n the order
in which they are to appear in the file. The REC= clause can be included in a PRINT

168 Chapter 10

statement to specify the position of the record within the file. Record positioning is
only valid for some types of files. The Files appendix of this manual explains which
types of files can be accessed in random order. The expression following REC= must
have a non-negative numeric value and is rounded 1o the nearest integer. The value
represents a relative record number, the first record in a file being record 0.

print #2, rec = 15, 'fifteen’
print #2, 'sixteen’
print #2, rec = 4, 'four’

The above three PRINT statements write string values to records 15, 16 and 4,
respectively, of the file associated with file nuntber 2. Note that a PRINT statement
without a REC= clause, transmits a record sequentially at the position in the file
where the last input/output operation finished. Information concerning which types of
files can be accessed in this way is contained in the appendix entitled "Files”.

Each line or record PRINTed can be viewed as being composed of columns or
print zones which are 16 character positions wide. For example, an 80-character line
on the terminal screen has 5 such print zones. Each time a comma is encountered in
an output-list, space characters are transmitted until the start of the next print zone is
reached. This makes it easy to PRINT tables of information with columns that line up
vertically.

The statements

print ‘abe’, 'def’
print 'xy’, 'z’

will display the following two lines on the terminal screen (the first character of each
appearing in column 1):

abe def
yX z

A print zone will be skipped if two commas appear in an output list with no item
between.

When a semi-colon is used to scparate two items in an output list, the second item
immediately follows the first without spacing to a new print-zone. For example, the

statcment

print ‘abe’; 'def”

Input/Output Statements 169

will display the following linc on the terminal screen (the character 'a” appearing in
column 1)

abcdef

If a PRINT output-list ends with a comma or semi-colon, subsequent PRINTS to
the same file will continue on the samc line or record. A PRINT statement with no
output-list can be used to complete a record written using a scries of PRINTs ending
with a semi-colon or comma. Without preceding uncompleted PRINTs, a PRINT
statement with no output-list will write a blank record to the file designated.

print 'Hello’:
print * Charlie’

The above example displays a line containing the string "Hello Charlie’ starting in
column 1.

A TAB item specifics a position within the line or record as a numeric valued
expression enclosed in parentheses. This value is rounded to the nearest integer and
sufficient space characters are transmitted to reach the specified position. If the vafue
specified is less than one, TAB moves to the first character position of the next line. If
the TAB value exceeds the length of the line (record), TAB moves to a position on the
following line which is the modulus of the specified value relative to the line size. For
example, a TAB value of 165 specified in a PRINT to an 80-column screen positions
to column 5 of the next line.

If the TAB value specifies a position within the line that has already been passed
by data transmitted, TAB moves to the specified position in the following line. Note
that a semi-colon is normally used to delimit a TAB item from the next output-list
item, since a comma would position to the start of the print zone following the TAB
position.

Numeric values are PRINTed in one of two formats depending upon the
magnitude of the number’s absolute value. Absolute values which equal or exceed
0.00001 and are less than 1000000000 are printed in the following format

sdb
or sd.tb

where “s” is the sign ("-" for negative, blank for positive), “d” is at least onc digit
representing the integral part, ".” is a decimal peint, "f" is at least one digit
representing the fractional part, and “b” is a blank character. A total of at most 9
significant digits (integral or fractional) are PRINTed. Trailing fractional zero digits

170 Chapter 10

are trimmed as are leading integral zero digits (except one if all integral digits are
zero). Examples of values in this format follow.

— 123456789
5.83
0.0000123456789

Values which do not fall in the range handled by the first format are printed in
normalized scientific format. In this format each number is represented by a sign ("-”
or blank), one non-zero integral digit, a decimal point, 8 fractional digits, the letter
"E" representing exponent, and a signed two-digit power of 10 scaling factor,

followed by a blank character. Examples of this format follow.

1.23456789E-08
—8.42700000E+ 15

If insufficient space remains on a line (record) for a numeric value, transmission
of the value begins at the start of the following line. If insufficient space remains on a
line for a string value, the characters that will fit are transmitted on one line and the
remainder are transmitted at the beginning of the next line.

When a matrix name appears in an output list following the MAT keyword, all
elements of the matrix are PRINTed. The elements of the matrix are PRINTed a row
at a time, each row starting on a new line (record). A blank line is PRINTed each time
a dimension beyond the first two (row and column) is completed. Matrix elements
within each row are PRINTed in print zones as if commas were between each. A new
line is started for the next item following a matrix in the output list.

If a semi-colon follows the matrix name each element is PRINTed as though it
was followed by a semi-colon in an output list.

To understand properly how matrices are PRINTed one should experiment with
output to the terminal screen. The characteristics of matrix output to files match those
for output to the terminal screen.

10.4 MAT PRINT Statement

Syntax:

MAT PRINT #file-number, REC=expression, matrix-list

where matrix-list is a sequence of matrix names separated by

[nput/Output Statements 171

commas or semi-colons.,

The MAT PRINT statement provides another means of PRINTing all elements of
the matrices specified. The characteristics of MAT PRINT are identical to those af
PRINT for MAT items, except that all items in the list must be matrices. The two
statements

MAT PRINT A, B
MAT PRINT A; B;

are equivalent to

PRINT MAT A, MAT B
PRINT MAT A; MAT B;

10.5 INPUT Statement
Syntax:
INPUT #file-number, REC =expression, prompt-string, input-list
where input-list is a series of items separated by commas, and

an itent is: variable
matrix element
variable substring
matrix-element substring
MAT matrix-name
function name

and prompt-string is a string constant.

The INPUT statement obtains data values from a file and assigns them to the
items specified in the input list. The input file can be specified by a file number. A
file number of 0 is assumed if no file number is specified and the data is obtained
from lines entered using the terminal keyboard. INPUT from the terminal is prompted
for by a question symbol, “?", which is displayed on the screen. If a prompt string is
specificd in the INPUT statement, its characters will be displayed instead of ",

Data values corresponding to the input list items are scanned from the lines or
records of the input file. Each data value is separated from the next by a comma or the
end of line (record). As many lines or records will be input and scanned as is

172 Chapter 10

necessary to obtain a value for each input list item, 1t is an error if data values remain
on the current input line following the last data value assigned to an input list item.

INPUT flushes to the end of a record if all data items are not scanned, so that a
subsequent INPUT from the same file begins at the start of the next record. A partial
record can be INPUT by ending the input-list with a comma. This causes a
subsequent INPUT from the same file to resume scanning the same record.

Numeric data values can be in any form that can legally be used to specify a
numeric constant in a program. String data can be enclosed in quotation symbol pairs.
It string data is not enclosed in quotations, leading and trailing blanks are trimmed,
and commas are treated as data value delimiters; that is, if string data is to contain
commas, it must be enclosed in quotations. Each value is assigned to its
corresponding input list item following rules similar to the LET statement.

