Waterloo microAPL

c: commodore

COMPUTER

WATERLOO MICROAPL

Tutorial and Reference Manual

J. C. Wilson

T. A. Wilkinson

Copyright 1981, by J. C. Wilson & T. A. Wilkinson

Allrights reserved. No part of this publication may be reproduced or used in any form or by
any means—graphic, electronic, or mechanical, including photocopying, recording, taping
or information storage and retrieval systems—without the written permission of J. C.
Wilson & T. A. Wilkinson,

Disclaimer

Waterloo Computing Systems Limited makes no representation or warranty with respect to
the adequacy of this documentation or the programs which it describes for any particular
purpose or with respect to its adequacy to produce any particular result. In no event shall
Waterloo Computing Systems Limited, its employees, its contractors or the authors of this
documentation be liable for special, direct, indirect or consequential damages, losses, costs,
charges, claims, demands, or claim for lost profits, fees or expenses of any nature or kind.

Manual Changes

SuperPET Waterloo microAPL Version 1.1

These sheets describe enhancements made to Waterloo microAPL version 1.1, released in
July 1982.

Workspace conversion programs and a datafile conversion program are included as a
part of the version 1.1 maintenance release. These programs allow users of version 1.0to
convert their existing workspaces and AP/, sequential datafiles for use on version 1.1.
Canversion of bare-sequential tiles is also included, as well as changes that will have to be
made to existing user-defined functions in order to make them compatible with the cur-
rent file system. The package also contains examples of the differences in behavior in the
file system between the two versions.

Waterloo Computing Systems Newsletter

The software described in this manual was implemented by Waterloo Computing Systems
Limited. From time to time enhancements to this system or completely new systems will
become available.

A newsletter is published periodically to inform users of recent developments in Waterloo
software. This publication is the most direct means of communicating up-to-date informa-
tion to the various user. Details regarding subscriptions to this newsletter may be obtained
by writing:

Waterloo Computing Systems Newsletter
Box 943,

Waterloo, Ontario, Canada

N2J 4C3

PREFACE

APL is a powerful and concise notation which can be used to communicate algorithms
between people or between a person and a computer. The name APL is an acronym for ‘A
Programming Language,” which was thetitle of a book published in 1962 by the inventor of
APL, Kenneth E, Iverson. Since the late 1960’s the notation itsclf has remained relatively
unchanged, although features have been added to facilitate its use with the computer.

Waterloo MicroAPL for the SuperPET follows closely the IBM internal standard for
APL written by A, D, Falkoff and D. L. Orth and published in 1979 by the Association for
Computing Machinery. All of the standard language primitives are included. System
features arc those consistent with a single user environment. Extensions include system
functions supporting file access, the reading and modification of memory, and the execu-
tion of machine language subroutines.

This manual is presented in two parts. The first part is a tutorial intended to introduce the
new user to the language and system features, The second part is a comprehensive reference
manual. Much of the reference manual should be read or skimmed by the new user,
although Chapter 6, which contains the detatled definitions of all the primitive functions
and operators, should be deferred until needed.

Acknowledgment

Many people have made significant contributions to the design of Waterloo MicroAPL
and so it is difficult to acknowledge everyone individuzlly. The design is based upon ideas
evolved and proven over the past decade in other software projects in which these and other
people have been involved. The major portion of the implementation was performed by
Geno Coschi, Rick Gallant, Fric Mackie, Steve McDowell and Terry Stepien. Kay Harrison
and Paul Dirksen were very helpful in the production of this document.

J. C. Wilson
T. A. Wilkinson,

July, 1981.

TFable of Contents

TUTORIAL SECTION
Introduction e 3
Getting Started. i e e e, 3
1. Simple ArithmeticFunetions. i iiinnann.. 5
2. Storing Numbers.t i i 7
I Listsof Numbers. i i i e 9
4. Manipulating Character Data.coovriiiniiiiiioreanas. 13
5. Data Companisoms.c.vvtttiriernrnreroranrrenersnsannrvronnss 16
6. TablesofData. ...t ittt ittt s, 18
T Indexing. - . ..o e 21
8. CombiningSetsof Data.o i iiiiiir correanaanans 24
9. Storing Instructions as Functions. 26
10. Controlling the Sequence of Execution.oviiiiiann.. 30
11. External Storageof DataasFiles.............. ..o iiiiiiiiiina, 3

Table of Contents

REFERENCE SECTION

1. Keyboard and SCreen.o.oinneurinininnrani i 39
Keyboard. .. .oveeeriireiraicarea i 39
“Overstruck’ Characlers. ..o vivravrvranrrarrasaranonnns 40
Unused SYMbBolS. .. vvviunirrnreaenierssinenaaaanennss 40
o115 0s) B €5 7 T LR 41
Full Screen Editing and the RETURNKey.ooovveeevenenns 41

2. The Workspace and System Commands.ovureereaaniann 42

3. EXPTESSIONS . .o oo vvvaeimrmcaramean s esrs et 46

I X 7 v 7 TP R R R LR R R R 47
Empty ATrays......c..... et aiaeeeetaeai ey 48
Internal Representation: NumericData..........oovviveniens 48
Internal Representation: CharacterData........oovvvnevenne 48
Numeric Datar INPUL. ot iri e e e 48
Character Data: Input. vvive v aees 49
Va1) o S 49

5. Defined Functions.t rreniiriamnasrainanaaans 51
The Header of a Defined Function.coviiiniivnaranes 51
Function NaImMe. ...vvenrenaaenrorcnesenseas e aeararaaas 51

B 1 S AR 51
I v i = 0= o R R 52
cLOCA] MAIMIES . - oo e e ee v eesaranrraacar s m e 52
The Body of a Defined Function.coovviiraev e iiirneas 52
WSLALEITIENES « v e s i e v mesaa et ar e 53
Branches and Labels.o v ieur i inninan i 53
Defining a FUDNCUON. . oot vr i 55
Editing 2 FUNCHOMN. « ..t evntvarvernirneeaiserarrmsusaanes 55
Editing Fnts. oo evevnernromeariramarasncae s 56
Errors During Function Bditing. ... ooveeiaiiiiriavnnennans 56
Effect of Localization . .. vevee e reannaracnmaunnaancsans 57
Exccuting Defined Functions.oovivaeraniiiareannae 57
Suspension of Execution.oviiiiiii e 58
SEOP COMITOL. 1o vaatvn i s ae e aan s 59
Trace COMITOLl. . v vt ie i iaicarcsnsarscnctnsearaamsssnise 59

Table of Contents

b1 < L B U6 1 T0r2 140) o O 59

SPUDL o 60

6. Primitive FunctionsandOperators. 61

=Scalar FunClOnS. ..o i e e i et i e e 61

--MonadicScalar Functions.o v i 6l

—-ATithmetic FUnctlons. .. ov .o ci i e ot i eee i cee e 62

—Random Function.ciiiitn e i i i 63

—Logical Function. i i i i v 63

--Dyadic Scalar Functions.ottt i it 63

—-Arthmetic FUNCHOnS. - .o ve e in o it i e aie i inecenaannnn 63

—Logical FUNCHOMS. o\ o vt i e it e et eae it e cnmsnnnn 64

~--Relational Functions.oveveevrnuirnncrrnnaceannn 64

---Trigonometric Functions. e e e iae .. 65

SMIxed FUNCHIONS . o v e e e et et e e e et v e 65

@ =1 €23 (0o S A R 76

7. System Variables and System Functions. A |

System Variables.ottt e 80

Systein FUICHOMS . oot v v i ee v e s ierconimaiar s ereravnnns 83

L TR 0y 1 87

Brror Messages. it 87

T O T AR 89

General ContePts:. oottt et 90

T 320 134) U P 90

ey) T 90

General File Manipulation Functions: ieuunns 91

APL Scquential Files............ ... e 92

BARE-SequentialFiles.o irrt i it i v v vvnnnn e 93

Relative Files. ... ovnoo oot VO 93

Appendix A, Tablesof Functions. 95

Appendix B, System Commands, Variables and Functions. 102

Appendix C. Chavacter Code Tables. e 105
Appendix D. Workspace and Data File Conversion

(From version 1.0toversion L.1). 108

WATERLOO MICROAPL

Tutorial Manual

J. C. Wilson

T. A. Wilkinson

Introduction

This Tutorial is intended to provide an introduction to the basic concepts and facilities of the
APL computer language as implemented on the Commodore SuperPET. It is composed ofa
number of short topics with accompanying notes which illustrate each point.

Getting Started

Before turning the machine on, make sure the switches are set at 6809 and R/W, Then tarn
on the power switch on the SuperPET and disk (and printer if attached). The following
menu should appear.

Waterloo microSystems
Select:

setup
monitor

apl

basic

edit

fortran
pascal
development

Insert the system diskette in drive 1 and a data diskette in drive 0. Then sclect APL by typ-
ing apl and pressing return,

There will be a pause of about 1 minute while the A PL language translator is loaded into
the machine. Then a message similar to the following will appear:

WATERLOO MICROAPL

COPYRIGHT 1981 BY WATERLOQ COMPUTING SYSTEMS
LIMITED

CLEAR WS

Now the APL system is ready for use.

Tutorial 1

Simple Arithmetic Functions

The APL system manipulates numbers in the usual manner using the functions of addi-
tion (+), subtraction (—), multiplication (X), division (<} and exponentiation (*). Type
each of the following simple expressions on the keyboard hitting the RETURN key after
each one.

(a) 5+6 (b) 3-1
11 2
(c) 18X3 (d) 34
54 0.75
(e) 2%3 N 3i—-4
8 1
(2) 2*.5
1.41421356
NOTES:
1 The symbols + — X = and * are called functions. Since each has 2 arguments

(one on the left and the other on the right) they are called dyadic functions.

6 Tutorial 1

2 The result of example () is a negative number. The symbol for negative () should
not be confused with the subtraction symbol (—).

3 Numbers in APL are displayed with 9 digits of accuracy as in example (g).

Consider these examples:

(h} 8—4)+!

(i) 8—{4+1

3
G) 8~4+1
3
NOTES:
1 These expressions are more complex, each containing a number of functions and
arguments.
2 Example (h) uses a pair of parentheses to force the subtraction (8—4) function to
be evaluated before the addition.
3 Example (i) uses parentheses to force the addition to be evaluated first.
4 Asshown in (j), expressions are evaluated from right to left if no parentheses exist
to indicate otherwise,
5 The numbers used in these examples are referred to in APL as scalars.

Tutorial 2

Storing Numbers

Numbers can be remembered by the APL system through the use of numeric variables
which are defined by the programmer.

(a)

(b)

VISA«79.45

The assignment function (+) is used to save the number 79.45 in the
variable FISA. It may represent an amount owed to a credit company.

The names given to variables can be composed of up to about 80
characters. The first must be a letter of the alphabet, while the remainder

can be any letter or number, or the underscore symbol ().

VISA
79.45

The contents of a variable can be displayed by typing its name.

Tutorial 2
{c) VISA—50
29.45
MASTER<301.15

VISA+MASTER
380.6

Variables such as V154 and MASTER can be used in expressions.

(d) VISATMASTER
301.15

The greater of two numbers can be computed with the dyadic function
maxirmum ().

(e VISALMASTER
79.45

The lesser of the two numbers can be computed with the dyadic
mimimum (L).

Tutorial 3

Lists of Numbers

Many applications require manipulation of lists of numbers. 4APL has the ability to store
such lists of numbers in a single variable.

(@

(b}

©

CARDS+<79.45 301.45 65 300.2

The above list of 4 numbers is stored (using + }in the variable CARDS.
Such lists are called vectors. This one could represent the various
amounts owed to 4 credit companies.

CARDS
79.45 301.457 300.2
&5
The contents of a vector are displayed by typing its name.

pCARDS

The number of elements in or length of a vector can be computed using
the shape function (p).

This is an example of a monadic function since it has only one argument.

10

Y

(€)

&y

(g)

Tutorial 3

CARDS-20
59.45 281.45 45 280.2

CARDS+2
39.725 150.725 32.5 150.1

The arithmetic functions (+ — X + *) can be used to perform calcula-
tions on all elements of a vector.

+/CARDS
746.1

Thesum of the elements in a vector can be computed using the plus reduc-
tion function (+/)

+/CARDSX.18
134.298

Since expressions are evaluated right to left, this multiplies each element
in CARDS by .18 and then totals the elements of the resulting vector.

(+/CARDS)+pCARDS
186.525

This computes the average of the elements in the vector CARDS.

[/CARDS
301.45

The function [/ is used to compute the maximum element in a vector.

L/CARDS
65

Similarly L/ computes the minimum element in a vector.

8
1 23 45 6 7 8

The monadic index generator function (;) generates a vector of the in-
tegers from 1 to the value of the specified argument.

LIST OF NUMBERS 1
(h) 710
6
710
3

The monadic rolf function (7) generates a random integer between 1 and
the specified argument (in this case 10).

3710

3?10
276

The dyadic deal function (?) generates a vector of random numbers
without any duplicates. The left argument specifies how many numbers
are to be generated and the right argument defines the range.

It is often desirable to perform operations involving more than one list of numbers. In
these applications functions are performed on pairs of vectors.

(i RATE«~ 18 .21 .14 .17

CARDSXRATE
14.301 63.3045 9.1 51.034

The firstline creates a vector called RATE, Tt might represent the interest
rates charged by 4 credit companics. The second line multiplies cach ele-
ment of RATE by the corresponding element in CARDS and displays the
result. Note that both RA TE and CARDS must have the same number of
elements (i.e., they must have the same length).

At this point we have created two vectors named CARDS and RATE. We may wish to
leave the system for a time and return later to continue. To preserve the data we have
created, it is necessary to save the contents of our workspace.

@ VSAVE THISWS
SAVED 81/01/07 00:49:44 THISWS

Thisisa system command that causes the contents of the workspace to be
recorded on a diskette in drive 0.

12

(k)

O

{m)

()

Tutorial 3
M.OAD THISWS
SAVED 81/01/07 00:49:44

This system command is used to restore the workspace to its state at the
time when the }SA VE was done.

WIB

This system command will display a list of all the workspaces which have
been saved.

JDROP THISWS

Workspaces can be removed from the library by use of the)DROP com-
mand.

)VARS

This system command will display a list of all the variables defined in this
workspace.

13

Tutorial 4

Manipulating Character Data

As well as performing arithmetic calculations, most computer applications must
manipulate character data such as names, addresses, etc. 4 PL treats such items of data as
arrays of characters.

(@) NAME«' SMITH'

The character data enclosed between the quote symbols is assigned to the
character variable NAME,

NAME is a vector of 5 characters.

oNAME
5

The shape function (p) computes the length of a character vector,

14 Tutorial 4

(t) FIRSTNAME«"'JACK'
FULINAME < FIRSTNAME,NAME
FULLNAME
JACKSMITH

FULLNAME« FIRSTNAME," ' ,NAME
FULINAME
JACK SMITH

The dyadic catenation function (,) is used to create longer vectors from
two shorter ones.

(c} NAME—'SMITH'
ITNAME
h
ITNAME
SMI
TT3ITNAME
TH

The dyadic function take (1) can be used to select a number of elements
from the beginning or end of a vector.

(61 FIRSTNAME), NAME
JACK SMITH

The take function can be used to pad blank characters onto a character
vector.

MANIPULATING CHARACTER DATA 15

()

NAMET4]
T

An index or subscript enclosed in square brackets and following the
name of a vector indicates that the element in the specified position is to
be selected from the vector. In this case the 4th character of 'SMITH' is
selected.

NAME[l 3 5]
SIH

If a list or vector of subscripts is specified, the corresponding elements
are all selected to form a new vector,

NAMET! +.3]
MIT

Using vector arithmetic and the index generator function, a substring can
be extracted from a vector.

16

Tutorial 5

Data Comparisons

A very important facility of any computer is the ability to determine the relationships be-
tween various elements of data, both numeric and character. 4 P uses the functions equals
(=), not equal (#), greater than (>), greater than or equal (=), less than (<), less than or
equal (<), and (A), or (V) and not {~) to perform these comparisons.

Comparison of items in APL. is accomplished by the evaluation of a-function which is found
to be cither True (represented by 1) or False (represented by 0).

(@ VISA+79.45
VISA=0
0

When the expression ¥7SA=0 is evaluated it is found to be false since
VISA is 79.45, Therefore the expression is given the value 0.

ViSA >0

(VISA > OA(VISA <100)

These conditions are true and each receives the value 1 indicating truth.

DATA COMPARISONS 17
(b) CARDS<79.45 30145 65 300.2
CARDS> 100
01 01

This condition requires that each clement of CARDS be compared to
100. The first and third elements are not greater than 100 and so fail the
test. They generate O or false. The second and fourth elements are greater
than 100 and generate ! or true. Thus a vector is created which indicates
the result of each of the comparisons

() +/(CARDS>100)
2

This expression computes how many elements of CARDS are greater
than 100 by creating a vector of I’s and ('s and summing.

It is possible to use the vector of 0’s and 1’s produced in this way to select certain elements
from a vector creating a new vector.

5)] 1 0 1 0/CARDS
79.45 65

The dyadic function compression (/) is used to select specific elements
from the vector CARDS. Compression selects elements from the right-
hand vector which have a corresponding 1 in the left-hand vector.

