O

TARLE OF CONTENTS

page

1.0 Introduction 1~-1
2.0 The NABU Network ‘16
3.0 The NABU personal computer ”%1-9
3.1 Memory Organization "in

3.2 The TMS9918A Video Display Processor 110

3.2.1 Registers 1=13

3.2.2 Text Mocde =15

3.2.3 Graphic 1 Mode 1=~158

3.2.4 Graphic 2 Mode 1-18

3.2.5 Multicolour Mode 1~14

3.2.6 Sprites 1-19

3.2.7 VRAM table addresses 1+22

3.2.8 Graphics One Example 1-23

3.3 The AY-3-891% Programmable Sound Generator 1I-25
4.0 Internal Operating Software 2-3
4.1 Conventions Used by the I0S 2-2
4.1.1 Stack Operation and Requirements 2-4
4.2 Introduction to DOS 2-9
4.2.1 Segment Handling Routines 2-10
4.2.1.1 Introduction 2-10

4.2.1.2 Segment Control and Status Bloc 2=10

4.2.1.3 DOS Interface ' 2-13

4.2.1.4 Segment Headers 2~16

4.2.1.5 Examples 2-19

4.2.2 Directory Routines 2--23
4.2.2.1 Intreduction 2--23

4.2.2.2 Format of Directory 223

4.2.2.3 Recessing the Directory 2-25

Spec. 50-90020490 Page iii Junge 8, 1984

- o S —— T T e — T — o —— ——— ———— — T e} Ty S By, i By ot T A Al S S By S Sy = A oy e A e A e —————

50-90020490 Page iv June 8, 1984

Spec.

4.2.3 Interrupt Structure and Tasking Support
4.2.3.1 Introduction
4.2.3.2 Critical Regions
4.2.3.3 User Task Attachment Routines
4.2.3.3.1 Attaching Tasks to the Clock
4.2.3.3.2 Keyboard User Tasks
4.2.3.3.3 Expansion Slots
4. uman Input Devices

H
4,1 Introduction

4.2 Special Key Operation

4.3 Obtaining Data From the Keyboard
4

4 Sym Table Operation

Printer Output

/0 router
.1 Physical Device Identification
.2 Logical Device Identification

4
2
2
2
2
.2.5 video Screen Device Driver
6
7
2
2
2 3 I/0 Routing Entry Point

~ =~ =~ 4

4.3 Basic Operating Scoftware

5.0 Extended IOS (XIOS)

5.1 Introduction

5.2 Extended IOS Module Handler
5.2.1 Memory Structure
for Loaded XIOS Modules
5.2.2 Loading XI0OS Modules
5.2.3 Unloading XIOS Modules
5.2.4 Resolving References in XIOS Modules

5.3 Disk System

5.3.1 Introduction

4.1 Introduction

4.2 Operational Requirements
4.3 Module Specific Error Codes
4.4 Module Initialization

4.5 Module De-Initialization
4.6 DOS Call Interface

4.7 BOS Call Interface

2-31
2-31
2-32
2-34
2-34
2-39
2-41

2-43
2-43
2-43
2-45
2-47

2-49
2=-51

2-52
2-52

t [
AR R e

AT OY O O [=4]
1

\ 4

o

5.5 80 Column Screen Driver

5.

5.5.

Introduction
Operational Requirements
Module Specific Error Codes
Module TInitializatian
Module De-Initialization
DOS Call Interface
6.1 Input Status
' from Video Screen Window
6.2 Qutput Data to Video Screen Window

5.6 CP/M Compatible Logical Device Drivers

bkt n
P
(o Mo e W= W W)Y
" s 8 s e 0
N W N

APPENDIX A
A.0 GLOSSARY

APPENDIX B
B.O DOS and BOS number - Function Cross Reference

APPENDIX C

c.o Sample

Introduction

Operational Requirements
Module Specific Error Codes
Module Initialization
Module De-Initialization
DOS Call Interface

Program and Documentation

I
(]

q???qu ~
WK NN

~1 ~d
1

TEETTT T
B b e =

9-6

T o e ———— — — ——— — —— T —] 1 oot Yot Mot M Yt Mt e Y o M o Mk e Mg g o g g i M e e et e gy o e g S i i M S

Page v June 8, 1984

Spec.