An INPUT statement normally accesses the lines or records of a file in the order
in which they appear, that is, in sequential order. The REC= clause can be included
in an INPUT statement to specify which record should be accessed. Record
positioning is only valid for some types of files. The Files appendix of this manual
explains which types of files can be accessed in random order. The expression
following the REC= must have a non-negative numeric value and is rounded to the
nearest integer. The value represents a relative record number, the first record in a file
being record 0.

If an INPUT statement attempts to access a record beyond the tast record of a file,
an end-of-file (FOF) error condition results (see the chapter concerning Error
Handling).

When a matrix name appears in an input list following the MAT keyword, it is
treated as if each subscripted element of the matrix appeared in the input list row after
row.,

Note:

INPUT from the terminal, without a file-number reference, is treated in the
following special way. In conformance with ANS requirements, the number of data
values on a line must exactly match the number of input-list items. Errors detected
assigning data values to input-list items, or matching the number of values with
input-list items, are automatically recovered without interrupting program cxecution.
In such cases, input-list items have their previous values restored (except in the case
of entire matrices using the MAT keyword), and INPUT is requested again from the
start of the input-list.

[nput/Output Statements 173

10.6 MAT INPUT Statement

Syntax: MAT INPUT #file-number, REC =expression, prompt-string,
matrix-list

where matrix-list is a sequence of matrix names separated by commas.

The MAT INPUT statement provides another means of assigning values from a
file record to all elements of the matrices specified. The characteristics of MAT
INPUT are identical to those of INPUT for MAT items, except that all items in the list
must be matrices. The statement

MAT INPUT A, B
is equivalent to

INPUT MAT A, MAT B

10.7 LINPUT Statement
Syntax:
LINPUT #file-number, REC=c¢xpression, prompt-string, ilem

where an item is: string variable
string matrix element
variable substring
matrix-element substring
string function name

The LINPUT statement transmits all characters in a line or record of a file to a
string and assigns it to the item specified. Characteristics of the LINPUT statement
regarding prompt strings, file numbers and the REC— clause are jdentical to those of
the INPUT statement. Assignment of the character string to the receiving item
follows rules similar to the LET statement.

174 Chapter 10

10.8 GET Statement
Syntax: GET #file-number, item

where item is: variable
matrix element
variable substring
matrix-element substring
function name

The GET statement is used to obtain characters one at a time from an input file. Tf
the item receiving the character is numeric or integer, the character’s numeric code is
assigned. This corresponds to the value of the ORD function for the character. GET
does not deal with lines or records, simply individual characters.

If GET is accessing the terminal keyboard, the character returned reflects the
status of the keyboard at that particular instant. If no key is pressed at that time, a null
string or zero numeric value is assigned; otherwise, the character corresponding to the
key pressed is assigned. Assignment of the character string or numeric code to the
receiving item follows rules similar to the LET statement.

If GET is accessing a file other than the keyboard, there will always be a character
to assign, unless the end of the file has been reached.

10.9 SCRATCH Statement

Syntax: SCRATCH filename

where filename is a string valued expression

The SCRATCH statement can be used to erase a file from a storage device such as
disk. The following examples illustrate the SCRATCH statement.

scratch "names’
scratch OLD_FILES

Refer to the chupter concerning File Management for further information.

Input/Output Statements 173

10.10 RENAME Statement
Syntax: RENAME filename TO name
where filename and name are string valued expressions
The RENAME statement can be used to change the name of a file residing on a
storage device such as disk. The following examples illustrate the RENAME

statcment.

rename ‘currfile’ to ‘oldfile’
rename Filename$ to 'temp’

Refer to the chapter concerning File Management for further information.

10.11 MOUNT Statement
Syntax: MOUNT filename
where filename is a string valued expression
The MOUNT command must be executed with some types of disk units when a

new disk is inserted in a disk drive. Refer to the chapter concerning File Mapagement
for further information.

10.12 RESET Statement
Syntax: RESET

The RESET statement closes all files OPENed by the program.

177

Chapter 11

READ, DATA, RESTORE

DATA statements within a program define what can be thought of as an "internal
file". Each DATA statement contains a list of numeric and/or string values which can
be accessed and assigned to variables, matrix elements or substrings using READ
statements. READ operates with DATA statements in a manner similar to that of
INPUT with files. The RESTORE statement can be used to start again at the
beginning of the DATA statements.

11.1 DATA Statements

Syntax: DATA value-lst

where value-list is a sequence of constant values separated by commas

The collection of all DATA statements in a program together form a single list of
data values. Each value in this list is separated from the next by a comma or the end of
a DATA statement. The collection of DATA statements is ordered by ascending line

number, however, other statements can be interspersed between DATA statements.

The constant values in the list can be any valid numeric constant, any valid string
constant, or simply a sequence of characters.

178 Chapter 11

Each DATA statement must be on a line by itself; that is, no other statements can
precede or follow a DATA statement on the same line. No comments can be placed
on the end of a line containing a DATA statcment.

Some examples of DATA statements follow.

80 data 5, 18, -3, "grape’
900 data .000483, 9.219¢-8, purple

4520 data This character string is all one string value.
4800 data "Smith, 1."

11.2 READ Statement
Syntax: READ input-list
where input-list is a series of items separatcd by commas,

and an item is; variable
matrix element
variable substring
matrix-element substring
MAT matrix name
function name

The READ staternent scans values from the list formed by the cellection of
DATA statements and assigns them to items specified in the input list. Each READ
statement starts scanning the DATA value list where the previous READ finished,
whether in the middle of a DATA statement or not. If the DATA statement list does
not contain enough values to satisfy a READ input list, an end-of-file (EOF) error
condition results (see the chapter concerning Error Handling).

When a matrix name appears in an input [ist following the MAT keyword, it is
treated as if each subscripted element of the matrix appearcd in the input list, tow
after row.

Assignment of each value to its corresponding input list item follows rules similar
to the LET statement.

READ, DATA, RESTORE 179

11.3 MAT READ Statement

Syntax: MAT READ matrix-list

where matrix-list is a sequence of matrix names separated by commas

The MAT READ provides another means of assigning values from the DATA
staternent list to all elements of the matrices specified. The characteristics of MAT
READ are identical to those of READ for MAT items, except that all items in the list
must be matrices. The statement

MAT READ A, B

is equivalent to

READ MAT A, MAT B

11.4 RESTORE Statement
Syntax: RESTORE

The RESTORE statement resets the READ scanner to the start of the DATA
statement value list; that is, the beginning of the first DATA statement the program.
This allows the same list of values to be READ more than once. The RESTORE
statement has no effect if no DATA statements exist in a program.