(CARDS>100)/CARDS
301.45 300.2

The selection vector on the left of a compression function is often
generated by the evaluation of a condition. Here we select all elements of
CARDS which are greater than 100,

(CARDS>100)/1pCARDS
2 4

Here we determine which elements of CARDS are greater than 100 (they
are the second and fourth).

18

Tutorial 6

Tables of Data

Frequently, it is desirable to group items of data together in the form of a table or matrix.
The elements of a matrix are arranged in rows and columns.

(a)

TABLE<2 3p1 2 3 4 5 6

TABLE
1 2 3
4 5 6
The first line uses the dyadic function shape (p) to create a matrix with 2
rows and 3 columns. The elements of the matrix are filled in from the vec-
tor on the right side. Note the order in which the elements are inserted in-
to the matrix, If there are not sufficient elements in the right hand argu-
ment to fill the matrix, then the elements are re-used as many times as
necessary.

pTABLE
2 3

The monadic function reshape (p) can be used to compute the number of
rows and columns in a matrix. This is called the shape of the matrix. Since
this is a 2-dimensional matrix, it is said to have a rank of 2.

TABLES OF DATA 19

Consider a consumer who has 3 credit cards which he uses for 2 different categories of
purchases (say business and personal).

b

(c}

CHARGES«2 3p143 7.9 100.1 17.26 24 40

CHARGES
14.3 7.9 100.1
17.26 24 40

The first line creates a matrix with 2 rows and 3 columns and assigns 6
values from the 6-element vector on the right.

The second line displays the elements of the matrix.

+/[NCHARGES
31.56 31.9 140.1

The plus reduction function along dimension [1] (i.e., down the columns)
causes atotal to be produced foreach column. This creates arow of totals
giving a total for each credit company.

+/[2]CHARGES
122.3 81.26

Similarly, plus reduction along dimension {2] (i.e., along the rows)
causes a column of totals to be produced, one for cach row.

+/4A21CHARGES
203.56 '

This computes the sum of the rows and then sums the resulting vector to
give the total of all the numbers in the table.

20 Tutorial 6

(d) PAYMENTS+<2 3p20 10 20 10 20 30
PAYMENTS
20 10 20
10 20 30
CHARGES—PAYMENTS
57 721 8041
7.26 4 10

This computes the balance owing in each account.

All the usual arithmetic functions { + — X <+ *} apply to
matrices.

+/[NICHARGES—PAYMENTS
1.56 1.9 90.1

This computes how much we still owe each credit company.

Character data can be arranged in matrices or tables as well. The elements of a character

. . 2
matrix are single characters.) Ppadl” . Mpﬂ“
(© COMPANY+3 6p'VISA /| MASTERAMEX
COMPANY
VISA
MASTER
AMEX

The first line creates a matrix of characters called COMPANY. Each of
the 3 rows in the matrix is composed of 6 characters.

In general, matrices or arrays can have as many dimensions as the application demands.
They can be viewed as tables of tables.

21

Tutorial 7

Indexing

Previous tutorials have discussed vectors and matrices of numbers and characters. It is
sometimes desirable to perform operations on selected elements of these tables. A technique
called indexing or subscripting can be used for this purpose.

(@ DATA+142 10 3 41.1 62
DATA
142 10 3 41t 62

Here we have created a vector of 5 numbers.

DATA[2]
10

DATA[l 3 4]
142 3 411

These lines display selected elements from the vector DATA. The
numbers inthe square brackets are called subscripts. A subscript canbea
numeric scalar or vector.

Similar operations are possible with character vectors (see Tutorial 4).

22 Tutorial 7

()] DATA[3]+-1000
DATA
142 10 1000 4i.1 &2

Any element of a vector can be replaced by using this combination of in-
dexing and assignment.

The various elements of a matrix can also be accessed individually with indexing.

(c) CHARGES+2 3pl43 79 100.1 17.26 24 40
CHARGES
14.3 7.9 1001
17.26 24 40

CHARGES12;3]
40

CHARGES[2;3]1+0
CHARGES

14.3 7.9 100.1

17.26 24 o

Individual elements of a matrix (created as above) must be referenced by
two indices or subscripts, specifying the row and column of the element
respectively.

In the case of matrices, complete rows or columns can be referenced.

(d} CHARGES[1;)
143 7.9 100.1

CHARGES[;3]
100.1 0

CHARGESE2]+0

CHARGES
143 0 100.1
17.26 0 0

Complete rows or columns of a matrix can be extracted or replaced using
subscripts.

INDEXING

23

QM o

COMPANY+3 6p' VISA/] MASTERAMEX & *
COMPANY

VISA

MASTER

AMEX

COMPANYI3;}
AMEX

COMPANYL;1]
VMA

COMPANY[2;1«<'MCHG !
COMPANY

VIS4

MCHG

AMEX

Row and column extraction and replacement can also be done on
character arrays.

24

Tutorial 8

Combining Sets of Data

In Tutorial 4, the catenation function was introduced as it pertained to character vectors.
However, it has a more general application to vectors of alf types.

{a) DATA<10 13 47
MORE<6 5 7

LOTS<DATA,MCORE
LOoTS
10 13 47 6 5 7

The catenation function creates a single vector from two other vectors.

(b) CHARGES+2 3pld3 7.9 100.t 17.26 24 40
CHARGES
14.3 7.9 100.1
17.26 24 40

COMBINING SETS OF DATA 25

()

NEW«CHARGES,[1] 16 18 21
NEW

14.3 7.9 100.1

17.26 24 40

16 18 21

These lines show how the catenation function is used to add anew row to
the matrix ([1] means in the first dimension).

NEW—CHARGES,12) 161 147
NEW

14.3 7.9 100.1 161

17.26 24 40 14.7

A new column can be added in a similar mannecr ([2] means the second
dimension).

CATEGORY+<2 8p’BUSINESSPERSONAL’
CATEGORY

BUSINESS

PERSONAL

CATEGORY,SCHARGES
BUSINESS 143 7.9 100.1
PERSONAL 17.26 24 40

The thorn symbol (T) specifies the monadic function format and is form-
ed by overstriking the symbols T and ©. It converts thenumeric datain the
matrix CHARGES to character data so catenation can be performed
with the matrix CA TEGORY (row by row). Theresult is a new character
matrix.
&
CATEGORY,7 2DCHARGES
BUSINESS 1430 7.90 100.10
PERSONAL 17.26 24.00 40.00

The dyadic function format converts numeric data to character and for-
mats it, Inthis case, each number is converted to 7 characters with 2 digits
after the decimal point.

26

Tutorial 9

Storing Instructions as Functions

So far we have created various forms of numeric and character data in the workspace.
Each time functions were to be performed on that data, the correct APL statements had to
be entered. It is often desirable to create a list of such siatements or instructions in the
workspace. These can then be invoked as a new function, thus avoiding re-entering all the

lines again.

(a)
{11

VSUM

This line opens the definition of a function (or procedure or program)
called SUM. We simply enter the statements we want to put in the func-
tion in response to the line-number prompt by the system editor.

(1]
[2]
K]
(4]
[5]

vSUM
"ENTER A LIST OF NUMBERS'
Xx+0O A GETNO’'SFROMKB
'SUM="0+/X O DISPLAY SUM OFNO'S
AVG ="0(+/X)+pX 0 DISPLAY AVG OF NO'S
v

These lines define the function SUM.

E B B EBR E B B FE'EBE"EHTETETET

STORING INSTRUCTIONS AS FUNCTIONS 27

Line [2] contains the symbol quad (7). Later, when this list of instruc-
tions is being executed, it will allow vectors of numbers to be entered
from the keyboard.

Some lines contain the comment symbol (M) (N overstruck with ©), Text
following this symbol provides documentation only.

The del symbol (¥) is also used to close the function in line [5].

(b} SUM
ENTER A LIST OFF NUMBERS
(:
i 7 18 4 72
SUM = 28
AVG 5.6

A function can be executed by simply typing its name.

(©) vSUMICIV
[0] SUM
[11 'ENTER A LIST OF NUMBERS'
2] X«<[1 A GETNO'SFROMKB
[3] 'SUM = '"OT+/X R DISPLAY SUM OFNO’S
4] "AVG = " TB(+/X)+ A DISPLAY AVGOFNO'S
pX

Example of listing a function.

In order to modify the statements of a function definition, it is necessary to open the func-
tion. Then changes can be made and the function closed.

28

C))

Tutorial 9

v SUMIM

This lists the function and leaves it open (i.e., the prompt for a new line
{5]is displayed). Lines can now be added, inserted, modified or deleted.
The cursor movement and the INST and DEL keys can be used to change
existing lines. When all desired changes are made, the V symbolisused to
close the function.

The following are some examples of function edjting:

©

)]

4] "AVERAGE='T(+/X)+ A DISPLAYAVGOFNO'S
X
51 Vv

Example of replacing a line in a function.
[2.1} 'THEREARE’,@pX),” ELEMENTS'
2.2] ¥
Example of inserting a line in a function.
(23]
4 v
Example of deleting a line from a function.

YENS

This system command displays a list of all the functions which are defin-
ed in the current workspace.

VFA
[1] '"ENTER A WORD'
[21 WORD<[

(31 "THE WORD HAS Qo WORD, CHARACTERS'
4 v

This function illustrates how the input operation is used for character
vectors. The symbol used for character input is quote quad (1) and is
formed by overstriking the symbols * and [1.

NN MO "N NN MGG MEG UON BN BT NI UM M MM W e Wm

"HEE G N GG U MEN M U DI WM MM GEe N MM e Ew

STORING INSTRUCTIONS AS FUNCTIONS 29

(¢

(h)

4
vEFWORD
(1] N« +/'A'=WORD
21 *THELETTER A OCCURS’ (TN),” TIMES'
B] v

In this example, the word to be examined is passed as a parameter to the
function FB rather than being entered as input (as in (f)). It would be used

as follows:

FB'ACTUAL’
THE LETTER A OCCURS 2 TIMES

JERASE FB

The system command Y)FRASE is used to ecrase a function or a variable
from the workspace.

30

Tutorial 10

Controlling the Sequence of Execution

Functions are frequently very complex combinations of APL statements. It is usually
necessary to control the order of execution in these functions, repeating some statements a
number of times (loop structures) and selectively exccuting others (if structures). This
logical complexity is achieved in APL through the use of branching statements.

(a)

(1
[21
3]
[4]
[3]
{6]
[7
[8]

VCALC
'ENTER SOME NUMBERS’
DATA+<U]
TOTAL<+/DATA
IF:—~{(TOTAL=<100)/ENDIF

"TOTAL GREATER THAN 100/
ENDIF:
"TOTAL="B3TOTAL
v

The function CALC computes and displays the total of alist of numbers.
If that total is greater than 100, it also prints a message to that effect.

Line [4] causes a branch to the line labelled ENDIF ([6]) when the condi-
tion TOTAL = 100is found to be true. The symbol — indicates a possible
branch.

.—----—-----

CONTROLLING THE SEQUENCE OF EXECUTION 31

(b)

The IF: inline [4] and the ENDIF: inline [6] are called labels and must
be unique within the function. They are followed by the colon ;). Rules
for forming label names are the same as those for forming variable names
(see Tutorial 2).

1tis considerced good practice to indent statements (such as line [5]) which
are conditionally executed.

v COMP
{11 'ENTER SOME NUMBERS'

[2] DATA<DO

(3] TOTAL«+/DATA

[4] JF:—(TOTAL <100)/ELSE

[51 ‘TOTAL GREATER THAN 100’

6] —ENDIF

[7] ELSE:

Bl 'TOTAL NOT GREATER THAN 100°
[9] ENDIF:

[10] 'TOTAL="TTOTAL

i v

In this example, lines [5] and [6] are executed if TOTAL > 100 and lines
[71 and [8] are executed if TOTAL =100.

The = ENDIF in line [6] causes an unconditional branch to line [9].

It is important to note that, while the APL language does not have the
structured language constructs, good program structure can be achieved
and revealed using controlled branching, well chosen labels and proper
indenting.

32

©)

@

{tl
(2]
[3]
(4}
i3]
(6]
{7
(8]
(91

Tutorial 10

VADDER

RPT:
'ENTER SOME NUMBERS'
DATA<[]
TOTAL«+/DATA
~(TOTAL<OWEND
'SUMOF' ,(TDATA), 'IS', @ TOTAL)
- RPT

END:

v

The function ADDER repeatedly asks for a list of numbers for which it
displays a total. This is done with a loop composed of lines [1} through

7l

Line [5] causes the loop to terminate when the calculated total isless than

Zero.

W
(2]
i3]
141
[51
16]
M
(8]
9
[10]
{i1]
[12]
{131
[14]
[15]

VTRANSLATE
'ENTER A NUMBER'
I
CASE:—~(I=1 2 3)/CS1,C82,C53
‘NUMBER NOT IDENTIFIED"
—+END
CS1:
*NUMBER IS ONE'
-+ END
CS2:
'‘NUMBER IS TWO'
—=END
C53:
'NLMBER IS THREE'
END:
v

Line [3] in this function performs a case test and selectively executes a
group of statements based on the value of I. If =1 control transfers to
label CS1; if 7=2 control transfers to label €S2; etc. If the number
entered is not 1 or 2 or 3, control passes to line [4].

i3

Tutorial 11

External Storage of Data as Files

It is often desirable to transfer data between an APL workspace and external storage
areas known as files. The simplest form of such a file can be viewed as alist of items of data.
"This is called a sequential file and is stored in the APL library and given a name.

(@) '"TEST (ICREATE 6

A file named TEST is created and given the tie-number 6.

CHARGES+<2 3p143 7.9 100.1 17.26 24 40
CHARGES LIWRITE 6

The shape, rank, type and all the data of the variable CHARGES are
transferred to the file tied by number 6.

COMPANY+«3 6p'VISA MA STERAMEX
COMPANY LIWRITE 6

As before, all characteristics of COMPANY are written to the file.

34

(b)

(c)

Tutorial 11

LIUNTIE 6
The file tied by number 6 is released.
"TEST LITIE 4
The file named TEST is tied to the workspace with the number 4,
X<UIREADA4
X

14.3 7.9 100.1
17.26 24 1 40

The variable X receives the shape, rank, type and all the data from the
value stored in the file.

X«-[OREAD 4
A

VISA

MASTER

AMEX

Here the variable X receives all the characteristics of the next value stored
in the file.

CIUNTIE 4

The file ticd by number 4 is released.

LIERASE 'TEST

Files can be removed from the library with the function [1ERASE, The
file being erased must be currently tied to the workspace.

EXTERNAL STORAGE OF DATA ASFILES a5

)

©

VCRTFILE A
1] AICREATE3
[2] 'ENTER LINES (EOF TO STOP)'
[3] RPT:
[4] XM
[5] —{A/ EOF =3t X)/END
6] XUIWRITE3
7 —RPT
[8] END:
9] [IUNTIE3
[10}¥

The above function creates a sequential file of character vectors entered
from the keyboard. Line [1] creates the file using (JCREATE and givesit

the name specified by parameter A. It also states that this file will be

referred to as file number 3.

Items from X are written to the file in line [6} using [1WRITE.

When the entire file has been written, line [9] releases the file with
LUNTIE and the file number becomes available for other uses.

VLISTFILE A
Ul ANTIES
2] — %[1STATUS)/0
3] RPT:
[4] X+OREAD3
(5} —(0#0_STATUS)/END
(61 e X
(71 -+ RPT
8] END:
[91 CUNTIE3
[10]v

This function retrieves the list of items from the file whose name is in 4
and displays them on the screen. Line [1] attaches the specified file using
CITIE and states that it will be referred to as {ile number 3.

Line [2] causes a transfer to line [0] (i.e., exit from the function) if an er-
ror accurs while attaching the file,

36

Tutorial 11

Line [4] uses [IREA D to retrieve one item from the file and assign it to X,
After this operation, the variable [38TATUS (in line [5]) is used to check
the result of the [TREAD. When all the items have been retrieved,
CIUNTIE is used in line [9] to release the file.

WATERLOO MICROAPL

Reference Manual

1. C. Wilson

T. A. Wilkinson

Waterloo Computing Systems Newsletter

The software described in this manual was implemented by Waterloo Computing Systems
Limited. From time to time enhancements to this system or completely new systems will
become available.

A newsletter is published periodically to inform users of recent developments in Waterloo
software. This publication is the most direct means of communicating up-to-date informa-
tion to the various users. Details regarding subscriptions to this newsletter may be obtained
by writing:

Waterloo Computing Systems Newsletter
Box 943,

Waterlos, Ontario, Canada

N2J 4C3

39

Chapter 1

Keyboard and Screen

Keyboard

Although the APL keyboard is similar in many ways to the standard keyboard, there are
some major differences.

40 ’ Chapter 1
The capital letters A-Z are in their usual positions, but you do not press SHIFT to get
them. There are no lower case letters in the APL character set.
Many of the remaining characters are peculiar to APL and will be explained later.
““Overstruck’” Characters
Besides the symbols shown on the kevboard diagram there are {8 other symbols that can be
created by typing two symbols on top of each other (e.g., by using the ""cursor back™ key).
The 18 overstruck symbols and the two symbols which produce each of them are shown in

the figure below.