50-90020490

THIS PAGE LEFT INTENTIONALLY BLANK

. —— o A T e S e S e P e i S e P S e S L S Ty Tt St iy S el e . S T —— " — T o

Spec. 50-90020490 Page vi June 8, 1984

|

INTRODUCTICN

1.0 INTRODUCTION

This document is intended to provide the application programmer
the necessary information and reference material to write
application programs for the NABU personal computer. Complete
programming information on the internal operating software (IOS)
as well as programming information of the Video display processor
and the programmable sound generator are included.

One of the aims of this manual was to collect all the information
that was previously found in several documents into just one.
Although this has yielded a document of some 200 pages, each
section discusses a single concept related to the programming
environment at NABU. Therefore the programmer need only
investigate the portions of interest and not have to read the
entire manual.

In order to put the IOS into perspective, we include here a
section from the 1IOS Specification which spells out the
general functional requirements of IOS. This will enable you to
judge what to expect from the Internal Operating System.

DESIGN REQUIREMENTS
Overview

This design specification defines the 1Internal Operating
Software (IOS) for the NABU Perscnal Computer (NPC), a low-
cost, expandable personal computer. It is unique because it
is capable of communicating on one-way, hybrid and two-way
cable systems and telephone networks, as well as operating in
a stand-alone mode, depending on which options are selected.
When wused in association with a CATV network the NABU P.C.'s
prime function is to run software downline loaded from the
cable head-end.

A versatile set of internal operating system and device
handling software is required for the NABU P.C. to run appli-
cations software under control of a user. For definition and
development purposes this software, collectively referred to
as the Internal Operating Software (IOS) consists of:

Applications program interfaces to IOS facilities

All physical device control and I/0 handlers

Basic task controlling and interrupt handling software
Communications Software

OO0 00

——————— T d— — — T — T —— T — T — " ———— — ——— . . T T S 4 S S S Bl it ik e e iy o e Ay o W S — T —— T ——

Spec. 50-90020490 Page 1 - 1 June 8, 1984

INTRODUCTION

The internal operating software does NOT include:

o Human Interface for Selection of Applications Programs

0 Any ROM Software in the NPC

0 Programming languages (eg. BASIC is not part of the
operating system.)

o Monitors (ie. examine and change memory, etc., etc. ,etc)

o High-level {(user orientéd) utilities

Operating Environment

The IOS must interact with four other functional components
of the NABU P.C.. These are:

o The Basic NABU P.C. hardware

o Optional hardware and peripheral devices

o Communications with external systems,
including the keyboard and NABU Adaptor (NA)

o Applications Software

It 1is the requirements and functions of these components
which essentially define the requirements for the IOS.

Internal Operating Software Requirements

The fundamental requirement of the Internal Operating
Software 1is to c¢reate an environment which supports the
loading and execution of applications programs in a simple,
efficient manner. The NPC hardware, its peripherals, communi-
cations and the I0S are really just necessary evils required
to present content to an NPC user. The IOS provides a stable
interface which allows applications access to the other NPC
components while hiding the messy details of the hardware
configuration and communications protocols, which are really
of no interest to applications programs.,

'I0S Flexibility

In order to be as flexible as possible, the 1I0S resides
completely in RAM. A separate program, the MAIN MENU pro-
gram, is 1loaded in along with the I0S when the NABU P.C. is

"booted”. The MAIN MENU perfeorms all human interface func-
tions required to locad in an application.

Spec. 50-90020490 Page 1 - 2 June 8, 1984 "

Spec.