181

Chapter 12

Error Handling

Several types of errors can arise during the execution of a program. When an error
is detected, a diagnostic message is displayed followed by the text of the line that was
being executed. In the case of numeric underflow, numcric overflow and zero
division errors, only a message is displayed and the computation continues using a
substituted value.

The treatment of errors described above is the normal or default action taken by
the microBASIC system in response to errors. The ON-error statements provide a
means of having the program handle errors when they occur so that the program does
not terminate.

Error conditions are classified in a number of catcgories. Descriptions of the
different classes of errors handled by the ON-error statement follow.

EOF: This condition occurs when an input operation atiempts to access data
past the last record of a file. It also occurs when a READ statement
attempts to access values past the end of the DATA statement list. The
EOF conditien can occur during an output operation if the type of file
used cannot be extended and output is attempted beyond the last record
of the file.

182

[OERR:

ATTN:

SOFLOW:

OFLOW:

UFLOW:

ZDIV:

CONV:

ERR:

Chapter 12

This condition occurs when an error arises involving an input/output
operation. These errors do not include types of errors covered by other
conditions, such as EQF, CONV, etc., which can occur during the
execution of an input/output statement.

This condition cccurs when the STOP key is pressed. This is detected
after execution of the current line is completed and before the next line is
started.

This condition, string overflow, occurs when the result of a string
opcration is longer than the maximum string length allowed. In practice,
a personal computer’s memory space normally will be exhausted before
a string this large can be generated.

This condition, numeric overflow, occurs when a numeric value is
computed that exceeds the magnitude of the largest possible value that
can be represented. If the computation is purely integer, the maximum
value is 32767 or -32768; otherwise, the maximum is machine infinity.
The value of machine infinity can be displayed by printing the value of
the INF intrinsic function.

This condition, numeric underflow, occurs when a numeric value is
computed that has a magnitude smaller than the smallest value that can
be represented, machine epsilon. The value of machine epsilon can be
displayed by printing the value of the EPS intrinsic function. Numeric
underflow cannot occur with purely integer computations.

This condition, zero divide, cccurs when a numeric value is divided by
Zero.

This condition, conversion error, occurs when it is attempted to convert
a sequence of characters to a numeric value and the characters do not
form a valid numeric constant specification. This error can oceur when
processing values for numeric items in INFUT and READ statement
input lists. This condition can also occur when converting a string value
to a numeric value with the VALUE intrinsic function.

This condition, general error, occurs when any error occurs that does not
fit one of the previously described error classes. For example, an error of
this class occurs when a matrix subscript value is used which exceeds the
defined dimension of the matrix,

Error Handling 183

12.1 ON-Error IGNORE
Syntax: ON error-condition IGNORE

Some classes of errors can be ignored by executing an ON-Error IGNORE
statement. Error-conditions that car be ignored are EOF, IOERR, OFLOW,
UFLOW, ZDIV and CONV. In particular, it is common to ignore EOF and IOERR,
and to query the value of the IO_STATUS intrinsic function after each input/output
operation. The following example illustrates a program that loops reading names
from a file and displaying them on the terminal screen.

10 open #2, 'names’, input
20 on eof ignore

30 loop

40 linput #2, name$

50 if io_status <<= 0 then quit
60 print name$

70 endloop

80 close #2

A name is input from each record of the file called ‘'names’. When all names have
been input and displayed, the next LINPUT statement will fail with an EOF error.
Since the ON EOF IGNORE statement has been executed, the program continues.
The IO_STATUS intrinsic function reflects the status of the latest input/output
operation. The value of io_status is 0 after each successful input of a name record. Its
value becomes 2 when an EOF failure occurs. Refer to the appendix of this manual
concerning intrinsic functions for a fuller description of the IO_STATUS function. In
the example program, an exit is taken from the loop when EOF 1s detected in line 50.

12.2 ON-Error SYSTEM
Syntax: ON error-condition SYSTEM

When this statement is executed, the handling of the class of error specified
reverts to the default action normally taken by the microBASIC system.

184 Chapter 12

12.3 ON-ENDON Structure
Syntax: ON error-condition
: statement(s)

EN].)ON

Execution of this type of ON-error statement defines a group of statements that
are to be executed when the specified error occurs. If such an ON structure is defined
when its type of error occurs, control is transferred to the statement on the line
following the ON statement. After appropriate error recovery, the program must be
terminated with a STOP statement or control passed back with the RESUME
statement. It is an error to execute the ENDON statement.

12.4 RESUME Statement

Syntax: RESUME
or RESUME NEXT

The RESUME statement can only be executed from within an ON-ENDON
structure that was invoked because of an error condition. The RESUME statement
transfers control to the beginning of the line containing the statement that was
executing when the error was detected. The RESUME NEXT statement transfers
control to the line following that in which the error was detected. Note that use of
multiple statements per line should be avoided or carefully considered when using
these error handling facilities,

187

Chapter 13

CHAIN and USE

The CHAIN statement can be used 1o load another program, replacing the current
one, and transfer control to its first statement. Employing this facility, systems can be
developed consisting of several programs which collectively would be too large to fit
in the computer’s workspace.

A list of data values can be passed, like parameters, from the CHAINing program
to the new program that is loaded front a file. These values are assigned to variables
specificd in a list when the USE statcment is executed within the new program.

There is no means of returning from the new program to the end of the CHAIN
staternent that invoked it, since the CHAINing program is no longer in the
workspace. The only means of re-invoking the first program is to CHAIN back to it.
13.1 CHAIN Statement

Syntax: CHAIN filename,FILES expression-list

whers filename is a string-valued cxpression designating
the name of a file containing 3 BASIC program.

188 Chapter 13

and expression-list is a list of expressions separated
by commas or a single keyword, NAMES.

When a CHAIN statement is executed, its filename expression is evaluated, the
list of expression values are computed and saved, the workspace is cleared and a
program is loaded from the file identified by the filename. CHAIN attempts to load a
program file with the specified name as created with the STORE command. Tf this
fails, CHAIN atternpis to obtain the program source from a data file with the specified
name, as created with the SAVE command. All variables and matrices of the new
program are initialized as if the program was started with the RUN command. If
NAMES 1s specified instead of a list of expressions, all variables and matrices of the
program arc passcd to the new program and their values are assigned to vartables and
matrices with the same names.

If the optional FILES keyword is specified, all active files remain open and can be
referenced by the new program using the same file numbers. Otherwise, any
outstanding open files are closed before the new program is loaded.

Three examples of the CHAIN statement follow.