Overstruck Symbol Combine

¥ v o~
A A~
¥ v o
4 L
[AEESENE T , ¢ o |
U.c. 0‘) o —
Q o N\
® o %
7 vV o~
D~ use //(g 1l_ :’ R
u-c a N —
‘3” \\ + /-
1 e e & [
71 | '
H I
4 ! .
I T X

Unused Symbols

Some of the symbolsin the A PL character set have no nse in MictoAPL except asconvenient
graphic symbols. These are

diamond 3 C
left brace D n
right brace U o
left tack @

right tack I &

KEYBOARD AND SCREEN 41

Control Keys

Several of the keys control screen or cursor functions:
<= CRSR Moves cursor left (""cursor back’™)
== {RSR Moves cursor right
r\[CRSR Moves cursor up
CRSR Moves cursor down

TAB Moves cursor to next tab position

CLR Clears the screen and “homes’” the cursor
HOME Moves cursor to top left hand corner
RUBOUT ""destructive backspace’’

EEOL Erase to end of line

INST Opens space under the cursor

DEL Deletes characters and closes texg.

(Behavior is slightly different depending on whether there
are nonblanks to the right of the cursor or not.}

Full Screen Editing and the RETURN Key

Whenever the APL system expects you to enter something from the keyboard, vou may use
the control keys to manipulate the screen in any way you wish, but nothing will be sent to
APL until you press the RETURN key. This is the only rule you need to remember: when
you press RETURN, the entire contents of the line the cursor was on (when you pressed
RETURN) getssentto APL. Itdoesn’t matter what may be elsewhere onthe screen. Therule
applies equally whether you are in immediate mode or function definition mode.

42

Chapter 2

The Workspace and System Commands

The active workspace is the environment within which you deal with APL. The principal
contents of a workspace are variables and defined functions. When you begin an APL ses-
sion the active workspace is empty; the message CLEAR WS confirms this,

There are a number of system commands which permit you to manipulate workspaces.
System commands arc distinguished by the fact that they aff start with a right parenthesis.

)LIB
JLIB libid

The response is a listing of the directory for the diskette in drive 0 of the disk unit, or else for
the device designated by libid (see the System Overview Manual). For example,if youhavea
disk unit whose address is 9, not the usual 8, then YLIB DISK9/1 will give you the directory
for the diskette in drive 1 of that unit. A lengthy listing can be interrupted by means of the
STOP key.

YCLEAR

The active workspace is replaced by one without any defined functions or variables and with
the workspace parameters { [17O, CCT, [IPp, TIPW, [IRL, [1LX) set to thelr default
values. The name of the workspace is set to null and is reported as CLEAR WS. The
previously active workspace is gone.

THE WORKSPACE AND SYSTEM COMMANDS 43

YWSID
The response is the name of the active workspace.
YWSID wsid

The name of the active workspace is changed to wsid. The response isits previous name. The
parameter wsid is often just a name, like CIHIESS, but it can designate a device as well (c.g.,
DISK /1.CHESS). Sce the System Overview Manual.

YSAVE
The active workspace is saved under its current name (unless the name is null).
YSAVE wsid

The active workspace is saved under the name wsid unless wsid doesn’t match the current
name and there already exists a workspace with the name wsid. (This is to prevent you from
inadvertently overwriting one workspace with another.) After the SAVE, the active
workspace will have the name wsid, whether it did before or not.

The response to a SAVE is a timestamp derived from the current sctting of the system clock
(see JTS) together with the name under which the workspace was saved. The timestamp is
saved with the workspace and is reported on subscquent loading.

WLOAD wsid

The named workspace replaces the active workspace. The active workspace is gone. The
response is the timestamp saved with the workspace.

YCOPY wsid
YCOPY wsid names

The named objects {(functions and variables) are copied from the named workspace into the
active workspace, replacing any objects therein having the same names. The parameter
names is a string of names separated by blanks. Tt it is omitted, all the variables and fung-
tions (except objects beginning with U) are copied.

YPCOPY wsid
YPCOPY wsid names

Copy objects from the named workspace into the active workspace. Only objects that do
not have the same name as an object in the active workspace are copied.

44 Chapter 2

YDROP wsid

The designated workspace is deleted from the library.

WENS
The response Is a list of the names of the defined functions in the active workspace.
VWARS

Theresponse is a list of the names of the variables currently defined in the active workspace.
(Includes local variables if there are suspended functions.)

JERASE names

Names is a string containing the names of variables and functions separated by blanks. The
named objects are deleted from the active workspace. Response: normally none, but objects
which could not be erased are reported.

)SI

The response is the current state indicator (see Defined function execution).

YSINL

The response is as for)S7 but with the local variables shown against cach active function.
JOFF

APL is discontinued and control is returned to the microlanguage menu.

YSYMBOLS

The response is the current maximum number of symbol table entries, along with a count
ol the number of symbol table entries already in use.

WYMBOLS n

The number of symbol table entries is set to n. This command can only be executed in a
clear workspace, otherwise the error INCORRECT COMMAND will appear. The
message CLEAR WS appears indicating that the workspace is clear with the requested
number of symbol table entries. The value set by YWSLIMIT is not altered.

THE WORKSPACE AND SYSTEM COMMANDS 45

YWSLIMIT

The response is the first memory address beyond the current end of the workspace.

YWSLIMIT n

The end of the workspace is changed 1o at most n-1. This command can only be executed
in a clear workspace, otherwise the error INCORRECT COMMANID will appear. The
message CLEAR WS appears, indicating that the workspace is clear with the requested
end of the workspace set. The value set by)SYMBOLS is not altered.

NOTE:
1 Program function key 3 (i.¢., shifted "'3" on the numeric keypad)is equivalent to
typing the three system commands JFNS, WWARS and)51

46

Chapter 3

Expressions

An expression is a string of APL variables, functions, operators, numeric and character
constants, parentheses and bracketed index expressions.

As a general rule, an APL expression is evaluated from right to left, in the absence of
parentheses. Although at first this sounds peculiar it is in fact what we are used to when we
use the English language. For example, the sentence ““The equivalent resistance is the
reciprocal of the sum of the reciprocals of the given resistances.”” makes sense (to an elec-
trical engineer!) when read from left to right, but as a prescription for computation it must
be used from right to left, starting with ‘“‘the given resistances” and ending with the
specification of ‘‘the equivalent resistance.”

The equivalent APL expression is M« =+/=R . It, too, can be read from left to
right, but is executed from right to left.

Parentheses modify the order of execution in the usual way.

There are no priority rules such as the common convention that * ‘multiplication and divi-
sion are done before addition and subtraction.’’ For example 3X4+5 is 27, not 17. This
makes life much simpler in an environment such as A PL, in which there are dozens of func-

tions like X,-,+ and —.

Subexpressions containing operators, like +.X are exceptions to the above,

47

Chapter 4

Arrays

Datain APL is not in general single quantities, but rectangular arrays of quantities. A table,
or matrix, like

2 3 "4

50 6.7
is a rectangular 2 by 3 array of numbers. We say that its type is numeric, its rank is 2 and its
shapeis2 3.

In general, an APL array has, besides its elements, a type {numeric or character), a rank
(the number of axes, or ““coordinates,”” or ‘‘dimensions™’), and a shape (a vector giving the
length of each axis).

A simpler array than a matrix is a list, or vector, like

7 2 3 5

whose rank is | and whose shape is 4.

There is an even simpler array than a vector. This is a single quantity, or scalar, like 3.14
whose rank is 0 and whose shape is empty.

48 Chapter 4

Empty arrays

Itis possible in APL to create an empty array, that is one having no clements at all. Therank
and shape of an empty array are not restricted except that the shape vector contains at least
one element which is zero.

In general, the number of elements in an array is the product of the elements in its shape
vector.

Internal Representation: Numeric Data

The elements of a numeric array are stored internally in a 5 byte floating point format. Thus
the 2 by 3 matrix used in the above example requires 6 X5 = 30 bytes of memory, plus the
memory necessary for the shape vector, the rank and the type, plus some further overhead.

MicroAPL, does not take advantage of the compression which is possible when numeric
arrays are known to be boolean or integer.

Internal Representation: Character Data

The elements of character arrays are stored one per byte, plus the same overhead as for
numeric arrays. Thus the 3 by 5 matrix

ABCDE

FGHIJ

KLMNO
requires 15 bytes plus overhead.

All 256 possible bytes are legal as the clements of character arrays.

Numeric data: Input

Numeric data elements are entered through the keyboard using the digits 0-9 and the sym-
bols li"” [!1! and 13 E !’.

The digits 0-9 and the decima!l point are used in the normal way.

The negative sign ~_ (which is located above the ‘2" on the keyboard, not above the
47" and the < £ ** (which means *“times ten to the power. . ,**)arcsymbols similar tothe
decimal point in that they are regarded as being part of the representation of the number and
not functions or operators.

- SR N 9 =N N Tx N A EE AN e N Em N e

ARRAYS 49

Examples:
TT2.35F2 is equivalent to ~ 235
3.14E 3 is equivalent to 0.00314

There must not be spaces within the representation of a number, and if E occurs, the
number following it must be an integer.

A numeric vector may be entered by typing a sequence of numeric elements separated by
spaces, all on a single line. Larger vectors, and arrays of higher rank, must be formed from
smaller ones by applying 4P7, functions to them.

Character Data: Input

Character data elements which correspond to APL symbols can be entered through the
keyboard.

A character vector may be entered as a string of APL symbols without unintended spaces
(space is an APL symbol), all on a single line.

When a character vector is included as a character constant in an expression it must be
enclosed in quotes, and any quote symbol which the vector itself contains must be made into
two consecutive quote symbols. Thus the contraction of CANNOT would be input by
means of the string "CAN” ’T”, The length of the resulting vector is § and it contains one
quote symbol.

Fewer than half of all the possible byte values are interpreted internally as A PL symbols.
An application requiring the manipulation of bytes in general will usually create the
character arrays by indexing {14V, not by getting them through the keyboard.

Again, larger vectors, and arrays of higher rank, must be formed from smaller ones by ap-
plying APL functions to them.

Variables

Every variable has a name which is a string of letters, digits and the underscore character
(). The first character of a name must be a letter. Names should be limited to 80
characters.

50 Chapter 4

A variable generally acquires a value (which is an array) by having one assigned or
specified. Thus

TAX _RATE< [4
274

assigns the scalar value 27.4 to the variable called TAX_RATE.
There may be several assignments within a single APL expression. For example

A« 1+ B 0is sometimes used to initialize A to 1 and Bto 0. This tends to reducereadability
and should usually be avoided.

"ﬂl-----ﬂn--u-

51

Chapter S

Defined Functions

The defined function in APL is similar to a ""program’’ in other languages, and in fact we
will often use the term "program’” interchangeably with “"defined function.”

A workspace may contain a large number of defined functions and they need not bear any
particular relation to each other.

A defined function has a multiline representation. The first line, or header, establishes the
name and syntax of the function, the names used for the parameters and the local names.

The subsequent lines, or body, are the statements to be executed when the function itself is
executed.

The Header of a Defined Function.

-Function name
The names of defined functions are subject to the same rules as the names of variables.
--Syntax

The syntax of a function describes how the function name may appear in an expression.

52 Chapter 5

A function may have 0, 1 or 2 explicit arguments. The arguments of a function are always
data arrays. A function having no arguments is called niladic. A function having one argu-
ment is called monadic and the argument appears to the right of the function name. A fune-
tion having two argurnents is called dyadic and the arguments appear on either side of the
function name.

In addition to being niladic, monadic or dyadic, a function either produces an explicit
result or it doesn’t. This gives six syntactical forms to choose from for any given function.

No

Explicit Explicit

Result Result
Niladic F Z<F
Monadic F R Z+F R
Dvadic L F R 2« F R

-Parameters

The variablesrepresented by L, R and Z in the above figure are called parameters. These are
temporary names which exist for the purpose of function definition and execution only.
They indicate the syntax of the function and they serve as names by which you can refer to
the left argument, the right argument and the result in the body of the function definition.
The function name and parameter names must be distinet, but they may match other
names in the workspace; that is, they have local significance only. No VALUE ERROR is
reported if a result parameter is included in the syntax of a function, and no value is
assigned to the result prior to the function exiting pormalty.

-Local names

It is often desirable to have other local names in defining a function. Names can be made
local by listing them in the header after the syntax, each name preceded by a semicolon.

Thus the header 4 < P R : X B establishes a monadic function Pwith result A, right arpgu-
ment R and local names X and B. (Usually X and B will be the names of variables, but they
may also be the names of funciions to be established by [IFX.)

The name of the function being defined cannot belocalized. The names of the parametcrs
and the labels in a function are implicitly local and should not appear in the local variable

list.

The Body of a Defined Function

DEFINED FUNCTIONS 53

-Statements

An APLstatement ismade up of any combination of the following compenents, in the order
given.

(1) A label; i.c., a name followed by a colon.

{2} A branch arrow {—).

(3) An expression.

() A comment;i.c., alamp symbol (M) (formed by overstriking M and °)
followed by any string of characters.,

name: - exXpression .M Sharacters)
label comment
Figure5.1 Statement

Exccution ol astatement consists of evaluating its expression, if it has one, and taking action
appropriate to the branch arrow, it there is one.

Ll:
END: -0
-
Me++/+R M EQUIV RESISTANCE
—5+H
REPEAT: —(N>I+I+1)/REPEAT M ADELAY
RAHOLDFOR ARRIVAL
Fipure 5.2 Examples of Statements

-Branches and Labels

The statements in the body of a function are numbered 1, 2, ... I a statement includes a
label, the value of the label s the number of the statement. The label is a local name. Care
should be taken not to assign the same label name to more than one statement in a given
function.

Labels may only appear in defined functions. If they are encountered elsewhere, for ex-
ample in immediate exccution, a 7SYNTAX ERROR will be reported.

The statements of a function are normally executed in the sequence in which they occur.
This normal sequence can be modificd by the branch statement, that is, one containing a
branch arrow.

54 Chapter 5

The next statement to be executed after a branch statement is determined as follows:

(2) If the branch statement has no expression then execution ceases, the cur-
rent execution sequence is cleared off the execution stack and A PL awaits your
next request.

This statement is normally used manually to clear out the execution stack and
get rid of local variables, but it can also be written into functions and used to
abandon automatically the execution of a program when a fatal error is
discovered.

(b) If the branch statement has no expression then the value of the expression
must be either (1) an integer scalar, or (2) a vector whose first element is an in-
teger, or (3) an empty vector.

In the first two cases the integer referred to is the number of the next statement
to be executed. If the integer is not a valid statement number then execution of
the function terminates and control returns to whatever caused execution to
start. In particular, 0 is not a valid statement number and is often used to cause
termination of the function.

In the third case, the empty vector, no branch occurs: the next statement to be
executed is the one following the branch statement in normal sequence,

A very common form for a “conditional branch’ is exemplified by
—+(I=N)/INVERT

which can be read as *if =< Nthen po to INVERT . INVERT is assumed to be
the label on some statement in the function.

A ’case’’ construction can be obtained by

—{I=1 2 3)/CASE|,CASE2,CASE3
or by

—((XN}= 1 0 1WNEGATIVE,ZERQ,POSITIVE
where as before the names to the right of the compression (/) symbol are
assumed to be labels.

The branch statement is extremely powerfu! and must be used with restraint, or you will
create programs which are very difficult to understand.

4 GEA N SN NI AN S N N S N N Sk EE aE

DEFINED FUNCTIONS 55

Defining a Function
A function can be defined or established in a workspace in one of three ways.
(1) It can be copied from a stored workspace using the JCOPY system com-

mand,

(2) It can be established by means of the system function DFX.
(3) It can be established by the use of the "'del’’ function editor.

The first two features are described elsewhere.

Touse the “"del” editor to define a function, enter function definition mode by typing the
character del (V) followed by the header of the function. The editor will prompt with a line
number in brackets. Enter the statements of the body of the function one by one.

To leave function definition mode, end a line, other than one containing a comment, with
a del(V), or enter del in response to the line number prompt.

Editing a Function

To use the editor to revise the definition of an existing function, enter ¥ followed by the
name of the function. You cannot redefine the header this way: the name only is acceptable.

The name of the function may optionally be followed immediately by an editing com-
mand. Once you are back in function definition mode, every line you enter must be an

editing command.

Following is a list of the possible editing commands.

Editing command Meaning

[0 Display the existing definition.

[(n] Display the function, starting at line n.

[ni7] Display line n only and leave the cursor on the line.

[n] text Replace the contents of line n by text. (Note that no change will

occur if text is blank. This is a salety measure.) The number n need
not be an integer: if n falls between two existing lines, then the new
line is inserted between those lines.

[An] Delete line(s) n {n may be a vector).

56 Chapter §

It can be seen that the bracketed line number prompt that the system displays is merely an
editing command. It is not necessary to delete it or move to a new line to enter a different
command: the system ignores all but the last recognizable editing command on a line.

During the editing process for a function the lines of the body are not renumbered 1,2,...
immediately after deletion or insertion. Renumbering occurs after you leave function
definition mode.

For editing purposes only, the header is considered to be line 0, and it is displayed that way
when [[] is executed. The entire header may be changed if desired, including the function
name.

Editing Hints

Keep functions short. Functions longer than the screen (about 20 lines) are inconvenient to
deal with.

When editing an existing function, display it immediately and then use the screen editing
controls to adjust the definition of existing lines. Don’t forget to strike RETURN when you
are satisfied with a line; otherwise your changes will not be recorded.

Conversely if you have accidentally made garbage of a line of the function, don’t hit
RETURN, but use the cursor to get to a new line and ask for a redisplay. The garbage will
not be recorded.