INTRODUCTION

A number of expansion options will be offered for the NPC.
These options may include: standalone operation through use
of ROM readers and/or floppy disks, additional communications
options though the use of telephone dialers, two-way cable
modems and other devices, and the support of various other
peripherals via an I/0 expansion bus. The I0S must be able
to operate in a configquration independent manner. This
implies:

o The IOS must be able to sense the NPC configuration when
"Booted"

o The 1I0S should protect the applications from beccoming
"configuration-dependent"

o Standard I/0 handling procedures and I/0 routing must be
included in the 108

0 The IOS may be required to operate using different types
of primary storage devices.

Applications Interfacing

As was mentioned earlier the NPC and IO0S exist to run appli-
cations. In this sense applications software is the highest
level of software and it is in control of the I0S. Different
applications have different requirements. Animated video
games and other applications which require rich active human
interfaces will require fast, efficient, unadorned access to
NPC devices. At the other end of the scale are many of the
computation type applications which are willing to sacrifice
speed for 1/0 independence and ease of use. Other software
such as a screen-oriented word processor lies between the two
extremes of support.

This implies:

o Applications must have as much control as possible over
the 108

¢ Applications should be able to access I0OS features at a
number of different levels

o IO0S support should be designed to fit applications
requirements and not vice versa

Real Time Requirements

Unlike many other microcomputer operating environments, the
NPC will have time-critical tasks. The most obvious of these
is communications on the CATV network. However many of the
applications planned for the NPC have real-time components.

—— . S T Ty {o Bt S A T S i T T —— ——— — vy ——— - —— T {————— W "y ———— " i ——

50-90020490 Page 1 - 3 June 8, 1984

INTRODUCTION

This implies:

© The lower layers of the IOS must be as time-efficient as
possible

0 Interrupts must be well supported in the IOS

0 Applications software has as much control as possible over
the enabling of interrupts and the complexity of interrupt
handling

0 Some simple tasking constructs should be provided

¢ Attachment of applications supplied code t¢ interrupt
handlers should be supported where possible

© Real-time counters (60Hz rate) should be supported by the
I0S

Application Time-out Requirement

Due to the T.V. screen being used for the basic output dev-
ice, if no keyboard input is received for long periods of

time (approx. 20 to 30 minutes), the T.V. screen will go
blank (to prevent burning of the TV screen). This assumes
that the clock interrupt is running, inocrder to do the tim—
ing. The program execution must continue even though no=-

thing is being displayed. When any key on the keyboard is
activated, the T.V. screen will return back to its normal
display. The keystroke which re-activates the screen is not

passed on to the application program. {This time-out will

also be active if the NPC is in the "PAUSED" mode.} The enty .
exception to time-out requirement is the ease where the 1
N+Pv€s is 1in a Zhait! mode because the PAUSE ikey has been 2
activateds Fhe PAUSE funetion epuses the IOS te execute in & .
very tight 3cepy until PAUSE funetion i3 deaetivateds Phis 1
tight 1oep =eans the keybeard fer the activatien of the]
PAUSE; TYANABY7 and S¥M keyss

Size Requirements

The total size of the IOS Kernel should not exceed 10K bytes
and shall be kept to a minimum. In order to accommodate all
the different I0S functions, the IOS will be divided into two
sections. The first section will be called the Kernel. This
will form a "bare bones" type IOS. The remainder of the ICS
will form the second section which is called the Extended IOS
(XI0S). As applications require functions which are only
found in the XIO0S, the application will be able to locad 1in
the necessary sections (modules) of the XI0OS, and then use
the functions. When the functions are no longer necessary,
the XIOS module can be deleted, thus freeing up memory space.

——— — - —— T e S e A e —— N -) e A B S e i o o o o e e e e A e e e e A ———) —— .