CHAIN 'Menu’
CHAIN "Overlay’, FILES, NAMES
CHAIN "Update’, Customer_name$, Customer_number, Payment

13.2 USE Statement
Syntax: USE variable, ..., variable

Execution of the USE statement assigns the values from the CHAIN list to
positionally corresponding variables in the USE list. The USE statement appears in
the program invoked by the CHAIN statement. The number of values passed must
match the number of items in the USE list. Data types of the CHAIN values and
corresponding USE variables must be compatible according to the assignment rules of
the LET statement. An example follows which corresponds o the last example of
CHAIN in the previous section.

USE Name$, Number, Amount

161

Chapter 14

Miscellaneous Statements

This chapter describes statements not covered in other chapters.

14.1 STOP Statement

Syntax: STOP

The STOP statement terminates execution of the program. Control information
concerning return locations for any outstanding CALLs, GOSUBs or function calls is
purged. Execution of a program cannot be resumed with the CONTINUE command
following execution of a STOP statement. Any outstanding open files are closed.

14.2 PAUSE Statement
Syntax: PAUSE

The PAUSE statement interrupts execution of a program. Control information
concerning outstanding CALLs, GOSUBs and function calls is preserved. The status
and position of open files is also preserved. When the PAUSE statement is executed,
the line containing it is displayed on the terminal screen and execution is suspended.

192 Chapter 14

microBASIC commands can be entered while the program is suspended, or
immediate-mode statements can be executed. The program can be edited (changed)
while suspended. Refer to the chapter entitied Debugging Programs for information
concerning possible side effects of editing. The CONTINUE command causes
execution of the program to resume at the start of the /ine following the PAUSE
statement. The GOTO statement can be used in immediate-mode to resume execution
at some other line.

14.3 RANDOMIZE Statement
Syntax: RANDOMIZE

The RANDOMIZE statement is used to generate an unpredictable seed for
random number generation using the RND intrinsic function. The RND function will
generate the same sequence of values each time a program is run if the RANDOMIZE
statemnent is not used.

14.4 POKE Statement
Syntax: POKE address, expression, ..., expression
where address is a numeric valued expression

The POKE statement can be used to store values directly into the computer's
memory at the address specified. This address can also specify device registers which
are addressable by the computer. The numeric expression specified for the address is
evaluated and rounded to the nearest integer between 0 and 65535 inclusive. Negative
address values in the range -32768 to -1, inclusive, are considered as 16-bit unsigned
binary values and are treated as addresses in the range 32768 to 65535, Although it is
possible to specify addresses in this range with negative values, it is usually more
convenient and simpler to use positive address values.

The expression list following the address must result in numeric values which,
when rounded to integers, fall in the range 0 to 255 inclusive. These values are stored
as 8-bit binary numbers in the byte at the address specified and in subsequent bytes.

The POKE statement provides a very primitive and powerful capability. It can be
used to manipulate the computer’s memory and devices directly to perform clever
tricks. However, caution should be exercised since random POKEs can clobber
important system information or put the microprocessor in a state such that programs
can no longer run without restarting the computer. Programmers using POKE should

Miscellaneous Statements 193

understand fully the hardware configuration of their personal computer and the
systern software’s use of locations in memory. POKE users must assume
responsibility for any strange behaviour by the system software that results.

Note that an intrinsic function, PEEK, allows bytes of memory to be cxamined.
PEEK is described with the other intrinsic functions in an appendix of of this manual.
14.5 SYS Statement

Syntax: SYS address

where address is a numeric valued expression

The SYS statement can be used to invoke a system program or other
machine-language program al the address specilied. Control can be returned to the

BASIC program at the statement following the SYS by executing a machine-language
RTS (return from subroutine) instruction.

Appendices

196

Appendix A

Command Language Summary

This appendix summarizes the syntax of commands in Waterloo microBASIC. 1t
is included for easy reference. Terms used, such as filename, and details of each
particular command'’s operation should be obtained by reference to the pertinent
section of the manual.

A.1 Notation
Some commands have optional components. These are depicted by enclosure
within square brackets. The following example indicates that a 'filename’ is optional

in the RUN command.

RUN ['filename’]

In addition, several commands may be abbreviated. The optional portion of a
command name is also enclosed in square brackets, For example,

L{IST]

indicates that the LIST command can be typed as L, LI, LIS, or LIST.

Command Language Summary

A.2 System Command Summary

()

(2)

A[UTOLINE] [line number][,increment|
BYE

CLEAR

CONTIINUE]

DELIETE] line range

DI[RECTORY] ['filename’]

LITST| [line range|

LOAD ‘filename’

MERGE ‘filename’

MOUNT 'filename’

OLD ‘filename’

RENAME filenume’ TO 'name’
RENUM[BER| [line number][,increment]
RUN [’filename'|

SAVE [line range| ‘filename’
SCRATCH 'filename’

SETUP

STEP |line number|

STO[RE] 'filename’

TYPE 'filename’

197

198

Appendix B

Programming Language Summary

This appendix briefly describes some general characteristics of the Waterloo
microBASIC programming language. 1t ts included for easy reference and is not a full
description of the language.

B.1 Line Numbers

L must appear at beginning of cach program line
. integral value in range | to 65529
. leading reroes ignored

B.2 Spacing

° reguired to separate keywords from names. numeric constants and other
kevwords
L cannot appear inside names, keywords, aumeric consfants or

mulil-characiler operators

Programming Language Summary 199

B.3 Comments

B.4

B.5

comments can appear at end of most lines

comments begin with an exclamation mark, "

everything after the ! is taken as documentation

the REM statermnent may also be used to cnter comments; the statement

begins with the keyword REM and the rest of the line is taken as
comments or remarks.

Multiple Statements Per Line

multiple statements can be entered on onc line separated by colons, "'
this is not recommended since it renders programs less readable

after error interrupts, RESUME and CONTINUE start at the beginning of
the line, even if the error did not occur in the first statement of the line

structured control statements must appear alone on a line, e.g., IF, ELSE,
etc.

DATA statements must appear alone on a line and cannot be followed by
comments

Multiple-Line Statements

statements can span multiple lines

last non-blank character of the line to be continued must be an ampersand,
!&F

first non-blank character following the line number of the continuing line
must be an ampersand

keywords, names, constants or operators cannot span lincs

DATA statements cannot be continued

200 Appendix B
B.6 Names
o sequence of I to 31 characters starting with an alphabetic character and
consisting of alphabetic characters, digits and the underscore character 7
. function names have prefix "fn’ or ‘FN’
L variables and functions can be of 3 types, namely, siring, integer and
floating-point
. string variable and function names have a $ postfix, e.g., course$,
fn grade$
. integer variable and function names have a % posttix, c.g.. age%,
fn_enrollment%
. floating-point variable and function names have no postfix, e.g., mark,
tn_average
) procedure names have no prefix or postfix
. matrix names have the same postfixes us variables and functions for data
types intcger, floating-point and string
. an array can have the same name as a variable; they are distinguished one

from another by usage

B.7 Uppercase/Lowercase Alphabetics

uppercase and lowercase alphabetic characters are treated as equivalent
within keywords and intrinsic function names: c.g., IFEIfif, and iF are
equivalent and are displayed in lowercase (i} by the LIST command

uppercase and lowercase letters are distinguished between in names of
variables, arrays, functions and procedures: c.g., Name is sgparate and
distinct from name

uppercase and lowercase letters are distinguished between in string
constants or literals; e.g., "Abc¢” is different from "ABC”

uppercase and lowercase letters are distinguished between in filenames for
the Commodore disk: casc sensitivity in filename specifications for a

Programming Language Summary 201

specific computer is defined by the rules of the operating system being
used.