Program function key 1 (i.e., shifted “1'" on the numeric keypad) during function editing
will close the function definition, then immediately reopen and display it. The effect is to get
a clean, renumbered listing of the function.

Errors During Function Editing

The editor detects a variety of errors, all of which are reported as DEFN ERROR. Here are
some of the possible causes.

—On Opening a Function Definition
—The name of the intended function is already in use as a variable.
—Attempt to respecify the header of an existing function.
—Header is syntactically invalid.

—Invalid function name (e.g., “"3D"").

N N BN I I N N S EE T Em ay B am m e

DEFINED FUNCTIONS 57

—You were already in function definition mode.

—Function is pendent. {Clear the state indicator.)

—Function name in locals list.

~—Function name and parameter names are not all distinct.
—During Editing,

—Invalid editing command.

—Attempt to edit the header of a suspended or waiting function.

If you get a SYNTAX ERROR during editing vou were probably not in the editor at all.
You may have executed V FILJ1V instead of v FILI], for example.

Effect of Localization

All names appearing in the header {(except the function name itself), together with the names
of all labels, are local names. Local names have only the significance assigned to them in
their own function regardless of their significance in the calling environment, that is, before
execution of the function began. The effect of this is that during the execution of the func-
tion (and even if the function becomes suspended) there is no way to ""see’’ the original value
associated with alocalized name. The original value is restored when execution of the func-
tion terminates.

Any name which is not local has the same significance that it had in the calling environ-
ment. One of the effects of this is that a function cannot “*hide"" the value of its variables
from any function which it calls.

Executing Defined Functions

Inimmediate execution mode, if you type a statement and press RETURN the statement is
executed immediately. If, during the execution of the statement, the name of a defined func-
tion is encountered, then that function is executed. This in turn involves executing
statements (those of the function) and any functions that they refer to, and so on. This pro-
cess normally ceases only when the statement you originally typed is completely executed. If
the statement has an explicit result and the last thing executed was not an assignment (<) the
system displays the result on the screen. It then awaits your next command.

58 Chapter 5

Suspension of Execution

The execution of a defined function will stop prematurely if an error is encountered, if the
STOP key is pressed, or through stop control (see below). The system returns to immediate
exccution mode.

The function whose execution was interrupted is said to be suspended and all those func-
tions which led to its execution and are not yet completed are referred to as pendent. A
dyadic function whose left argument is being evaluated is said to be waiting.

The suspended function can be restarted by entering a branch statement. In the case of
stop control, no part of the line has been executed and the function can be safely restarted
with a branch to the line number in question. In the other two cases the point of interruption
is indicated approximately by a caret (A). Whether the function can be restarted (even after
the error, if any, has been fixed up) normally requires some analysis.

A convenient way to restart a suspended function is to enter = [1LCsince [1LCis a vector
whose first element is the line number at which execution is to be resumed.

In the suspended state, most normal activities are possible, including the evaluation of ex-
pressions and the execution of functions, but there are some limitations.

1. All names have their local significance (that is, the significance they
had in the suspended function).

2. Space may be limited by the inclusion in the workspace of the local
variables of the suspended and pendent functions.

3. Pendent functions cannot be edited.

4, The header of a function which is suspended or waiting cannot be
edited.

5. Functions which are suspended, pendent or waiting cannot be erased.

6. The workspace can be saved in this condition but it may not be subse-

quently loadable by any different release of the MicroAPL system.

NOTE: There may be ways, not prohibited by these limitations, to create an inconsistent
workspace by manipulating halted functions.

DEFINED FUNCTIONS 59

In general it is best to ""punt’’ (see below) after suspension of function execution unless
you have a good reason not to. One good reason not to is if you are not sure what caused the
error and wish to investigate further by listing variables or executing subexpressions of the
one in error. It is sometimes useful in this case to save a copy of the workspace in its suspend-

ed state (under a temporary”” name!) before doing anything that might make the trail hard
to follow,

Stop Control

By the use of the system function [JSTOP (see “'System Functions’”) a function can be
caused to stop in a suspended state just before cxecuting a given line or lines. The function
may be normally restarted safely by branching to the line number of the stop.

Trace Control

Actraceof afunctionline is a display generated on the screen immediately after the execution
of the line. The system function {1TRACE is used to determine which lines are to be traced
(see ""System Functions’’), Execution of the function is not halted. The display generated by
atrace consists of a TRACE SET message, the line number and the value, if any, of the ex-
pression in the statement.

State Indicator

The system command }S7 causes the state indicator to be displayed. The state indicator
shows all the suspended (marked with an asterisk) and pendent functions, (Tt does not show
the waiting functions.} The order of the display is the same as for [1LC, that is, most recent

first.

For example:

)SI

H3] *

G[7)

2] *
OLe

37 2

It is good practice to display the state indicator periodically to sce that it is clear, and it is
especially inportant when something mysterious scems to have happened: a function has
disappeared, for instance, or an unusual WS FULL occurs.

60 Chapter 3

”Punt”

The statement — is sometimes called a **punt’ (the foothall term). It may be used as a line of
adefined function, as the response to a (] input request, or inimmediate execution mode. Its
effect in each case is the same: the currently executing function, or the latest suspended func-
tion, is terminated, together with all the pendent functions which led to its execution.

The state indicator may always be cleared by executing punt suf ficiently many times.

61

Chapter 6

Primitive Functions and Operations

The term *'primitive’” refers to things that are available as part of the system without the
necessity of defining them.

The primitive functions and operations all have APL symbols reserved for them. Almost
half of the symbols used for primitive functions actually represent two functions, one
monadic and the other dyadic. Which is intended in a given expression must be determined
from the context: the dvadic function is denoted if possible, i.e., if there isaleft argument.

e

NOTE: The symbol « — used in the following is not APL notation. It means "1$
equivalent to."’

-Scalar Functions

Scalar functions are functions defined on scalar arguments, yielding a scalar asa result, and
which are extended to array arguments element by element.

-Monadic Scalar Functions
The monadic scalar functions are shown in Table A.%.

Each of these functions has the same syntax as the familiar “’pegative’” function.

62

Chapter 6

Each takes only numeric arguments. Each can be applied element by element to an array
argument, yielding an array of the same shape.

---Arithmetic Functions

R+~+B

R<-8B

R« XB

R+—<=B

R+LB

R<1B

R«*B

R<&B

(Conjugate or indentity) The result is the same as the argument. +B «— 0+ B
«—— B

(Negative) —B+~— 0~-8

(Signum) XBis~ 1,00r 1 according to whether Bisnegative, zero or positive.
XB = (B>0)—(B<0)

{Reciprocal) =B «— 1+ 8. B must not be zcro.
{Floor) LB is the greatest integer not greater than B. This result is modified in
accordance with the systemn’s comparison tolerance parameter. For example,
if the comparison tolerance has its default value of about 1E 8 then
17.99999999 « — &, Formally, floor has the following definition.
VR«FL X ; N
[N (XX)XL0.5+| X
[21 R=N—~(N-X)>OCTX1[N

v

(Ceiling) TR is the least integer not less than B. Again the result is modified in
accordance with comparison tolerance. [B < — —L—B

(Exponential) * Bis eraised to the B th power, where e is the base of natural
logarithms (approximately 2.71828).

(Natural Logarithm) The inverse of the exponential function. ® * 8 +— B
- % ®B. B must be greater than zero.

(Magnitude) The absolute value of B. |B «— BI(—B).

(Factorial) § B —— BX(B~1)X(B—2)X...X2X1and0{ « = 1. Bmustbea
non-negative integer.

(Pi times) Pi times B where Pi is approximately 3.14159.

bt oo = e e

PRIMITIVE FUNCTIONS AND OPERATIONS 63

---Random Function
R<B (Roll) 7B is arandom choice from the integers «B. Since 2 is dependent on the
current index origin, so is 78. B must be a positive integer.
---Logical Function
Re~ B (Not)BmustbeQorl. ~0f+«—>10
--Dyadic Scalar Functions
The dyadic scalar functions are shown in Table A.2.
Each of these functions has the syntax R« A f B like the familiar "'plus’’ function. Each
takes only nurmneric arguments, except = and # which permit both numeric and character

arguments. Each is extended to nonscalar arguments according to the following rules.

a) If A and B arc the same shape, the function f is applied to corresponding
elements of A and B to give a result of the same shape;

b) else, if 4 and B each have only one element, then the result has one element
and is of shape equal to the shape of the argument having the greater rank;

¢} else, if one argument has only one element then it is extended to be the same
shape as the other argument;

d) else the arguments are not conformable and an error is reported.
---Arithmetic Functions
R~A+B (Plus) Addition.
R—A—B (Minus) Subtraction.
R<AXB (Times) Multiplication.
R<A-+B (Divide) Division. B must not be zero unless A4 is as well, and then 0+0 +— 1.
R+AlB (Minimum) 4 LB is the lesser of 4 and B.

R+ AlB (Maximim) AT B is the greater of A and B.

64

R<A*B

R—A®B

R+<AIB

R—AIB

Chapter 6

{Power) A raised to the power B. A * B is not defined if A=0 and B< 0 or if
A<{0and Bis not an integer. 0 * 0+« —1

(Logarithms) .4 ® B is the base 4 logarithm of B i.e., the power to which 4
must be raised to give B, A @ B——(®B)+(®4). A and B must be positive,
and if A=1 then B=1}.

(Residue) A{B is the remainder when B is divided by A. ¢|B < B. If A#)
then R «+— B—AX1B+A. R will always lie between 0 (inclusive) and A (ex-
clusive) regardless of whether A is positive or negative.

(Binomial coefficient) This is often read ' A out of B'. One interpretation of it
isthe number of combinations of B things taken 4 at a time. A must be a non-
negative integer. B may be any number.
AlB——1 ifA=0
BX(B-1DX..X(B+1-A)+{({A) ifA=0

---Logical Functions

R—AAB
R+—AvVE
R+AAB
R—AvwB

(And)
©n)
(Nand)
(Nor)

In each case A and B must be 0 or 1. (See Table A.2)

---Relational Functions

R+~A<RB
R<A=B
R+—A=B
R<A=RB
R—A>RB
R—A+#B

(Less)

(Less or equal)
(Equal)

(Greater or equal)
(Greater)

(Not equal)

In each case R is 1 if the relation holds, 0 if it does not. 4 and/or B can be of
type character only in the case of = and #.

The relational functions on numeric arguments are all subject to comparison
tolerance. A is considered ('“tolerantly’’) equal to B if and only if (A—B) =
(Comparison tolerance) X (|A) (| B).

The other five relational functions then use this version of equality in their
definitions.

N

PRIMITIVE FUNCTIONS AND OPERATIONS 63

The comparison tolerance may be changed from its default value of about
1E778 by means of the system variable [1CT.

The effect of comparison tolerance 1s to make 9=(3 * 2} «-— 1 for example
eventhough (3*2)—9 « — 3,725 (9

---Trigonometric Functions

L
R<AQB

This is a family of related functions. The integer A selects the family member.
See Table A.2 for details.

-Mixed Functions

The real power (and uniqueness) of APL is contained in the mixed primitive functions. The
mixed functions deal with, and are defined on, arrays as a whole and not element by ele-
ment. Their results have shapes which often differ from the shapes of their arguments. The
mixed functions are not generally arithmetic in nature.

The mixed functions are shown in Table A.4.

R<pB

R+.,B

R+~ApB

R<0B
R+oB
RO V1B
R+a[VIB

(Shape) pB is the shape vector of the array B.

(Ravel) ,B is the vector whose elements are those of B taken by indexing se-
quence (that is, with the last index varying most rapidly). If Bis a scalar, ,Bis
the vector whose sole element is B. If B is a vector, ,B is identical to B.

{Reshape) ApB is an array of shape .4 whose elements are taken sequentially
from ,Brepeated cyclically as required. A must be a nonnegative integer scalar
or vector, or an empty vector. (10)pB is the scalar (B} 1.

Reversed Bisan arrayidentical to Bexcept that the clements along the last axis
are inreversed order. If B is a vector, then ® B turns B end for end.

The function © isidentical to§* except that the relevant axis is the first, not the
last.

The axis operator (see Operators) can be applied to either ¢ or © to designate
the relevant axis.

66 Chapter 6

R+AbB

R<AoB

R<AD[V]B

R<Aa[V]B (Rotate) If 4 is an integer scalar or one-element vector and B is a vector, then
AP Bis a vector identical to B except that if A4 >0 then the elements of B have
been rotated cyclically left A places. If A<0 the rotation is to the right |4
places.

For higher dimensional arrays the shape of A must be ~ 1lpB and then each
element of 4 specifies the amount to rotate the corresponding vector along the

last axis of B,

For example,
M =

B
E
L

"-1"1-10

D A
G o
J K

As in the monadic case, the function© is identical to® except that therelevant
axis is the first, not the last. The axis operator (see Operators) can be applied to
either & or o to designate the relevant axis.

R+A,B
R+A,[VIB (Catenate) This function is used for gluing together two arrays to form alarger
array.

If A and B are vectors (or scalars), 4, B is the vector whose clements are those
of A followed by those of B.

Matrices are catenated along the last axis of each by imagining them to be writ-
ten side by side and then glued together along the adjacent sides. (The last axis
is the one which is extended.) Obviously only the first dimension of each must
match.

The same idea extends to higher dimensional arrays. For example, a IX4X5
array may be catenated to a 3X4X2 array of the same type to form a 3X4X7
array.

PRIMITIVE FUNCTIONS AND OPERATIONS 67

R<A,[V]B

Arguments which differ in rank by 1 are also permitted, so that for instance a
vector may be catenated to a matrix by treating the vector as if it werean nX|1
matrix. Again this concept extends to higher dimensional arrays, so thata 3 X4
array may be catenated to a 3X4 X5 array to form a 3 X4 X6 array.

The axis operator (see Operators) can be applied to catenate to designate some
axis other than the last as the axis to be extended. The axis number V must
designate one of the axes of the higher rank argument. For example, if the in-
dex originis 1, and A and B arematrices, then 4,[2]Bis cquivalent to A, B, and
A,T11B corresponds to gluing the bottom edee of A to the top edge of B.

Unless one of the arrays is empty they must be of the same type, i.e., both
numeric or both character.

A scalar argument is extended as necessary.

(Laminate) Lamination is analogous to gluing two essentially 2-dimensional
sheets of wood together to form a 3-dimensional board,

In APL wecan jointwo identically shaped (say 5 X 7Y matrices together to form
a 3-dimensional result. The new axis of the result will have length 2, but we
have a choice where we locate it in the new array. We can have the result of
shape 2X5X7or 5X2X7or 5X7X2depending on whether we put the new axis
before the first of the original ones, between the first and second, or after the
second.

If Vis not an Integer then R+ A,[V]B specifies that A and B are to be
laminated, not catenated. And the value of V relative to the original axis
numbers specifies where the new axis is to go. Thus if the index origin is 1, the
A and B arc SX7 matrices, then A,[0.5]1B15 2X5%7, 4,[1.5]Bis $X2X7 and
R« A,[2.5]Bis 5X7X2. Inthe last case, for cxample, R[;;1] «+ — A and R[;;2]

«—— B,

The exact value of V doesn’t matter, only where it stands relative to the
original axis numbers.

Both arguments must be of the same shape unless one is a scalar, in which case
it is extended. Both arguments must be the same type (numeric or character)
unless they are empty.

68

R<AnB

R<wB

R—A[B;C;..

Chapter 6

(Dyadic Transpose) This function provides a way of permuting the axes of an
array (and also of obtaining diagonal sections of an array).

Suppose B is a 3-dimensional array and we wish to form from it the
3-dimensional array R such that R[I;.J;K]=B[K;I;J] for all values, Qf K, fandJ
that are valid subscripts for B. In APL thisisexpressed R« 3 VZ QA. Theleft
argument of & is found by inspecting the subscripts K;I:J of Bin the equation
defining R{I;.J;K]. The first subscript of B, i.e., K, is the 3rd subscript of R, the
second, I, is the first of R and the third, J, is the second of R. Hence 3 1 2.

We can also take a “’diagonal section’’ through an array. For example, we can
derive from B a 2-dimensional array S such that S[F;.J]=B[J;1;J]. In APL this
is §+2 1 2B, Therule for finding the left argument is the same as above.

If Bis amatrix then 2 1 ©Bisthe conventional transposeof Band 11 9Bisthe
main diagonal.

(Transpose) This function reverses the order of the axes of its argument. For-
mally, &8 < - (P ppB)SB. In particular, if Bis a matrix then QB is the con-
ventional transpose of B.

D)

{Indexing) Elements may be selected from an array A to form anew array R by
means of anindex expression in square brackets. Anindex expression for ann-
dimensional array A is a list of n expressions separated by semicolons. The
value of each expression must be an array (¢.g., B) each of those ¢lementsis a
permissible index along the corresponding axis of A. Each indexing array may
be of any rank, although scalars and vectors are the most common.

Any of the constituent expressions of an index expression may be omitted en-
tirely; its value is taken to be the entire index vector for that axis of A.

The shape of R is the catenation of the shapes of the indexing arrays. In par-
ticular if A is a vector then the shape of A[B] is the shape of B. Technically, for
higher rank index arrays,

A[B;C;...;D1 = ((0B),(pO), ... ,(0DNp A[(BY,(.C);- .- s DN

The use of a pair of symbols, [and] and what amounts to a vector of arrays as
one of its arguments, distinguishes indexing as an exception to the APL syntax
rules. Nevertheless indexing is still conceptually a dyadic function of an array
and an index.