B.8 Expression Evaluation

Priority

11

~] o0 o O

Operation

matrix subscripting
function refcrence
substring

enclosed in parentheses
exponentiation 1, **
unary plus +

unary minus -
multiply *

divide /

addition +
subtraction -
concatenation -+
relational operators
= <, <> = =
logical NOT

logical AND

logical OR

B.9 Intrinsic Functions

Function
abs(x)

atn{x)

chr$(i%)

cos(x)

Meaning

Example

table(i,))
fna(x,y)
name$(start : end)
3F(i+1)

value T 3

+5

-2

guantity * unit_cosl
galtons [/ 4

total + amount
total - credit
province$ +

’

', Canada”

total == 50

NOT age% > 30

price > 10 AND quantity < 3
errors = 5 OR average < 50

returns the absolute value of parameter x

returns the arc TANGENT (in radians) of the parameter x,
where -PI/2 <7 atn(x) << PI/2

returns a single-character string which represents the
character in position 1% of the character set defined by the

syslem

returns the COSINE of angle x; x .is expressed as the

number of radians

202

cursor(i%)

date$

eps

exp(x)

fp(x)

free

hex(s$)

hex$(1%)

idx(a$,b%)

inf

nt(x)

io_status

Appendix B

sets cursor on terminal screen to position 1% if value in
range | through 2000 (25 rows by 80 columns). Returns
cursor position whether set or not.

returns a string value which is the current date.

returns the value of "machine cpsilon”, that is, the smallest
numeric value that can be represented by the computer
being used

returns the value of Euler's constant e, raised to the power
of the parameter x

returns the fractional part of the parameter value x; the
result has the same sign as x

causes available memory to be coalesced and returns the
number of bytes remaining free

returns a numeric value corresponding to the hexadecimal
value represented by the characters of string s$;
hexadecimal values arc defined in terms of the digits 0-9
and letters A-F

returns a string value which represents thc value of
parameter 1% in hexadecimal, base 16; hexadecimal valucs
are defined in terms of the digits 0-9 and letters A-F

returns a number representing the position (origin 1) at
which the character string b$ first occurs in the character
string a$. Zero is returned if b$ is not found in a$.

returns the value of "machine infinity”, that is, the largest
numeric value that can be represented by the computer
being used

returns the largest integer which is not greater than
tioating-point parameter value x

returns status of last inputfoutput operation; value 0
indicates success; | indicates end-of-record (only after a
GET statement), 2 indicates end-of-file; 3 indicates an
mpur/output crror.

Programming Language Summary 203

i0_status$

ip(x)

len(s$)

log(x)

mod(x,y)

ord(s$)

peek(i%)

pi

rnd(x)

pth(s$.n)

returns a string value corresponding to the status of the last
input/foutput operation: a null string indicates success
(including the end-of-record status); “cof” indicates
end-of-file; a message text describing the crror is returned in
other cases (this text is dependent upon what devices are
being used and upon which system the program is being
executed)

returns the integer part of the fioating-point number x; the
result has the same sign as x

returns the length of string parameter s$

returns the natural logarithm (base ¢) of the parameter x; x
must have a positive value

returns the modulus of the number x for the range y. The
calculation is equivalent to specitying x-y*INT(x/y).

returns the posttion, or ordinal value, of character s§ in the
set of characters detined by the system; s$ must be a
one-character string

returns an integer representing the value stored in the byte
located at address 1% in the computer system.

returns the wvalue of the mathematical constant pi
(approximately 3.14159265)

returns a pseudo-random real number in the range (0,1)
according to a uniform distribution over this interval. When
no parameter is specified, the value is computed from the
last wvalue according to a fixed algorithm. When a
parameter x is specitied, the random number gencrator is
reset using the parameter x as a seed (starting point). A
reproducible sequence of random numbers can be generated
by inittally using a sced and then successively invoking the
rnd function without a parameter. An unpredictable starting
point can be set with the RANDOMIZE statement.

returns a string consisting ol the string s$ repeated
{concatenated) n times. Value n is rounded 1o an integer if
NECEeSSary.

sgn(x)

8in(x)

sqr(x)

stria,s,)

tan(x)

time

time$

value(s$)

value$(x)

Appendix B

returns a value based on the sign of numeric parameter x; -1
if x<<0; 03t x=0: 1 if x>0

returns the SINE of angle x: x is expressed as the number of
radians

returns the square root of the number x:; x must be a
non-negative value

returns a string value which is the portien {substring) of the
string a$, starting at characlers position s with length 1
characters. Values s and 1 are rounded to integers if
necessary. [f1is less than one after rounding, a null string is
returned. When fewer than 1 characters exist from position s
onward, the remainder is returned.

returns the TANGENT of the angle x ; x is expressed as the
number of radians

returns the current time as number of seconds since
midnight.

returns a string value which is current time of day.

returns a numeric value corresponding to the number
defined by the characters of string parameter s$

returns a string value representing the value of numeric
parameter x as it would be displayed by a PRINT statement
without leading or trailing blanks

Programming Language Summary 205

B.10 Statement Summary

B.10.1 Netation

. keywords appear in uppercase letters
. optional phrases or componenis appears enclosed in square brackets []
. a choice of phrases or components appears in a vertical list enclosed in

braces { }

. several short forms are used lor terms as follows

Short Form Term

matrix-elmt subscripted element of an matrix

matrix-name narue of matrix

condition conditional expression (i.e., numeric expression where zero
is false and non-zero is true)

file-name string-valued expression which represents the name of a file

file-num integer-valued expression which designates a file by
number

float-exp {Toating-point valued expression

func-name nane of user-defined function

int-cxp integer valued expression

line-num line number

num-matrix numeric matrix

Num-con nemeric constant

num-cxp numeric expression (integer or floating-point)

num-var numeric variable name

proc-name procedure name

prompt string-valued constant displayed to prompt for input

string-con string-valued constant

string-exp string-valued expression

string-[unc-name string-valued function name

string-matrix string matrix

string-matrix-elmt string matrix element

string-var string variable name

var-name variable name

var-substr substring of variable or matrix clement

206

B.10.2 Statements

{n

(2)