PRIMITIVE FUNCTIONS AND OPERATIONS 69

A[B;Ci...;DIR

R<ATB

(Indexed assignment} An indexed subset of the elements of an existing array A
may be replaced by the elements of the array R.

[8;C;...;D1 must be a valid index expression for 4 and the shape of
A[B:C;...;D] must match the shape of R, except that axes of length 1 are ig-
nored,

If R is a one element array of any rank, it is extended as necessary.

A and R must be of the same type unless the index expression selects no
clements of A,

(Take) This function selects elements from the beginning or end of a vector B
and it can also be used to '‘pad”’ B out to a given length with zeros (if B is
numeric) or blanks (if B is character). In general it can be thought of as selec-
ting a “"corner’” of an array B.

A must be an integer scalar or vector, or an empty vector. & can be an array.

Unless Bis a scalar, there must be one element of A corresponding to each axis
of B.

The shape of ATB is the vector whose elements are the absolute values of those
of A thatis },A.

If Bis a vector (and therefore A is a scalar or a one element vector) then there
are four cases.

(a) (oB)<<A. R is B catenated with (pB)—A zeros (or blanks).
(M) (O=AA(A<pB). Ris avector of the first 4 elements of B.

)} (—oBYy=AWNA<D). Risavector of the last |4 elements of
B.

() A< —pB. Ris —(A+pB)zeros (or blanks) catenated with B.

70 Chapter 6

The following diagram summarizes these cases.

pad B take |4 elements take A elements pad B
on left N from end of B N from beginning of B 4 on right

e
oB 0 oB A

If Bis of higher rank then each of the axcs is treated as in the vector case, using
the corresponding element of A.

R« AlB (Drop) This function is a variant of take. It also selects & ""corner’’ of the array
B but it does it by deleting rows and columns rather than by keeping them.

The conditions on A and B are the same as for take.
If B is a vector there are four cases as illustrated in the following diagram.

drop all drop |A elements drop A elements drop all
of B N from end of B + from beginning of B . of B

>
oB 0 pB A

1If Bis of higher rank then each of the axes istreated as in the vector case, using
the corresponding element of A.

R« A/B

R<A+B

R—A/[V]B

R+ A+{V1B (Compress) This function provides selection based on a boolean vector A of
'sand 0's.

Bmaybeanyarrayand Aisa boolean scalar or vector, or an empty vector.

A scalar or one element vector A is extended to conform to Band a scalar B is
extended to a vector conforming to A.

The number of elements of 4 (after extension) must cqual thelength of the last
axis of B (after extension).

If B is a vector, the A/B is the vector congisting of those elements of B cor-
responding to the 1'sin A. it follows that thelength of A/Bisthenumberof 1's
in A.

If B is of higher rank, then the compression is applied to the vectors along its
last axis.

PRIMITIVE FUNCTIONS AND OPERATIONS 71

R—ANB
Re A

A-+Bisidentical to 4 /B except that the compression is applied to the first axis,
not the last.

The axis operator (see Operators) can be applied to either / or +~ to designate
the relevant axis.

ReAN[V]B
R+« A>[V]B(Expand) This function opens out the array B by inserting zeros (or blanks}

R+.B

based on the boolean vector A. It is a partial inverse to compression in the
sense that A/ANB «— B,

B may be any array and A is a boolean scalar or vector, or an empty vector.
A scalar B is extended to a vector of length equal to the number of 1's in 4.

The number of 1's in 4 must equal the length of the last axis of B (after exten-
sion).

If Bis avector, then A ™ Bis the vector whose length is that of A and consisting
of the clements of B placed in order wherever A has 1's and zeros (or blanks)

wherever A has 0's.

If B is of higher rank then the expansion is applied to the vectors along its last
axis.

A>cBis identical to 4 ™ Bexcept that the expansion is applied to the first axis
instcad of the last.

The axis operator (see Operators) can be applied to either \ or > to designate
the relevant axis.

(Index generator) R is a vector of B consccutive ascending integers, the first of
which is the current index origin.

B must be a nonnegative integer scalar or other one element array.

10 is a common expression yielding an empty numeric vector.

72

ReAB

R+—AcB

R—AB

RV B

Chapter 6

(Index of) AcB is a 'search’” function which finds the first occurrence in A of
each element of B.

A can be any vector. B can be any array. AuB has the same shape as B.

I Bis ascalar then AuBis the index (refative to the current index origin) of the
first occurrence of Bin A. If Bdoesn’t occur in A4 at all, then AdB is [O+ pA
(i.e., the first index beyond the range of 4).

If Bisan array of higherrank theneach element of A:Bistheleastindexin A of
the corresponding element of B.

This function is obviously index origin dependent.

The equality test implied in this function uses the comparison tolerance for
numeric arguments.

{Member of) A and Bcan be any arrays. AeB is a boolean array the same shape
as A. Eachelement of AeBis 1 if the corresponding element of A occurs any-
where in B, and 0 otherwise.

The equality test implied in this function uses the comparison tolerance for
NUMeric arguments.

(Grade up) A “‘sorting”’ function. B may be an numeric or character vector
or matrix. A B has the shape /1p8.

If B is a vector, AB is the permutation of p8 such that B[4 8] is in
nondecreasing order {(according to C1AV if B is a character vector). The in-
dices of any set of identical elements of B occur in A B in ascending order.
If Bisa matrix, 4 B is the permutation of o8 such that the rows of BlA B;]
are the strings contained in the rows of B in nondecreasing order (similar to
sorting strings, where each string is a row in B).

Since 1pB is index origin dependent, so is A B. Comparison folerance is not
used in the comparisons.

(Grade down) B may be any numeric or character vector or matrix. ¥ B has
the shape /TpB.

1f B is a vector, ¥ B is the permutation of 1pB such that BlY B] is in
nonascending order (according to [1AV if B is a character vector). The in-
dices of any set of identical elements of B occur in ¥ B in ascending order.
If B is a matrix, § B is the permutation of 1o such that the rows of B[{ B;] are
the strings contained in the rows of B in nonascending order.

Since 18 is index origin dependent, so is ¥ B. Comparison tolerance is not
used in the comparisons.

PRIMITIVE FUNCTIONS AND OPERATIONS 73

R+<AMB

R<AHR

R<OEIB

(Deal) A random function. A and B are nonnegative integer scalars or one ele-
ment arrays, and A <B.

A?Bisavector oflength A, obtained by making A random selections, without
replacement, from the population «B.

Since B is index origin dependent, so is A?B. The system’s random link
parameter is used implicitly.

{Matrix divide) This function is useful in numerical work for solving systems
of linear equations, least-squares fitting problems and problems involving
projections of vectors in n-space.

A and B are numericarrays of rank 0, 1 or 2. Scalars and vectors are shaped in-
to one column matrices. The (reshaped) arguments must both have the same
number of rows, and the columns of (the reshaped) B must be linearly indepen-
dent. (The latter implies in particular that B cannot have more columns than
TOWS.)

The definition of ABB is deceptively brief: the shape of AFRis (1 lp#),(l lpﬁ)
and the value of AEB is such that +/,{(A—B+.XAERB)* 2 is minimized.

In particular if Bis a square, nonsingular matrix then the minimum referred to
is zeroand B+. X{ABB) «— A. If A is a vector then AEB is the vector solv-
ing the set of linear equations B+. XX «— A. If A isamatrix then AEB gives
the solution of the set of equations for each column of A.

It can be seen from the definition that if B is a rectangular matrix then ABB
gives the linear combination of the columns of B which most closely {in the
least-squares sense) matches A. This can be used in lincar regression for curve
fitting, and in vector projection problems.

(Matrix inverse) B is a numeric array of rank 0, 1 or 2. A scalar or vector is
reshaped into a one column matrix. The columns of the (reshaped) areument
B’ must be linearly independent. (In particular, B' cannot have more columns
than rows.)

If Nis the number of rows of the reshaped argument B' and Jis an NXNidenti-
ty matrix then BB« —JEHB’, except that if Bisascalar or vector then the result
is reshaped to a scalar or vector respectively.

74

R+ALB

R<ATH

Chapter 6

(Decode, or base value) This function is used to convert a coded representa-
tion, B, of a number into the number itself, according to the coding scheme or
radix A. This is one of the essential operations in number system conversions.

If A and B are vectors of equal length then A LB is a scalar equal to +/WXB
where W is a weight vector corresponding to the radix A: W+ X ~\$ 114,1.
Forexampleif 4 ——357then We-—357 1L, and 3570235 «— +/3571X2
35— +/T70215 «— 96,

A scalar or one element vector argument is extended to conform to the other
argument. Thus211011 2222110 11+—+/8421X101 1<—l1l.
(""The base 2 valucof 101 1is 11.")

In the case of arguments of higher rank, cachradix vector along the last axis of
A is applied to each representation vector along the first axis of B, in accor-
dance with the above algorithm. The shapeof ALBis(1 lpA),(lJ%B)u

(Encode, or representation) This function converts a number B into an encod-
ed representation according to the coding scheme or radix A. Thisis one of the

essential operations in number system conversions.

Encode is a partial inverse of decode. For example 3 57796 <~ — 23 Swhile3 5
71235 «—96.

If A js a vector and B is a scalar then ATB is equivalent to the following pro-
gram. The index origin is assumed to be 1 and comparison tolerance is 0.

VR« A ENCODE B;I

[1] R<0OXA AO0—VECTOR,SAME SHAPE AS A
[21 TepA
3] REPEAT:
(41 —(I=0)/0
s} RIN«-A[N|B
[6] —=+{A[N=0)/0 QREMEMBER: 0|B« B
7] Be(B—RUD=ALN
i8] I~I—1
9] —REPEAT
v

if A isascalar then ATB——A|B.

PRIMITIVE FUNCTIONS AND OPERATIONS 75

oA
R«®QA

R<0B

Inthe case of higher rank arrays, each vector along the first axis of 4 is applied
to obtain the representation of each element of B, the resulting representations
being arrayed along the first axis of the result. That is,

Al GKITBEL ;. N1 =R KG L N
for all values of J,...K,L,...,N which are valid indices for A and B.

The shape of ATB s (pA),(cB).

{Execute) This function executes the APL statement represented by the
character vector (or scalar) A. The value of ©A is the value of the statement, if
it has one. If the execution of A evokes an error report then the report of the
type of error will be preceded by ©. A system command is not an APL state-
ment and cannot be executed with .

Two common uses for execute are (a) passing object names, including func-
tion names, as arguments to functions, with later evaluation, and (b) conver-
ting character representations of numbers, obtained from a file, for example,
to numeric form.

Execute can make programs difficult to analyze or understand. It should be
used with restraint.

(Format) B may be any array. The result of this function is a character array
which, if displayed, would have the same appearance as if B itself were
displayed.

The system’s printing precision parameter (see PP is used implicitly for for-
mat, but the printing width (see [PW} is not; format acts as though the print-
ing width were infinite.

Format does not alter a character array argument.

For a numeric argument, the shape of TR is the same as the shape of B except
for the last dimension. A scalar Bis an exception: it is treated as a one element
Vectar.

Format is useful for mixing character and numeric data on one output display
line, and for converting data to be sent to an external file or device such as a
printer.

76 Chapter 6

R+—ATB (Dyadic format) This function is similar in purpose to monadic format, but it
uses variations in the left argument to provide progressively more detailed
control over the result.

B may be any numeric array. A is an integer scalar or vector.

In general a pair of numbers is used to control the result. The first determines
the total width of a number field and the second controls the precision.

If the precision indicator is negative then E-format is used and the magnitude
of the precision indicator is the number of digits in the multiplier. If the preci-
sion indicator is nonnegative then regular decimal form is used and the value
of the indicator specifies the number of digits to the right of the decimal point.

If the width indicator is zero, a field width is chosen such that at least one space
will be left between adjacent numbers.

If A is a scalar or a one element vector it is treated like a number pair with a
width indicator of zero.

If A is a two element vector, it provides the width and precision for the entire
array B.

Otherwise A must be a vector with a pair of elements (width, precision) for
each index along the last axis of B.

-Operators

Operators in APL provide a means of modifying some of the primitive functions or of
creating whole families of new functions.

Although in many contexts the terms “function’” and “"operator’” are used more or less
synonymously, in APL they have quite distinct meanings. “"Function’’ is used for things
such as + or ® which take arrays as arguments and produce arrays as results. ““Operator”’ is
used for a special kind of function which takes functions and/or arrays as arguments and
produces a derived function as a result.

Reduction, scan, inner product, outer product and axis are the five operators available in
MicroAPL.

PRIMITIVE FUNCTIONS AND OPERATIONS 77

R+~ f/B

R—{+B

R<f{/|ViB

R {+[V]B (Reduction) NOTE: The symbol for the reduction operator is /. 1/ s the
mixed monadic function derived by applying reduction to any scalar dyadic
primitive function f. R« /R is the syntax of the derived function.
The definition of £/13 is as follows.

(a) If Bis ascalar, {/B+ —~8.

{b} If Bis a D-element vector, then f/R8 is the “identity element” for f, as
shown in Table A.3. If no identity element exists a domain error is evoked.

(¢) If Bis a l-element vector then /8 is the scalar (10)pB.
(d) If Bisavector of length 2 or more, then [/8 + - B[1] fB[2]f.. .t BlpB].

(e) If Bisan array of higher rank, the reduction rules (b) - (d) are applied to
the vectors along the last axis of B. The shape of £/81s 1B

-+ is identical to / except that the reduction is applicd along the first axis in-
stead of the last.

The axis operator can be applied to the derived function £/ or f+ to designate
the relevant axis.

Some common reductions are

+/ sums of

X/ product of
r/ maximum of
L/ minimum of
A “for every'’
v/ “there exists”’
+/ parity check

78 Chapter 6

R«f\B

Ref>B

R—f\[VIB

R+~f>[V]B
{(Scan) NOTE: The symbol for the scan operator is . f\ is the mixed
monadic function derived by applying scan to any scalar dyadic primitive
function f. R+ B is the syntax of the derived function.
The definition of £~ B is as follows.
(a) If B is a scalar or a 0-element vector, f\NB < — B.
(b)Y If Bis a vector of length 1 or more then forevery scalar ferpB, (™~ B)[I] < —
/B,
(c) If Bis an array of higher rank, the scan rules (a) and (b) are applied to the
vectors along the last axis of B.
Theshape of £ Bisthe shape of B. f+ isidentical to f ™ except thatthe scan is
applied along the first axis instead of the last.
The axis operator can be applied to the derived function f\ or foc to designate
the relevant axis.

R« {/[V]B

R<{A[V]B

R—{\[V]B

Ref>[V]B

R+<o{V]B

R0 V1B

ReAD[VIB

R<A/[VIB

R<AN[V]B

R+<A,[VIB (Axis) The axis operator, designated by the pair of symbols [and] , takes an

axis value ¥ and modifies the function to the left, usually by designating arele-
vant axis of one of its arguments.

In all cases V must be a numeric scalar or 1-element vector.

Since axes are numbered relative to the current index origin, the axis value Fis
origin dependent.

PRIMITIVE FUNCTIONS AND OPERATIONS 79

R+ Af.gB

L3
R+ A% gB

b

(Inner product) Inner product derives a new dyadic mixed function f.g from
any two dyadic scalar primitive functions I and g.

If 4 and Bare vectors of the same length, or they are both scalars, then Af.gB
«— {/Agh,

In general, if A and B are arrays other than scalars, and (1TpA4) = (11p8),
then the shape of Af.gBis (1lpA),(lipBYand (Af.aB) [[;...; T L;.. ;M —
f /AL 51 g B L. M) for all valid sets of indices.

Finally if either one of A or Bis a scalar, or if either is a 1-element vector, it is
reshaped into a vector whose length satisfies the general case above.

The inner product +.X is the ordinary ““matrix product.’”” Other common in-
ner products are A=, +.=, L.+, .+ ,and X. *,

{Outer product} Outer product derives a new dyadicmixed function.g froma
dyadic scalar primitive function g,

The shape of AC.gBis (pA),(pB) and {(AC.gB)[1;.. ;. JiL;.. ;M) &> A[L.. .l g
B[L;...;M] for all valid sets of indices. (If 4 or B is a scalar, the index expres-
sion is omitted.)

80

Chapter 7

System Variables and System Functions

System variables and system functions provide facilities for communicating with the APL
System. Unlike system commands they can be used within APL expressions.

System names are distinguished: they all start with (Jor (1.
System variables and functions are always in your workspace, but they do not appear in
YFNS and)VARS lists. They cannot {and need not) be copied or erased. Some of them can

usefully be localized in function definitions: /O is the most common example.

The difference between system variables and system functions is mainly a matter of their
syntax.

System Variables

System variables arc best viewed as variables which vou share with the APL system. You
can’t do anything to or with a system variable without the system taking some notice.

When you use a system variable in an expression the system generates and supplies the
value. For example (1WA returns the working area available, but the system has to do a
storage reorganization and cleanup to get that value.