()

N

CALL

CHAIN

CLOSE

DATA

DEF

DEF

FNEND

DIM

proc-mame |{param[,param]) |
where param is one of:

{int-exp}

{float-exp}

{string-exp}
filename {, [LFILES]|.param]|,param]. 1

{, LFILES] . NAMES] .
{, LNAMES]| ,FILES] }
where param is one of:

{int-exp}

{Hoat-exp}

{string-exp}

#lile-num
const{ ,const]!,const]...
where const is one of:

{num-con}

{string-con}
func-name((var-name|,var-name])] =exprn
where exprn is num-exp or string-exp
func-namel(var-namel , var-namel..)|

[statement(s)]

[LET] func-name = {num-exp}
{steing-expl

matrix-name(n1{,n2|...) |,matrix-namefnl| u2].)]

where nl,n2. . are inf-exp

Appendix B

Programming Language Summary

(&)

(9}

(10)

(11}
(12)

(13)

(14)

(15)

END

207

FOR num-var = num-exp TO num-exp |STEP num-expl

. | statement(s)]
NEXT num-var

GET [#(ile-num,]

GO[I1SUB line-num
GO[|TO line-num
GUESS

: [staterment(s) |
I[ADMIT

: |statement(s))

I

ENDGUESS

IF condition

IF condition

. [statement(s)]
[ELSEIF condition
. [statement(s)]

A
|ELSE
. [statement(s)]

Ny
ENDIF

{var-name}
{matrix-element }
{var-substring}
{func-name}

THEN {line-num}

{statement }

208

(16)

(17)

(18)

(19)

(20)

(20

Appendix B

INPUT [#file-num,] |REC=num-exp,] | prompt, | input-list

where input-list is: var-name |,var-name |
matrix-clmt [, matrix-clmi|
var-substr |, var-substr] _ . .
func-name |,func-name]
MAT matrix-name [,MAT matrix-name]|

[LET] {var-name} {int-exp}
{matrix-elmt}= {float-exp}
{var-substr} {string-exp}

{func-name}

LINPUT [#file-num, [[REC=num-cxp,[prompt,| {string-var}
{string-matrix-elmt}
{var-substr}
{string-func-name}

LOOP

[statement(s)]
ENDL()OP
LOOP

[statement(s)]

UNTTL. condition

MAT num-matrix = (num-exp)

MAT string-matrix = (string-exp)

MAT num-matrix = num-matrix

MAT siring-matrix = string-matrix

MAT num-matrix = {num-exp) + num-matrix

MAT num-matrix (num-exp) * num-matrix
MAT num-matrix num-matrix + num-matrix
MAT numM-matrix == num-matrix - num-mateix
MAT num-matrix = num-matrix ¥ num-matrix
MAT num-matrix = ZER

MAT string-matrix = NULL$

MAT num-matrix = [DN

MAT num-matrix = TRN(num-matrix)

I

Programming Language Summary

(22)

(23)

(24)
(25)

(26)

(27)

(28)

29
(30)

(30

MAT

MAT

MAT

INPUT [#file-num, || REC—num-exp, || prompt, |
maltrix-name |,matrix-namel...

PRINT [#file-num,][REC=num-cxp,]
matrix-name |, matrix-name]. ..

READ matrix-name |, matrix-namej. ..

MOUNT file-name

ON

err-condn
. {statement(s)]

RESUME [NEXT]

ENDON

ON

ON

ON

ON

OPEN

where err-condn is: {EOF}
{IOERR}
{ATTN}
{SOFLOW}
{OFLOW}
{UFLOW?}
{7ZDIV}
{CONV}
{ERR}

crr-condn SYSTEM
err-condn TGNORE
valid only for EOF IOERR OFLOW ,UFLOW ZDIV CONY
num-¢xp GO[]SUB ling-num/[,ling-num]. ..
num-exp GO[JTO linc-num|,fine-num]. ..
#file-num, file-name,{ INPUT}
{ OUTPUT }

{INOUT '}
{ APPEND }

209

210

(33)

(34)

(35)

Note:

Appendix B

OPTION { BASE 0 }

{ BASE | }
PAUSE
POKE num-exp,num-exp [,num-exp |[...
where the first num-exp is the address of the first
byte to be changed and the other num-exp’s are the
value(s) to be stored in this byte and bytes following
PRINT [#file-num,|[REC=num-exp]| output-list

where output-list is: [item] [, item | [;]...

and item is: num-exp

string-exp

MAT matrix-name
TAB {(num-exp)

A question symbol, 7, may be typed in place of the keyword PRINT.

(36)

(37)

(38)
(39

(40)

PROC proc-name [(var-name|,var-name]...)]

. Lstatement(s)]
ENDPROC
QuIT
can appear within IF-ELSEIF-ELSE-ENDIF
LOOP-ENDLOOP, LOOP-UNTIIL
WHILE-ENDLOOP, WHILE-UNTIL
GUESS-ADMIT-ENDGUESS
FOR-NEXT
RANDOMIZE

READ input-list (see INPUT for input-list)

REM |comment|

Programming Language Summary 2

(41)
(42)
(43)
(44)
(45)
(46)

(47)

(48)

(49)

(50

RENAME file-name TO file-name
RESTORE

RESUME [NEXT] (sce ON-ENDON)
RETURN ({after GOSUB)

SCRATCH file-name

5TOP

SYS num-exp

where nuim-exp is the address of o system routine
Or user-written machine-language routine to be called

USE var-name | var-name |
(use CHAIN params)

WHILE condition
[statement(s)]
ENDLOOP
WHILE condition
V Istatement(s)]

UNTIL condition

212

Appendix B

B.11 Keywords

keywords are words with special meaning in the programming language
cannot be used as names of variables, matrices, functions or procedures

can bhe entered in lower or upper case or in combination of both; c.g.,
Print, print, PRINT

always listed in lower case due to statement encoding
consist of words which define statement types, (e.g , DATA, PRINT),

special words used in statements (e.g., STEP, IGNORE) and intrinsic
function names (c.g., SIN, ORD).