SYSTEM VARIABLES AND SYSTEM FUNCTIONS 81

Conversely, when the value of a system variable is specified, the system may automatical-
ly adjust one of its internal parameters. For example [1/0'«< 0 results in the internal index
origin parameter being set to 0. Often there is a limited set of acceptable values for an inter-
nal parameter, and the system will appear to ignore an attempt to give the corresponding
system variable an unacceptable value,

ocr

bgro

OLx

Opp

OrPw

ORL

LAV

LILC

Comparison tolerance. Controls the internal comparison tolerance

parameter. Acceptable values: 0 through 1E 5. Value in a clear workspace:
1E 8.

Index origin. Controls the internal index-origin parameter, which is used in in-
dexing, the axis operator, UFX,?, dyadic 9,4 ,¥ and «. It is the index of the
first element of any nonempty vector. Acceptable values: 0 or 1. Valuein a
clear workspace: 1.

Latent expression. When a workspace is loaded, [17.X is executed. Valuein a
clear workspace: an empty vector.

Printing precision. Controls the parameter which determines the number of
significant digits in the output representations of numeric APL arrays. Accep-
table values: integers 1 through 11. Value in a clear workspace: 8.

Printing width. Controls the parameter which is the maximum width of a line.
Affects all output except bare output (). Acceptable values: integers 24
through 80. Value in a ¢lear workspace: 80.

Random link. Used in roll and deal(?). Acceptable values: integers 1 through
32767.

Atomicvector. A 256 element vector of the bytes whose hexadecimal represen-
tations are $00,%$01,...,$FF in ascending order. Thus, in origin 1, [14 V[17}is
equivalent to $10. The elements of character variables are all elements of (1A V
and any element of [JAV can be used in a character variable. The value of
14V cannot be altered.

Line counter. A vector of the line numbers of active functions, most recently
initiated first. L1LC cannot be altered by assigning values to it.

82

arc

{— Loy

urs

OwA

oy

Chapter 7

Terminal control. An 8 element character vector whose elements have the
following effects when output to the screen.

Timestamp. Used for setting and reading the internal system clock. A six ele-
ment numeric vector representing the date and time as follows:

OTs11] Integer, last two digits only of vear

LATS[2] Integer, Month (1 through 12}

[ITS[3] Day (1 through 31, consistent with month and year)
L7Ts[4] Integer, Hour (0 through 23)

O7Ts[51 Integer, Minute (0 through 59)

[17S[6] Second, (0 = [1TS[6] < 60)

Acceptable values: representations of valid dates and times in the above for-
mat.

(7S may be set at any time. The system will then keep its clock up to date.
The svstem clock is not kept in the workspace, so loading a new workspace
does not affect it.

Working area. Available space in the active workspace in bytes. LJWA cannot
be changed by assigning it a value.

Evaluated Input/Formatted Output. When [is assigned a value, the system
displays a representation of the value on the screen. [1PPand LJPW affect the
display. A vector which cannot be displayed within the printing width is con-
tinued, indented on subsequent lines. Rows of a matrix are displayed as
separate vectors. One line is skipped between the matrices of a 3-dimensional
array, two lines between 3-dimensional subarrays and so on. E format is used
automatically when necessary for numeric arrays.

CDram move cursor left = o T boooe 7 e
‘OTC2] move cursor right - R i R l
arci3] move cursor down G leis FAEE e T
OTCH4} MOVE CUTSOL UP = /i v~ @asrwie o b £dae st gt
OTCs) clear screen and home cursor
O71Cie] home cursor to top left hand corner
orcin RETURN (' new line') .

O7C8] Erase to end of line : S
CITC cannot be altered.

SYSTEM VARIABLES AND SYSTEM FUNCTIONS 83

When a value for [isrequired, the system generates its value by obtaining it
from the user: a prompt (L1:) is displayed and the user must enter an expression
to be evaluated, or — {see ""Punt’"). The value of the expression is the value of
.

Character Input/Bare Qutput. When ["Tis assigned acharacter scalar or vector
value, the system sends the characters to the screen in a continuous siream
without gratuitous newline characters. Thisis useful and often necessary when
vou wish to display long strings containing cursor positioning characters (see
Ore).

When a value for M is required, the system generates the value as it does for
(D except that (a) there is no prompt: the cursor simply remains where it is, and
{b) the input is taken as a vector of characters and is not evaluated. Trailing
blanks are trimmed off and the result is always a (character) vector,

Program function key 2 (i.e., shifted "*2"" on the numeric keypad), as a
response to (1 or [input, is equivalent to a “"punt.””

NOTE: Becausc a machine awaiting character input Iooks just the same as a
machinelocked in a long calculation {(the cursor is at the left margin), it is good
practice to include your own prompt in your programs. [’ cutput followed
directly by [input is a neat way of doing this on one screcn line.

System Functions

LICRF

ObL 8

LIEX A

Canonical representation. F is a character vector (or scalar) naming a func-
tion. The result is a character matrix containing a representation of the func-
tion. The representation is similar to that displayed by the Vv — editor, but
without ¥’ s or line numbers. The result is of shape 0 0 if 7 does not denote an
existing function.

Delay. Sis a positive integer scalar. This function takes Sseconds to complete.
The result is the length of the delay, namely S,

Expunge. A is a character scalar, vector or matrix. Any variables or functions
named by the rows of A are erased, if possible. The explicit result is a boolean
vector whose I’ thelementis 1 if the I’ throw of A denotes aname which is now
available for use, whether or not an object by that name was erased.

84

[IFX M

ONC A

UNL K

LIINLK

OsTorP F

Chapter 7

Fix. M is a character matrix representing a function definition in the same for-
mat as the result of LICR. [JIFX establishes the definition if possible. The ex-
plicit result is a character vector naming the function established, or else the in-
dex (retative to the current index origin) of the first row of M containing a fault
which prevented establishment. The name of the intended function cannot be
in use, cxeept as a function name,

Name classification. A is a character scalar, vector or matrik. The result isa
vector of name classifications giving the usage of the character sequenges in
cach row of A

(: a name available for usape
1: alabel

2: a variable name

3: adefined function name
4: not a name

5: a system variable

6: a system function

Name list. K is an integer scalar or vector with elements in the range 0 to 6.
The result is a character matrix whose rows name the objects in the indicated
classes which exist in the active workspace: (} for names with no active
referent, 1 for labels, 2 for variables, 3 for user defined functions, 5 for
system variables, and 6 for system functions. The value 4 will not produce
any names, since that class represents those strings which are not valid
names {and there are many of those!).

The value 0 will produce those names that are in the symbol table but do
not have a value associated with them, These names typically appear in the
symbol table because of a typing error, because they occur as local names in
defined functions, or because they are a variable entered into a line of a
function to which no value has yet been assigned. If the error SYMBOL
TABLE FULL appears, and the user does not wish to save his workspace
and copy it back in, then he may choose to reuse the symbol table entries
that are reported by LINL 0.

Name list. L is a character vector or scalar. The result is like that of monadic
CINEL, but the list contains only names beginning with one of the letters in L.
For classes 5 and 6, the comparison of the letters of L against the system
variable or function names uses the second character in the name.

Fis a character (scalar or) vector naming a function. The resalt is an integer
vector of line numbers on which “'stops’™ have been placed.

-SYSTEM VARIABLES AND SYSTEM FUNCTIONS 85

NOSTOP F F is a character (scalar or) veetor naming a function. N is a vector of line
numbers. ‘‘Stops’” are set on the lines of the named function whose numbers
appear in N (See Stop Control for the effect of a stop). An empty vector N
removes all stops. Stops will not be removed if the function is edited. The
stop settings will stay with the function lines at which they were originally
sct, regardless of any insertions or deletions that occur in the function. (If a
stop is sel at line 1 of a function, and that function is edited so that a line is
inserted before line |, the stop will then be ser at line 2).

NUOTRACEF
TRACE F are similar to TSTOP, but “‘trace’” instead of “*stop.”’

ULOAD W Wis a character vector naming a workspace. [IL.OAD is identical to YL.OAD
but it may be executed as an APL statement.

LPEEK V' Viseither (a), ascalar or vector of integers defining machine addresses, or (b),
a 2-column matrix of integers whose rows define ranges of machine addresses.
The ranges are inclusive.

The result is a character vector (i.e., of elements of [} containing the
current contents of the machine addresses defined by V.

N.B. The machine addresses are interpreted as in origin 0, regardless of the
current index origin.

Examples

(1) LOPEEK 01is the current contents of hexadecimal location 0000, The only
reliable way to 'see’ the value is to loock it up in [AV: LA Vi '"PEEK (i pro-
duces an integer result in the current index origin.

(2) CPEEK 32768 32769 is the contents of the first 2 locations on the screen
(Hexadecimal 8000-8001).

(3) LIPEEK 1 2 p32768+0 1999 is the entire screen. (Hex 8000 - 87CF).

CLPOKEV
V is a scalar, vector or range matrix, as in [\PEEK. C is a character vector

whose length is consistent with V. A scalar Cis extended to be consistent with
V.

Example (A V [U'POKE 1 2p32768+0 255 will show the result of storing all
possible byte values into screen memory.

86

OsYsC
AUSYSC

IJXRC

LR C

Chapter 7

NOTE: It is sometimes important to know that the assignment of bytes to ad-
dresses occurs “'from left to right” in [IPOKE.

Execute 6809 machine code. The machine code (i.¢., instructions) contained
in, or pointed to by, € is executed.

Cis either
(1) a scalar or one element vector integer between (and 65535, representing
the machine address at which execution is to begin, or

{2) a character {scalar or) vector of bytes to execute directly.
Control is returned to APL by executing a 6809 RTS instruction,

The explicit result of [1SYSis an integer scalar representing the value of the
6809 1) register at the time of returning.

A is an optional parameter list, If presentitmust bea (scalar or) vector of in-
iegers between 0 and 65535. The two-byte value represented by the first ele-
ment of A is placed in the 6809 D register before execution begins, and the re-
maining elements are placed on the stack {two stack bytes for each element}.
The top pair of bytes on the stack contain the return address {i.e., of APL’s
18 YShandler). The second pair correspond to A 12}, the third pair to A}3] and
so on. In each pair the low order byte is stacked first.

The stack may be used by the machine language routine, but itmust beleftin
this same condition again when the RTS instruction is exccuted to return to
APL.

External represemiation. The letter C is any character {scalar or) vector. The
elements of C corresponding to APL characters are translated to their APL-
ASCIT Overlay equivalents, as defined in Appendix C.1, Overstruck APL
characters are translated into their two componeni parts, sepagated by a
backspace character. Other characters are translated unchanged. [1XR was
intended to be applied to vectors of APL characters, plus carriage return,
line feed and backspace (UI1TC[7], [ITCL3] and [17TC[1], respectively). In
this case, its only effect is to *“‘explode’” overstrikes.

Internal representation. TR and L1 X R are strict inverses except that L1IR will
handle either of the two possible permutations corresponding to the

overstrnck symbols.

There are more system functions in MicroAPL. These all concern files and areincluded in

a subsequent chapter.

87

Chapter 8

Errors

If an error is detected in the exccution of a statement, an error report is displayed. This
report consists of an error message followed by a display of the statement. The point at
which execution was interrupted is marked by a caret (A). Any implicit results, such as
variables having been assigned values, which occurred before the point of error, remain in
effect,

Errors generated by the file system and by I/0 devices are not listed in this chapter.

1t is sometimes important to know how much, if any, ol a line was executed prior to the
interruption. The next paragraph provides some guidance in determining the point of in-
terruption.

A line is executed in two stages, the encoding stage and the execution stage. Some syn-
{ax and limit errors are detected in the encoding stage and in this case, the error report is
preceded by a question mark (?). None of the line has been executed and a caret {A) is
placed under the displayed line in the most helpful location (for example, on the last un-
matched quote symbol). On the other hand, when an error is detected in the execution
stage, there is no question mark on the error report, and the caret is placed as close as
possible to the point at which execution was interrupted. In this case, any implicit results,
such as variables having been assigned values, which occurred before the point of error,
remain in effect.

If the error occured while executing the command from the execute primitive (2}, the
error message is preceded by the @ symbol.

Error Messages

SYNTAX ERROR
A line of APL characters is not a valid statement.

88 Chapter §

VALUE ERROR
Anexpression with no value occurs in a context requiring a value. The use of a
variable before it has been assigned a value is a common cause of this error.

DOMAIN ERROR
The argument or arguments of a primitive function are net within its domain
of defirition. Generally speaking, RANK and L ENGTH errors are recognized
first if possible.

RANK ERROR
The rank of an argument of a function does not meet the requirements of the
function, or the ranks of the left and right arguments do not conform.

LENGTH ERROR
The argument ranks conform, but the sizes of one or more axes do not.

INDEX ERROR
The value of an index expression is an invalid index for the associated array.

AXIS ERROR
An invalid axis number is specified in an axis operator.

LIMIT ERROR
Some internal AP limit has been reached. This error typically occurs when
the rank, the number of elements or one or more of the dimensions in an
APIL array exceeds 32767, Another possible error is that a numeric operation
overflowed or underflowed. If the second element of the shape vector in the
argument of LIFX is equal 1o or exceeds 80, then a LIMIT ERROR will
occur.

SYMBOI TABLE FULL
Too many names have been used. Save the workspace; clear and copy the en-
tire workspace. (The symbol table size may be changed in a clear workspace
with the)SYMBOLS command.)

WS FULL
Out of memory. Clear the state indicator by executing — sufficiently many

timee Frase nnnecessarv objects,

SYSTEM ERROR
Fault detected in the APL system.

DEFN ERROR
This error is dealt with in the chapter on defined functions,

39

Chapter 9

Files

A file in the APL system is viewed as a collection of items external to the APL workspace.
These files can be created, added to, retrieved from, crased and renamed through the use of
special APL system functions.

There are four types of files:
a} APL-sequential
b) BARE-sequential
¢} Relative
d) Program
An APL-sequential file is simply a sequence of APL values of any shape, rank and type.

A BARE-sequential file is a sequence of 8-bit binary characters.

A Relative file is a sequence of 8-bit binary characters which are organized into fixed sized
groups called ‘records” which may be accessed in random order.

A Program file is a special kind of BARE-sequential file normally used to contain pro-
grams and workspaces. As such, it is not usually accessed with the techniques discussed in
this chaprer.

90 Chapter 9

General Concepts:

Files reside on some external medium and are identified by a name. Filenames are con-
structed according to specific rules described below.

In order for the data in a file to be available to a workspace, it must be “"tied”’ to the
workspace with a tie-number. Information is transferred to and from the file using this
number. When access is not required by the workspace, the file can be ""untied.”

Filenames:

The filenames of A PL-sequential and BARE-sequential files are composed of any combina-
tion of letters and numbers (see Systems Qverview Manual) (e.g., the name of a disk file can
contain up to 15 characters). The following are valid filenames for sequential files:

GEORGE
INVENTORY.NOV
SALES004

The filenames of Relative files are somewhat more detailed than those of sequential files.
The basic filename is formed by following the same rules as for sequential files. However,
special additions are also required. The following are valid names [or Relative files:

(F:45) GEORGE,REL
(F:80) INVENTORY NOV,REL
(F:200) SALES004,REL

The Systermn Overview Manual states that ““(7)” is used as the default for all files. Under
Waterloo microA4PL Version 1.1, if no file attributes are specified, disk and host files are
opened as (39", which causes a variable length record file to be opened, where any
length record may be written or read (‘‘infinite’” length). Fixed (F) and text (T) files may
also be used according to the rules stated in the System Overview Manual. All other filcs
are opened with the system default “(7).”

Replies:

All replies to file operations are stored in the system variable | ISTATUS. The reply is in
the form of a character vector which contains text describing any abnormal condition en-
countered, If the operation was successful, the value of 1.:S7TATUS is an empty vector. If
an 1/0 error occurs in a system function that would normally return a result, an empty
vector will be returned.

FILES

91

General File Manipulation Functions:

The following system functions do not return an explicit result:

FN UOCREATE N
FNUTIEN

FN UAPPEND N
FNLIUPDATE N

REPLY + FN[ICREATEN

FNisacharacter vector containing the name of a file whichis to be created. If a
file with the same name already exists, it is replaced. The argument Ais an in-
teger scalar specifying the ""tie-number’” to be used. Qutput operations such as
OWRITE or [IPUT are valid.

REPLY « FNUTIEN

This function is used to access an existing file. The file specified by FN is
located and attached to the workspace with the tie-number given by the integer
scalar N. Only input operations such as I 1READ or ["GET are valid on a file
accessed in this manner,

REPLY +~ FNUAPPEND N

This function is used to add items of data to an existing sequential file. The file
specified by I'N is located and attached to the workspace with the tie-number
defined by the integer scalar N. Only output operations such as [WRITE or
UPUT are valid here.,

REPLY « FNUOUPDATEN

LUNTIEN

This function is used to access existing relative files. FVspecifies a file which is
located and attached to the workspace with tie number N, Data can be sent to
and retrieved from the file using the functions DREAD, LIGET, (IWRITE
and JPUT.

The arpument N is an integer vector containing tie-numbers of files to be
released from the workspace.

92 Chapter 9

The following system functions have changed syntactically:

LIERASE FN

The file name in FN is erased. The file should NOT be tied since the disk file
systemn does not prevent the erasure of a tied file. Unpredictable results may
oceur since APL will still consider the file open after it has been erased.