Programming Language Summary

abs
admit
and
append
atn

attn
base
call
chain
chr$
close
conv
cos
data
date$
def
dim
else
elseif
end
endguess
endif
endloop
endon
endproc
eof

eps

err

exp
files
fnend
for

fp

free

get

£o
gosub
golo
guess

hex
hex$
idn
1dx

if
ignorc
inf
mnout
input
nt

io. status
io_status$
ioerr
ip

len

let
linput
log
loop
mat
mount
names
next
not
null$
oflow
on
open
option
or

ord
output
pause
peek
pi
poke
pos
print
proc

quit
randomize
read
rec
rem
rename
restore
resume
return
rnd
rpt$
scratch
sEn

sin
soflow
sqr
step
stop
str$
sub
Sy
system
tab

tan
then
time
time$
to

frn
uflow
untit
e
using
value
valuc$
while
zdiv
zer

213

214

Appendix C

Files

Some devices, such as disk, provide external storage in which files may be kept.
Copies of programs may be stored m these files. In addition, files may be created and
accessed by programs for the purposes of storing, yetrieving and updating data. A file
might contain data such as marks for the students in a particular class. Data in files is
retrieved with input operations and stored or updated with puzput operations. Devices
which provide file storage are referred to as file-oriented devices.

Each file is identified by a name. Since files may be stored on different devices, it
Is sometimes nccessary to specify a device and name to identify a particular file.
Some devices support data input and/or output operations, but do not provide storage
for retaining files. For example, data can be output on a printer or display screen and
can be input from a keyboard. Input and output operations with such devices are
similar to input and output with files. Consequently, such devices are treated as
special files. The term filename, as vsed in the context of this manual, includes the
specification of a device, a name of a file, or both.

File support, in general, is described in the Systern Overview manual. The reader
should read this manual for a complete description of file types and devices available.
Waterloo microBASIC supports both text and fixed file types and allows sequential
and relative record access. Variable files are not supported by Waterloo
microBASIC.

Files 215

Waterloo microBASIC supports disk, printer, terminal, keyboard, serial and host
devices. Only the GET statement should be used to input characters from the
keyboard device. Relative record access can be used to display data on specific lines
of the terminal screen.

Using the Commodore disk, only files of type fixed and format REL can be
accessed by relative record number. Only files of format REL can be OPENed with
INOUT access mode. Only files of format SEQ can be OPENed with APPEND
access mode.

Waterloo microBASIC supports input/output with host computer files using
device name "host” and the host communications support of the Waterloo System
Library. Rules concerning relative or sequential access and file OPEN modes depend
upon the file capabilities provided by the host computer system.

216

abbreviated commands, 65, 196
ABS, 201

adding lines, 18, 70
addition, 128

address, 192

ADMIT, 149

AND, 130

APPEND, 166
arithmetic operators, 19
array, 42, 117
assignment, 133
ATN, 201

ATTN, 182
AUTOLINE, 70

bit manipulation, 131
blank lines, 109
BYE, 66

CALL, 47, 153
calling functions, 125
CHAIN, 187
changing lines, 79
character
string
constants’, 26
character set, 129
character strings, 117
choice structures, 147
CHRS, 201
CLEAR, 66
CLOSE, 53, 167
Commands
abbreviations, 65, 196
AUTOQOLINE, 70
BYE, 66
CLEAR, 66
CONTINUE, 9]
DELETE, 18, 78
DIRECTORY., 96
EDIT, 101

Index

LIST, 17,77

LOAD, 83

MERGE, 86

MOUNT, 98

OLD, 18, 87

RENAME, 97

RENUMBER, 79

RUN, 16-17, 73, 87

SAVE, 17, 85

SCRATCH, 46

STEP, 92

STORE, 84

summary, 196
comments, 19, 109
Commodore disk, 83, 96, 98, 214
comparison, 24, 129
concatenation, 36, 128
CONTINUE, 91
control statements, 73, 143, 161
control structure resolution, 73
CONVY, 182
copying lines, 79
COS, 29, 201
CURSOR, 201

DATA, 177

data types, 113
DATES$, 202
debugging programs, 89
DEF, 51, 157

DEL key, 79
DELETE, 18, 78
deleting lines, 18
DIM, 42, 118
dimensions, 42, 117
direct execcution, 89
DIRECTORY, 96
displaying program, 77
division, 128

division by zero, 182

Index

EDIT, 101

editing, 70

editing interrupted program, 93
ELSE, 34, 147
ELSEIF, 147

empty lines, 109
END, 73, 110

end of file, 181
ENDGUESS, 149
ENDIF, 34, 147
ENDLOOP, 20, 145-146
ENDON, 183
ENDPROC, 47, 153
entering program, 69
EOF, 181

EPS, 115, 202

crasing lines, 78
ERR, 182

error classes, 181
error handling, 181
errors recognized, 90
EXP, 202
exponentiation, 126
expression, 108, 123

fields, 55
file management, 95
file number, 165-167
filename, 83, 165-166, 214
files, 53, 83, 95, 165, 214
finishing, 18, 66
FNEND, 51, 157
FOR, 144
FP, 202
FREE, 202
full-screen editing, 79
Functions
ARBS, 201
ATN, 201
CHRS, 201
COS, 29, 201
CURSOR, 201

217

DATES, 202
EPS, 115, 202
EXP, 202

FP, 202

FREE, 202

HEX, 202

HEXS$, 202

IDX, 202

INF, 115, 202
INT, 202

IO _STATUS, 53, 183, 202
[O_STATUSS, 202
1P, 59, 203

LEN, 39, 203
LOG, 203

MOD, 203

ORD, 203
parameters, 157
PEEK, 203

PI, 30, 203
reference, 125
RND, 58, 203
RPTS, 203
SGN, 203

SIN, 29, 204
SQR, 28, 204
STR$, 204
TAN, 204

TIME, 204
TIMES, 204

user defined, 51, 92, 157
VALUE, 41, 204
value assignment, 157
VALUES, 41, 204

generzl editor, 101
general errors, 182
GET, 173, 214
GO sSUB, 162
GO TO, 91, 161
GUESS, 149

218

HEX, 202
HEX$, 202
host communcations, 214

IDN, 138

1DX, 202

IF, 34, 147

IF-QUIT, 24, 147, 149

IF-THEN, 147, 162

IGNORE, 182

immediate mode, &9

incomplete control structures, 73

indentation, 24, 143

INF, 115, 202

intinite loop, 20

INITIALIZE, 98

INOUT, 166

INPUT, 31, 166, 171

input operations, 95

inputfoutput, 165

input/output crror, 182

INST key, 79

INT, 202

integer arithmetic, 61-62

integer operations, 131

integer variables, 60, 116

internal file, 177

internal representation of numbers,
115

interruption of program, 73, 90

invalid control structures, 73

IO_STATUS, 53, 183, 202

I0_STATUSS, 202

IOERR, 182

IP, 59, 203

keywords, 109, 212

LEN, 39, 203

LET, 133

line number, 19, 69, 102, 107-108

LINPUT, 57,173

Index

LIST, 17,77
LOAD, 85
LOG, 203

logical AND, 130
logical NOT, 130
fogical OR, 130
loop, 20, 144-146

machine epsilon, 113
machine infinity, 115
MAT, 167,171, 178
MAT Statements
assignment, 137
INPUT, 172

matrix addition, 140
matrix assignment, 139
matrix multiplication, 140
matrix subtraction, 140
PRINT, 170