NEW LIRENAME OLD

The file named in OLD is given the name in NEW. The file should NOT be
tied since the disk file system does not preveni the renaming of a tied file.
Unpredictable results may occur since APL will still consider the file tied
under the old name after the disk file system has renamed and untied the file,

General File Manipulation System Variables:

LNUMS
This system variable contains a vector of all currently active tie-numbers.
Their order corresponds to that of the filenames contained in the system
variable ONAMES.

ONAMES

This system variable contains a character matrix of the names of all current-
ly tied files. Their order corresponds to that of the tie-numbers contained in
the system variable (INUMS.

REPLY «+ OSTATUS N

The argument N is an integer scalar representing a file tie-number. The func-
tion response reflects the status of the most recent operation performed on the
file with the specified tie-number.

LSTATUS

The value of this system variable reflects the status of the most recent 1/0
operation. If 0 = p[ISTATUS, then no error occurred. Otherwise, it will
contain a message indicating the cause of the problem. Several 1/0 error
messages may appear, many of them simply passed on from DOS (the Com-
modore Disk Operating System), from the microSystem file system
interface, or from the ‘‘host’’ file system. Most of these messages will be

FILES 63

self-cxplanatory, and the errors issucd by DOS are documented in the Com-
modore disk drive user’s manual.

D HOERRSTOP

allows the user to control the behaviour of APL when an error occurs during
170, If the value of [CIOERRSTOR is 1 {its value in a clear W), then APL
will print an error message and suspend execution when an 170 error oceurs.
If the value of T JOERRSTOP is (0, then APL will continue to execute,
allowing the user to handle his own errors. In either case, the crror message
will appear in [STATUS. End of file (LISTATUS« = EQI") it not con-
sidered an 1/0 error.

Z+[LIB L Lisacharacter vector designating a device (e.g., 'DISK/1"), or an empty vee-
tor. Z is a character matrix representing the directory for the device, (ASCII
characters are not nceessarily translated to APL)

APL Sequential Files

APL-sequential files are a sequence of APL values of any shape, rank or type. Such files are
accessed using LICREATE, [TIE, T1APPEND and [1UNTIE. Valugs are written into the
file using CIWRITE and read back into the workspace using [READ.

ZIIWRITE N

MNote that LIWRITE does not return an explicit resuit.

Z+— UIREADN

The "next” item in the file tied with number &Vis read into the workspace and
assigned to the variable Z. The variable assurnies the shape, rank and type of
the data value from the file.

BARE-Scquential Files

BARE-sequential files are a sequence of 8-bit binary values {called bytes). These files are ac-
cessed using CICREATE, U1TIE, [HAPPEND and U'UNTIE. Bytes are written to the file
from APL character variables using [1PUT and read back into the workspaceusing LIGET.

94 Chapter 9

ZUPUTN
Z s a character scalar, vector or matrix and A'1s an infeger scalar represent-
ing a tie number. Character data from Z is written to the {ile. One record will
be written for a vector or scalar argument. If Z is a matrix, then each row of
the matrix is written as an individual record. Note that _1PUT does not
return an explicit result,

Z<['GET NL

NI is a 2-element integer vector. The first element contains the tie-number
of a currently tied file. Character data from the file is transmitied to the
workspace and stored in Z as a character vector. The number of bytes
transmitted is specified by the second element of NL.. Only one record will be
transmitted, cven if that record does not satisfy the length requested in NI..
If the length specified is less than the record length, then only as many
characters as requested will be returned as the result, and a subscquent
[NGET will cause the next record 1o be read, effectively skipping over the re-
maining bytes in the previous record.

Relative Files

| ISEEK NL

A relative file is composed of ““records”’, each of a fixed size. The record size
is defined as part of the filename when the file is created (using | TCREATE).
This is done by prefixing the name with the sequence ““(F:NNY” where NN is
the desired record length. The name must also be suffixed bv the sequence
JREI.

e.g., to create a relative file named SAMPLES with records of length 100,
usc the filename:

(FIOMSAMPLES,REY.

NL is a 2-element integer vector. The first element is the tie-number of a cur-
rently tied file. The file positions its ““current record™ pointer 1o the 1°th
record (origin 0) in the file where 1 is specified by the second element of the
vector NL, I the record does not exist, a reply is returned in | .STATUS to
that effect. This reply can usually be ignored when the {ile is being written.
Care should be taken if the file is being accessed using JIRFAD and
| TWRITE. Each of these operations accesses multiplc file records, and
I'ISEEK is not awarc of thig distinction.

FILES 94A

Special Considerations:
When opening the KEYBOARD file with [_TIE, the user must specify a record length.
‘(FDKEYBOARD [ITIE]
is recommended.
When opening the KEYBOARD file with [JCREATE, the system defaunlt may be used:
‘KEYBOARD CREATE 2
When using the serial port (SERIAL file), the user may wish to control whether or not
the line-feed (< L.F>) character is sent after the carriage reiurn {< CR>). By executing
the expression
| LAV TIPOKE 126 LU0« 0
the user may prevent the < LF> character from being sent. The expression
OAV2] LIPOKE 126 ACI0O<—0

will cause the < I.F> character to be sent. APL initially scts up so that the <LF>
characrer is sent.

NOTES:

1 An attempt to write more characters than fit on a record (as specified in the
record length) will result in truncation of the record, along with an error if
[HHOERRSTOF is 1.

2 An attempt to read more characters than arc on one record will cause only those
characters on that record to be read.

3 The maximum record length in a relative file is 254 bytes.

95

Appendix A

Tables of Functions

Table A.1 - Primitive Monadic Scalar Functions

Symbol

& *

Name

Conjugate
or identity
Negative
Signum

Reciprocal

Floor

Ceiling
Exponential
Natural logarithm

Magnitude or
absolute value
Factorial

Definition or Example

+B«<— 0+B
—B+~—0-B
XB+— 1ifB<0
0 B=0
I B=>0
+B +—>1+B

13.147 3.14 —— 37 4

73147 314 «— 43

B > (2.7128..)% B+ ¢ B
@B ——c®B

3.14 73.14 « > 3.14 3.14
{0 +—1
I8 <> BXY(B-1)

Page

62
62
62

62

62
62
62
62

62
62

96 Appendix A
Symbol Name Definition or Example Page
? Rotl 7B + - Random choice from ¢B 63
o Pi times OB+ BX3.14159... 62
-~ Not ~01+<=10 63

Table A.2 - Primitive Dyadic Scalar Functions

Symbol Name Definition or Example Page
+ Plus 2432 «— 52 63
- Minus 2—32+- 712 63
X Times 2X3.2 «— 6.4 63
- Divide 2+3.2 «— 0.625 63
L Minimum 37 -3 63
r Maximum 7 -7 63
* Power 2%3 = 8§ 64
® Logarithm A®B «— Log B (base 4) 64
ARB - (#B)-®A
] Residue A|B+<—+ B if A=0 64
A|B +«— B—AXIB+Aif AH)
{ Binomial AdB = (UB)+{§ AYXIB~A 64
coefficient 245210 34510 64
A B AAB AvVvB AAB AwB
A And 00 O ¢ 1 1 64
v Or 01 0 1 1 0 64
A Nand 1 0 0 i 1 0 64
2 4 Nor 11 1 1 0 0 64
< Less 64
= Not greater Result is 1 if the 64
= Equal relation holds, 0 64
= Not less if it does not: 64
> Greater 3=7 1 ‘A#F] 64
* Not equal 7=3+«—=0 'B'='B'e-— 1 64
O Trigonometric Restrictions
A R+ ACB Domain Range
7 tarth B

6 cosh B

ll-------

TABLES OF FUNCTIONS

A R<ACH

5 sinh B

4 (1+B*2)y%x 5

3 tan B

2 cos B

1 sin B

4 (1-B*2)* .5
1 arcsin B
2 arccos B
3 arctan B
4 (T1+B*2)x.5
5 arcsinh B
6 arccosh B
7 arctanh B

The angular measure is radians,

Domain Range

B=l
(1By=1
(1By=1

1=|B

1<B
(|B<1

0=R
(IR)=0+2

(0= RINR=01)
(|R)<0=2
0=R

0=R

Table A.3 - Identity Elements of Dyadic Scalar Functions
(see Reduction)

DYADIC SCALAR FUNCTION
+

X

LIAALP <> ™0B % = r——

+ VW

IDENTITY ELEMENT

_— OO

0
The largest representable number.

Greatest (in magnitude) negative no.

1
None
None

97

98

A.4 - Table of Mixed Primitive Functions
In the following table the "syntax’* column indicates the highest rank of the arguments. §
- scalar; V' : vector; M : matrix; A : any array. Generally, lower rank arguments are accep-

table.

Arrays used in the examples:

Ne- 34pl2 < 1

C «R20’'ABCDEF +— AB

Syntax

VpA

dA

AbA

Name

Shape

Reshape

Ravel

Reverse

Rotate

2 3 4
6 7 8
10 11 12
CD

EF
Examples
pC+—>32
p2357 «— 4

pT +—+ <empty vector>

34p12 «—= N

4pC «— "ABCD’

0p2 37 < <empty vector >
(0pC «—='A’

JN == l2
J &= 1p7

¢ C+— BA
DC
FE
G 1C « - EF
co
AB
$2357<—7532

—"1b ‘WORDS' +— "SWORD'
120 [ljC «— CF

EB

AD

Appendix A

Notes

Page

65

63

65

TABLES OF FUNCTIONS

Syntax Name

AA Catenate

A,[V]A Laminate

rad Dyadic

Transpose
QA Transpose
V1A Take
ViA Drop
V/iA Compress

P~NA Expand

V]A] Indexing
M[A4;A]
A[A;...;A]

Examples

34721 «—>34721

C'XYZ «— ABX
cDY
EFZ

"CAT,[0.5) DOG' «— CAT
DOG
"CAT,[1.5]'DOG’ «— CD
A0
TG
p312 QR 35p30) 352
t1TQNe— 1611

QC «~— ACE
BDF

T3S T 57
412342340
211C «— A

C

2WEXAMPLE « — 'AMPLE’
T3S T e 35
T2TTHC = L 1p'A

101/235 <25
01 1/[1]C ~— CD
EF

11057 «—>570

10INC+~— AR
cD
EF

"EXAMPLE'[4 3 5] «— 'MAP'
"ABCDEFGHIJKL'[N]+ ~ABCD
EFGH
TIKL
C[3 %) «— EF
cD

Notes

99

Page

66

67

68

68

69

70

70

71

68

100 Appendix A
Syntax Name Examples Notes Pasge
AlA;. A1+ A4
Indexed Cl1;1« PR —— Ce— PO 2 69
assignment (&)
EF
A Index 13— 123 2 71
ECnerator t0+—— <empty vector >
ViA Index of "TABCDW (7 = 3 2,3 72
'SOUSWVCS «-— 51
"ABCDNWC +— 12
34
55
AeA Memberof 'CAT«C+—110 3 72
CCABBAGE <« 11
10
10
AV Gradeup 4 ‘GENO? « o+ 2134 2

A3 3pTABARTCAT +«— 231

A4 Grade down Y *‘STEVE’ « > 35124 2
V3 3p°TABARTCAT +— 132

~1
[

S8 Deal 375 «—341 73
375« 145
BM Matrix 221101 «—1"1 73
inverse 01
WXHI25+—+125
HS =02
MEMpM Matrix 2582201101+ —" 35 N o 73

divide

N

-
—
T

=)
b
i A A B O & A aa AN B G B B B O e

AlA Decode 1011867« —1867
2460601155010« —+57010

-]
=N

TABLES OF FUNCTIONS
Syntax Name Examples Notes
ATA Encode 8o2)T13«-—=00001101

24 60 60T 56999+ —+15 49 59

L 14 Execute RI+4 o 7
D == A8
cD
EF
A Format pOIN——3 12
T5.7 1.2¢«— 57 1.2
TC—C
EA Dyadic 520(+123)«—" 1.0¢0.50 0.3Y
format 97T 4T(~Ty 1429 01
420(+3 1p3)+— 1.00
0.50
0.33
NOTES:
1 Axis operator is allowed. {Axis is always index origin dependent.)
2 Index origin dependent.
3 Comparison tolerance dependent.

101

Page

74

75

75

76

102

Appendix B

System Commands, Variables and Functions

Be1-System Commands

JLIB
YCLEAR
YWSID
JSAVE
JLOAD
yCorPY
WPCOPY

YDROP
YENS
YWARS
VERASE
ST
YSINL
YOFF

JSYMBOILS
YWSLIMIT

Report names of saved ws’s and files
Activate a clear ws

Change or report wsid

Save a4 copy of the active ws

Load a copy of a saved ws

Copy named objects from a saved ws
Copy named objects from a saved ws without
destroying any objects in active ws
Erase a saved ws

Report names of functions in active ws
Report names of variables in active ws
Erase functions or variables in active ws
Display state indicator

Display state indicator and local names
Discontinue APL

Report or change symbaol table size
Report or change limit of memory used for ws

Page

42
42
43
43
43
43

43
43

44
a4

44
44

44
45

SYSTEM COMMANDS, VARIABLES AND FUNCTIONS

B®2-System Variables

04v
ncr
Lo
e
OLX
LDrPP
rPw
LIRL
arc
urs
LwA
O

™

Atomic vector

Comparison tolerance

Index origin

Line counter

Latent expression

Printing precision

Printing width

Random link

Terminal control
Timestamp

Working area

Evaluated input; formatted output
Character input; bare output

B ®3—System Functions (Non-files}

CICR
UDL
LIEX
LIFX
ONC
UINL

OPEEK
LIPOKE
[I8YS

LITRACE
gosTop

LR
LIXR

Canonical representation

Delay

Expunge (erase)

Fix (establish} a function

Name classification for given [ist
Name list for given classification

Read bytes from memory
Write bytes into memory
Execute machine code

Change or report trace setings
Change or report stop settings

Translate to internal representation
Translate to external representation

B ®4- System Functions (Files)

[1LOAD

TICREATE
LAPPEND
UTIE

LIUPDATE

Load ws

Open a file for {re)writing
Open a file for appending
Open a file for reading

Open a relative file for update

103

Page

81
81
81
81
81
81
81
81
82
82
82
82
83

Page

83
83
83
84
84
84

85
85
85

84
84

86
86

Page
84
91
91

91
3

104

B®4-System Functions (Files)
[JUNTIE Close file(s)
LIERASE Erase a tied file
LRENAME Rename a file

UWRITE Write APL array to file

[READ Read API array from file

fpPUT Put characters to file

LIGET Get characters from file

LSEEK Adjust position in relative file

[1LIB Report names of saved ws’s and files

B®5-System Variables (Files)

LIHOERRSTOP Control action of APL on 1/0) error
LUNUMS Tie numbers of open files
LINAMES Names of open liles

L ISTATUS Status of last /0 operation

Appendix B

Page

91
92
92

92
93

93
93

94

92

92
92
92
g2

C®1] - APL-ASCII (Typewrite-Pairing) Overlay

* NOTE:

0- %

NULL
HOME
RUN
STOP
DEL
INST
EEOL
CRFWD
CRBCK
TAB
CRDWN
CRUP
CLEAR
CR

¥
at

1—*

Hife~QFdD4+raprpqgede Obg

2—

<= AA~

-

3—

— om0 Oy B e O

105

Appendix C

Character Code Tables

&S
I

m o~ 2R

O—-4—010 ~®~ b g|

i

T R

VW I TtNn-oUe C e

f

an
I

CZERC~TOMEMTOBRRO

~]
l

b

gwuwj_»-Mthbq%gQ"-]mx@'U

These columns contain extensions to the standard APL-ASCII typewriter-pairing con-

vention.

106 Appendix C

Ce2 - TERMINAL Character Set

0— 1— 2— 3— 4— 5— 6 7—
—0 NULL 0 @ P ‘ P
. | HOME ! 1 A Q a q
—2 RUN " 2 B R b r
-3 STOP # 3 C S [v 5
—4 DEL $ 4 D T d t
—5 INST %o 5 E U € u
—6 EEOL 6 F A" f v
—7 CRFWD ! 7 G w g W
—8 CRBCK (8 H X h X
—9 TAB) 9 I Y i y
—A CRDWN * : J z j z
—B CRUP + ; K [k {
—C CLEAR , < L ~ 1 |
—D CR* —_ = M 1 m }
—E > N - n ~
—F p / ? o} . 0 RUB

* NOTE:
On output, CR also causes an automatic skip to new-line.

107

P

q

r

5

t

u

v

w

X

¥

z

{

l

}
RUB

See

AT UARLO T - A Z0

4omm

- © o= e T o NS e 00 N ~NV A e

Lg _ R ——~x 4+ -] ~
7o)
4]
m -~
« A _
[+ — L — el en ot M 7 m Z @ O

8 SRTRSE SN ST ol w w o W

& 5 BRARAZLhooLrULCED
O =
b 5 1 A
<1 S O =M
i = oo = O Z Lo o = —
5 o 2oL ERGRRACESECER
< -
Fe _
< e
os ® PP R S PSR SR~ i =« [@ s s g™
@, & I I A T T T S A T B

108

Appendix D

Workspace and Data File Conversion
(From version 1.0 to version 1.1)

There are three workspaces lor converting AP/L workspaces and APL-sequential files
from version 1.0 of Waterloo micro4PI. to version 1.1. They reside on the tutorial
diskette. These workspaces are named DFCONV, WSCONV, and WSCREATE. The first
two workspaces run on verson 1.0 and write out data files and workspaces in a format
suitable for version 1.1 to read. The third workspace runs on version 1.1, It reads a data
file containing a converted workspace and changes it into a workspace file. The following
pages describe how to usc these three workspaces. Tt also describes a method by which you
may access your Bare-sequential files in order 1o convert them to be compatible with ver-
sion 1.1,

Workspace Conversion

The format under which workspaces are saved has changed from version 1.0. As a result,
these workspaces are not compatible with version 1.1 of Waterloo micro4PL, A conver-
sion program has been provided to facilitate the conversion of your workspaces to run
under the new version. The workspace conversion program converts an old workspace to
a special format file which is then converted, in version 1.1, back to workspace format.
These two steps require two conversion programs. One program runs on version 1.0 and
converts API. workspaces to the special {iles. The second program runs on version 1.1
and converts the special files to workspaces.

The internal character representation has changed from version 1,0, All fupctions and
variables in the workspace to be converied must contain only valid APL characters. Any

WORKSPACE AND DATA FILE CONVERSION 109

other characters {such as those created by indexing |'L4F) can cause problems during
workspace conversion. A variable containing such characters could be replaced tem-
porarily by an integer variable containing the appropriate indices of 114V,

Large workspaces may run into WSFULL problems. If this occurs, it may be necessary to
break up vour workspace into two smaller workspaces and convert each of them in-
dividually.

You will need the following diskettes in order to convert APL workspaces: a diskette with
version 1.0 of Waterloo micro4 PL.; a diskette with version 1.1; the diskette(s) containing
the workspaces to be converted; a diskette to contain the converted workspaces; and a
scratch diskette for the conversion process. Formatring the last two diskettes is recom-
mended to avoid any potential conflict with file names. It is strongly recommended that
you ¢o not scraich your version 1.0 APL, as it may be required in the future for further
workspace conversions.

Step 1: Converting 1.0 workspaccs to special files

With your SuperPET running 1.0 Waterloo microdPL, place the diskerte with the-
workspace conversion programs in drive 0 and the scratch diskette in drive 1. Load
workspace WSCONV and execute the function SAVE. This function writes the canonical
representation of the workspace conversion program into a sequential file called CNT on
the scratch diskette in drive 1. Place the diskctte containing the workspaces to be con-
verted in drive 0. For each workspace to be converted, enter the following scquence of
commands:

y LOAD wsname
"DISK/TLCNV? LITIE |
UFX [IREAD 1
ZZREP

The function ZZREP will prompt for the name of the new workspace. A file by that name
will be created on the scratch diskette, and this file will contain the special format of the
workspace,

Step 2: Converting special files to 1.1 workspaces

With your SuperPET running version 1.1 of Waterloo micro4 PL., place the diskette with
the special files in drive 1. Placc the diskette containing the APL conversion programs in
drive 0. Load workspace WSCRFATE and save it as DISK/1. WSCREATE. Place the
diskette which is to contain the 1.1 workspaces in drive 0. For cach workspace, enter the
following sequence of commands:

WVOAD DISK/I.WSCREATE
ZZCRFEATE '‘namg-ol-new-workspace’
)SAVE wsname

110 Appendix D

The workspaces are now compatible wirh version 1.1 Waterloo microAPL. Some changes
will be required; thcse can be found mn the document titled ““Hints for Changing
Workspaces Created in Version 1.0.%*

APL-sequential Filc Conversion
API-sequential files have a special structure associated with them. This structure has
been changed from version 1.0 to version [.1, making these files incompatible between

versions. A conversion program is provided which will convert these files to the format re-
auired for version 1.1. The program runs on versien 1,0,

With vour SuperPET running version 1.0 of Waterloo microA L, place the diskettc con-
taining the file conversion program in drive (. Load workspace DFCONV, Place the
diskerte containing the files to be converted in drive 0 and a (preferably) blank, formatted
diskelte to contain the converted APL-sequential files in drive T,
For each file to be converted, enter:

DFCONV filenamc’
A tile by the same name will be created on the diskette in drive 1, and this file will be com-

patible with version 1.1,

A driver [unction may be easily constructed, if you have a large number of files to
convert,
Barc-Sequential Data File Conversion

Two fundamenral changes in version 1.1 affect the format of 4PL data files: file in-
put/output is record-oriented; the internal represcntation of AP/, characters has changed.

A barc-sequential file written (using C1PUT) on version 1.0 may be read (using LIGET)
on version 1.1 by opening the file {e.p., ‘MYFILE’) as follows:

CFI0MYFILE | ITIE 1
The file is then read 100 byies at a lime:
X « UUGET 1100
End of file is indicated by a short record.

Translation of APL Characters

WORKSPACE AND DATA FILE CONVERSION 111

The internal representation of APL characters has changed. Although it is possible to do
the conversion explicitly yourself, you may find the following technique useful.

On version 1.0, suppose the variable X contains only APL characters (including
overstruck characters, but excluding, in particular, carriage returns). Execute:

‘MYFILE” TTCREATE 1
(LUXR X), CAV[I4D) 1 1PUT L
IUNTIE

On version 1.1, execute:

(TMYFILE i "TIE |
X < [IR TIGET 1 1000
CJUNTIF. |

(The 1000 must be long enough to contain the entire record created by LIPUT.) The
variable X now contains the same APL characters as were contained in the original X.

This technique of using [JXR on version 1.0 and | IR on version 1.1 is used in the
workspace conversion programs.

Hints for Changing Workspaces Created in Version 1.0

Introduction

This document gives some useful hints to the user who has written a number of
workspaces on Version 1.0, and wishes to convert them to run on Version 1.1. It describes
those features of Waterloo microAPL that have changed in syntax and in use, and pro-
vides examples of use of the modilied file system.

1/Q system funciions no longer return explicit error responses. I vou simply let the
responses print on the screen previously, then no change is necessary. If vou used the
response in some way, then you must change vour functions.

Example 1
old:
00p +0=p ERROR « ‘FILE | ITIE |
<. catch the response in ERROR; if the response was empty, continue,
elsc stop >

112 Appendix D

new:
FILE LITIE 1 Al = TOERRSTOP
< if there is an crror, stop. The error message is contained in
USTATUS >
Example 2
old:
—(0 #o ERROR «‘FILE’ [.TIE | YFIXUP
new:
‘FILE” U 1TIE | A0 = [IIOERRSTOP
={0 #p OSTATUS Y/ FIXUP

Occurrences of [IRENAME and [JERASE must be changed 1o conform to the new
syntax.

NEW__ _ NAME UJRENAME OLD.. _ NAMFE
GERASE FILE NAME

Note that neither | IRENAME nor | 1ERASE returns a result,

The TITTE statement for CBM relative (““,REL™) files must be changed to
(Fnn)FILE (ITIE |

instead of
‘v~ (nnAFTLE U'TIE |

where nn is the record length.

The implications of record-oriented, rather than byte-oriented, /0 must be considered
carcfully when using bare sequential files. Under the previous release of Warerloo
microAPL, one T1IGET could read the data written by several | 1PUTs, Under the new
release, OPUT will write one “physical’” disk record each time it is called with a scalar or
vector argument; and will write several “‘physical”’ disk records each time it is called with
a 2-dimensional argument. A single {JGET can only read one such record. You must en-
sure that you get as many byies as are required from the file by issuing the appropriate
number and size of LIGETs.

r

WORKSPACE AND DATA FILE CONVERSION 113

old:
‘FILE” LICREATE 1
‘ABC D IPUT 1
‘DEF LIPUT 1

LIUNTIE |
‘FILE' CTIE 1

LGET 1 6
ABCDEF
new:

‘FILE' [CCREATE 1
‘ABC’ 1PUT 1
‘DEF’ [\PUT |
UNTIE 1

‘FILE D ITIE 1
I.GET 1 6

ABC

CIGET 1 6
DEF

The new version allows the use of file formats other than text (7). Fixed () and variable
(V) format files may bz used as well.

[HOERRSTOP

allows you to control the behaviour of A PL when an error occurs during [/0. Il the value
of . HOERRSTOP is 1 (its value in a clear WS), then AP7. will print an error message and
suspend execution when an [/0 error occurs. If the value of - TOERRSTOP is 0, then
APL will continue to execute, allowing you to handle your own errors. In either case, the
crror message will appear in CSTATUS. End of file (| STATUS < — ‘EOF)is not con-
sidered in [/0 error.

Uses of i ISTATUS must also be changed. (OSTATUS is now a system variable, hence it
requires no right argument,

114 Appendix D

old:
BIT __ BUCKFET « ‘FILE | ITIE |
(0 Fp USTATUS 1)Y/FIXUP

Hew.
‘FILE' ['TIE 1 A0 =:NOERRSTOP
—={0 # p ISTATUS V/FIXUP

The use of record [/O causes some changes in how special files, such as SERIAL and
KEYBOARD, must be used.

When opening the KEYBOARD file with |LITIE, you must specify a record length.
(FVKEYBOARD' | 1TIE 1
is recommended.
When opening the KEYBOARD file with | ICREATE, the system default may be used:
‘KEYBOARD [TCREATE 2

When using the serial port (SERIAL file}, you may wish to control whether or not the
line-feed (< LI">) character is sent after the carriage return { < CR>). By executing the
expression

1AV CPOKE 126 A0« —0
you may prevent rthe < LF> character from being sent, The cxpression
UAV[2] TTPOKE 126 L 1O« ()

will cause the < Lf'> character to be scnt. APL initially scis up so that the <LF>
character is sent.

LILIB L
will now translate file types into readable characters.
9.

Under DOS, relative files are never open just for input or output. Hence, using
[ICREATE to open a relative [ile for output means that the ofd file (if it exists) is not
erased prior to opening it. Alf of the old records are still there, You should [IERASE a
relative file before you try to | |{CREATE it 1o avoeid this problem.

l4

]

| Available for the first time Covers Commodore’s
- Revolutionary SuperPET computing system with SIX BUILT-
-1 IN LANGUAGES . ..

— The SuperPET Book Series
p from Sams

Sams — the world’'s leading technical communicator since 1946 — is exclusive
distributor for an exciting, new seven-book series that tells you how to use the Com-
modore SuperPET with its six built-in languages — microFORTRAN, microBASIC,
micrePascal, microAPL, 8809 Assembler, and microCOBOL.

These easy-to-digest, practical bocks were originally written to accompany an exten-
sive software package developed to satisfy many of the educational requirements at
the University of Waterloo, Ontario, Canada. Now, through Sams, these books are
available to everyone — educational, scientific, business and other users — who use
or want to find out more about the new Commodore SupeftPET. The series includes:

¢ System Overview: Commodore Super- +« Waterloo microBASIC® . .. Tells all

A OIN SN BN GBS GED BN BN GBS Gh OB OB G om =N

PET ... A how-to book that explains the
fundamentals - from hardware and
Waterloo micro software packages to
the file system and Waterloo micro-
Editor.

No. 21803 $5.95

« Waterloo microFORTRAN® ... A
dialect of FORTRAN designed for educa-
tional and research envirchments.
Examples familiarize the user with the
language, while the reference section
looks at everything from structured con-
trol statements to a FORTRAN de-
bugger.

No. 21904 $10.95

* Waterloo microPascaIg. .. An exten-
sive implementation of Pascal with a
powerful interactive debugging facility.
Simple examples explain the language,
and a reference section covers syntax
and semantics definition, predefined
identifiers, reserved words and more.

No. 21905 $10.95

about this interactive BASIC language
interpreter which provides simple, com-
prehensive facilities for entering, run-
ning, debugging and editing programs.

No. 21906 $10.95

* Waterloo microAPL'? .. Describes this
complete implementation of the
IBM/ACM standard for APL with regard
to the syntax and semantics of APL
statements, operators and primitive
functions, inputioutput forms, and de-
fined functions.

No. 21907 $9.95

* Waterloo 6808 Assembler® ., A collec-
tion of examples illustrate the many
features of assembly language, while a
complete reference section covers
everything from architecture and in-
structions to linker and monitor.

No. 21808 $10.95
+ Waterioo microCOBOL®
No. 21909 $9.95
Forthcoming October 1981
NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO. 1076

INGIANAPQLS, {ND.

POSTAGE WILL BE PAID 8Y ADDRESSFF

Howard W. Sams & Co, inc.
Dept. No. X0171

4300 West 62nd St., P.O. Box 7092

Indianapcolis, Indiana 46206

|
|

Need Other Books in the Sams Commodore SuperPET Series?

Call 1-B00-428-3696 for the name of your nearest Sams retailer or distributor
{residents in IN, AK, HI call 317-298-5568).

If your retailer or distributor doesn’t stock the Sams publication you need, you
can order it through him or directly from us. Orders placed directly with us are
subject to a $2.00 additional handling charge per order.

PHONE ORDERS
Depending on where you live, call either number listed above and charge your
Sams publication to your VISA or MASTERCARD.

MAIL ORDERS

Use the postpaid order form below, or if it's missing, send your order on a plain
piece of paper.

(1) Include your name, street or RD address, city, state, and zip.

{2) Tell us the titles of the books you need, the product numbers (see other
side of this card) and the quantity of each one you'd like.

{3) Add up the total cost for the books, add your state’s sales tax if applicable,
and then add $2.00 for handling.

(4} Include your check or money order for the full amount due, or

(5) Charge it to your VISA or MASTERCARD. To charge it to VISA, list your ac-
count number and the card expiration date. For MASTERCARD, list the
same information and include the 4-digit interbank number near your first
name on the face of the card.

{6) Mail your order to:
Howard W. Sams & Co., Inc.
Dept. No. X0171
4300 West 62nd St., P.O. Box 7092
indianapolis, Indiana 46206

Prices subject to change without notice. All books available from Sams distribuiors, brokstores, and computer
slores. Otfer good in U S. only. Note: Distributor, computer store and dealer inquiries are welcome.

COMMODORE SuperPET SERIES ORDER FORM

PRODUCT |
TITLE NO. Qry. PRICE TOTAL

System Overview: Commodore SuperPET 21903 $ 595
Waterloo microFORTRAN® 21904 $10.95

Waterloo microPascai® 21905 $10.95

Waterloo microBASIC® 21906 $10.95

Waterloo microApL® 21907 $ 9.95

Waterloo 6803 Assemblar © 21908 $10.95

Waterloo microCOBOL® 21909 $ 995
.| Please Send Sams Book Catalog Sub Total
Please Print X0171 Add Saies Tax Where Apnlicable
Name Add Handling Charges $2.00
Company . - Total Amount Enclosed
Position . __ . [
Address AccountNo.. e -
City P - ——— Exp.Date .
State _ P — — interbankNo. ___________
Teiephone . e Mastercard Only)

Check — Money Order Signatun
— ...MASTERCARD" . VISA* gnature T

*Minimum credit card order $15.00. Full payment by check, maney order, or charge card mus!. 30COTEET, your

o -I'

P & = = e a0 & T A G T D S A .

Commodore Magazine

This bi-monthly magazine, published by Commodore, provides a vehicle for sharing the
latest product information on Commodore systems, programming techniques, hardware
interfacing, and applications for the CBM, PET, SuperPET, and VIC Systems. Each issue
contains user application features, columns by leading experts, the latest news on user
clubs, a question/answer hotline column, and reviews of the latest books and software.

The subscription fee is $15.00 for six issues per year within the U.S. and its possessions,
and $25.00 for Canada and Mexico. Make checks payable to COMMODORE BUSINESS
MACHINES, and send to:

Editor, Commodore Magazine
Commodore Business Machines, Inc.
681 Moore Road

King of Prussia, PA 19406

The Transactor

The Transactor, which is a monthly publication of Commodore-Canada, is primarily a
technical pericdical, containing pertinent hardware and software information for the
CBM, PET, VIC, and SuperPET systems. Each issue features product reviews, hardware
and software evaluations, and programming tips from the finest technical experts on
Commoedore products. Additionally, The Transactor contains general information such
as product updates and trade show reports.

The subscription fee is $10.00 for six issues within Canada and the United States, and
$13.00 for all foreign countries. Make checks payable to COMMODORE BUSINESS
MACHINES, INC, and send to;

Editor, The Transactor
Commodore Business Machines, inc.
3370 Pharmacy Avenue
Agincourt, Ontario, Canada M1W 2K4

APL is a powerful and concise programming language which is ideally
suited for the analysis of financial, statistical and engineering data,
database applications and data communications. One of its chief
characteristics is the speed with which computer applications can be
developed, and the ease with which existing programs may be
modified. The language enjoys a high degree of standardization.

Waterloo microAPL follows closely IBM’s internal standard of APL.
All the standard language features consistent with a single-user
environment are included.

Features and Extensions
B All the standard primitive functions and operators

B No limitations (other than workspace size) on array ranks
or shapes

Up to 80-character names
Direct, fast screen access and cursor control o
Full-screen editing

Blanks retained in defined functions for readability

Ability to read and modify memory i
Ability to execute machine language functions '
Sequential files of APL arrays

Arbitrary sequential files

All system functions for function establishment, canonical
representation, latent expression, etc.

This manual is presented in two parts: a tutorial introduction to
microAPl. and a comprehensive reference manual. Appendices are
included which contain summaries of the language prnimitives and
system features.

DISTRIBUTED BY
Howard W, Sams & Co., Inc.

4300 WEST 62ND ST. INDIANAPOLIS, INDIANA 46268 USA

~

-

$9.95/21907 ISBN: 0-672-21907-7 "