READ, 178

scalar addition, 139
scalar assignment, 138
scalar multiplication, 139

special constant assignment,
138

transposition, 141
matrix, 42, 117
matrix assignment, 137
matrix subscripts, 120, 125
maximum number, 115
MERGE, 86
Messages

Executing..., 74

Ready, 74
minimuem number, 115
MOD, 203
modular programs, 92
monitoring program, 92
MOUNT, 95, 174
multiple statements per line, 110
multiplication, 127

nested IFs, 34

nested loops, 33

nested subexpressions, 126
nesting of structures, 143
NEXT, 144, 184

NOT, 130

null lines, 109

null string, 117

NULLS, 138

numeric approximation, 29, 115
numeric constants, 113
numeric conversion error, 182
numeric inaccuracies, 29, 115
numeric output, 167

numeric overflow, 115, 182
numeric representation, 115
numeric underflow, 115, 182
numeric variables, 113

OFLOW, 182

OLD, 18, 87

ON EQF, 53

ON ecrror-condition, 181
ON-ENDON, 183
ON-error IGNORE, 182
ON-error SYSTEM, 183
ON-GOSUB, 162
ON-GOTO, 162
OPEN, 53, 165-166
operator priority, 124
operators, 123
OPTION BASE 1, 46, 120
OR, 130

ORD, 203

OUTPUT, 166

output operations, 95
overflow, numeric, 115

parameters, 49
parenthesized operations, 126
PAUSE, 92, 191

PEEK, 203

PI, 30, 203

Index

219

POKE, 192
precision, 115
primitive control, 161
PRINT, 19, 167
print zones, 26, 167
priority of operators, 20, 124
PROC, 47, 153
procedure parameters, 49, 154
procedures, 47, 92, 153
Program, 107

decoded, 83

encoded, 83

retrieving, 83

source, 83

storing, 83
prompt, 171, 173

QUIT, 33, 147, 149

random numbers, 58, 192
RANDOMIZE, 58, 192
Te-issuing commands, 79
READ, 177

REC=, 167, 170-173
record fields, 35
records, 53, 167
recursion, 154

REL files, 214

relational expresssion, 24
relational operators, 24, 129
REM, 109

remarks, 19, 109
removing lines, 78
RENAME, 97, 174
RENUMBER, 79
repetition, 144

replacing lines, 18, 70
RESTORE, 177
RESUME, 184

resuming interrupted program, 91
RETURN, 162

RND, 38, 203

RPT$, 203

220

RUN, 16-17, 73, 87

SAVE, 17, 85

scientific notation, 30, 167

SCRATCH, 96, 173

selection structures, 147

separators, 24, 109

SEQ files, 214

SGN, 203

sign-off, 18, 66

sign-on, 16, 65

significant digits, 115

SIN, 29, 204

SOFLOW, 182

spaces, 109

SQR, 28, 204

starting, 16, 65

Statements, 107
ADMIT, 149
assignment, 133, 158
CALL, 47, 153
CHAIN, 187
CLOSE, 53, 167
comment, 107
controt, 73
DATA, 177
declarative, 107
DEF, 51, 157
DIM, 42, 118
ELSE, 34, 147
ELSEIF, 147
END, 73,110
ENDGUESS, 149
ENDIE, 34, 147
ENDLQOP, 20, 145-146
ENDON, 181
ENDPROC, 47, 153
executable, 107
FNEND, 51, 157
FOR, 144
GET, 173,214
GO SUB, 162
GO TO, 161

Index

GUESS, 149
IF, 34, 147
IF-QUIT, 24, 147, 149
IF-THEN, 147, 162
INPUT, 31,171
LET, 133, 158
LINPUT, 57,173
LOOP, 145-146
MAT-see MAT Statements,
137
matrix assignment, 137
MOUNT, 98, 174
NEXT, 144
ON error-condition, 53, 181
ON-GOSUB, 162
ON-GOTO, 162
OPEN, 53, 165-166
OPTION, 46, 120
PAUSE, 92, 191
POKE, 192
PRINT, 19, 167
PROC, 47, 153
QUIT, 33, 147, 149
RANDOMIZE, 58, 192
READ, 177
REM, 109
RENAME, 97,174
RESTORE, 177
RESUME, 184
RETURN, 162
SCRATCH, 96, 173
STOP, 19,73, 191
summary, 204
SYS, 193
UNTIL, 145-146
USE, 187
WHILE, 145-146
STEP, 92
STOP, 19, 73, 191
STOP key, 20, 70, 73, 90, 182
STORE, 84
STRS, 204
string constants, 26, 117

Index

string overflow, 182
string variables, 117
structured control, 143
Structured Programming, 143
subexpressions, 120
subscripts, 120, 125
substring, 37, 125, 171, 173, 178
substring assignment, 37, 133
subtraction, 128
Summary
Command Language, 196
Programming Language, 197
SYS, 193
SYSTEM, 183

TAB, 167

table, 117
TAN, 204
termination, 191
TIME, 204
TIMES, 204
tracing program, 92
types of data, 113

UFLOW, 182
unary minus, 127
unary plus, 127
underflow, 115
UNTIL, 145-146
USE, 187

VALUE, 41, 204
VALUES, 41, 204
values, 123
variable, 19
vector, 117

WHILE, 145-146
workspace, 16, 65

ZDIV,
ZER,

182
138

221

Waterloo microBASIC is an interactive BASIC language interpreter
which provides simple, comprehensive facilities for entering, running,
debugging and editing programs. Waterloo microBASIC includes
ANS BASIC asdefined in the 1978 X3.60 standard with one minor
exception, The programming language supports many important
extensions beyond standard BASIC. These include:

An extensive set of control statements to facilitate Structured
Programming

Long names for variables and other program entities
Procedures that can be CALLed with parameters

Multi-line function definitions with numeric, integer and
string results

Sequential and relative (random) input/ output

True integer anthmetic and bit-oriented logical operations
using integers

MAT statements supporting operations on entire matrices
Powerful character-string manipulation features

A broad range of intrinsic functions

Interactive debugging facilities

This manual is divided into four major components:

An introduction to the general characteristics of the system
including a senes of annotated examples

A comprehensive reference guide describing the Command :
Language

A comprehensive reference guide describing the Programming
L.anguage

Appendices containing summaries of both the Command and
Programming Languages, and describing use of files with
Waterloo microBASIC.

DISTRIBUTED BY

Howard W. Sams & Co,, Inc.

4300 WEST 62ND ST. INDIANAPOLIS, INDIANA 46268 USA

$10.95/21806 ISBN: 0-672-21906-9

"

 rre—