Spec. 50-90020490C Page 1 - 4 June 8, 1984

INTRODUCTION

Internal Operating Software Structure

The Internal Operating Software is divided into three
functionally separate components. These components are: the
I/0 handlers, the Basic Operating Software (BOS), and the
Downloadable Operating Software (DOS).

I/0 Handlers

These portions of the software contain the low-level control-
ling code to handle input and output devices. Each physical
device has its own I/0 handler. This software masks the
detailed physical operation of peripheral devices so that the
higher levels of the operating system may be peripheral
device independent. I/0 Handlers provide:

0 Hardware Dependent Device Control Code

0 Interrupt Handling

o Initialization Code

o Data Link Layer Communications Protocols

Basic Operating Software (BOS)

This level of the operating system provides the key operating
control software for the NABU P.C.. It interfaces to the I/0
handlers, the Downloadable Operating Software and applica-
tions programs. The BOS provides:

o Functional Level 1I/0 handling

o0 Calling of I/0 handlers and device control code
¢ Interrupt and task handling control

o A Method of Linking Directly to each BOS Routine

Downloadable Operating Software

This is the highest layer of the internal operating software.
It interfaces to the BOS and applications programs to
provide:

o Common Entry Points for Applicatiocns
o I/0 Routing
o Configuration Identification

S S —— o ——— T — S Sy S BAN s el frp= T o R = T e B W . S S S S S —— - T S S W S e S T - Y _—

Spec. 50-90020490 Page 1 - 5 June 8, 1984

NABU NETWORK

2.0 THE NABU NETWORK

The NABU Network was formed on the idea of 1linking a
microcomputer to the cable network. The union of these two
technologies has paved the way for the introduction of a
microcomputer complete with a large base of software into the
homes of the population at large.

This section will describe the various links in the chain of
this Network with a view to giving a broad understanding of the
pathway followed by an application program from the cable company
to the end user's RAM. Refer to the diagram for a pictorial
representation of this data flow.

The Head End

As the name suggests, this is the criginating node in the
Network. The Head End is actually a minicomputer and it is here
that all the programs and data to be broadcast on the cable are
found. The Head End minicomputer is constantly outputing the
information 1in its database and it does so in a cycelic fashion -
when all the information has been sent, the mini starts at the
beginning and re-sends the database. This cyclic nature of the
data flow enables one to envision the data as being written on
the edge of a wheel which is read as it revolves.

Each application on the "wheel" is tagged with an
identification number. This number becomes important at the
other end of the NABU Network to select the proper user applica-
tion.

The Head End is alsc responsible for the maintenance of this
database. Any additions or deletions must be carefully dealt
with in order to ensure the overall integrity of the information
as these changes will alter the "diameter" of the "wheel".

The RF Modulator

The information output by the Head End mini 1is of course
digital in nature. Before this can be put onto the <cable, the
data signal must be modulated. The RF modulator will perform
this function.

———— e Sk S S e e e Ho S S T T W T T S ——— o e e A o e o e ey T S e o ey e e B e M Sy e el S e B ey A S

Spec. 50-90020490 Page 1 ~ 6 June 8, 1984

NABU NETWORK

The Combiner

Since there are other services on the cable (eg. TV, radio),
there must be another piece of equipment that will merge the NABU
programs with that information. The Combiner performs this task.
The NABU information is now broadcast on a specific channel and
sent into the cable for distribution.

The Adaptor

The Adaptor is a piece of hardware that acts as the interface
between the cable coming into the home of the NABU user and the
NABU Personal Computer.

Essentially, the Adaptor performs the reverse functions of the
Combiner and the RF Modulator. It is tuned to listen to the NABU
channel, de-modulate the signal and convert it into the digital
data that the NABU PC can understand.

On the cable side, the Adaptor is only capable of listening to
the information coming down the cable - it cannot send commands
back to the Head End. However, on the PC side of the Adaptor
there is two-way communication. The PC can tell the Adaptor what
it wishes from the cable and the Adaptor can inform the PC when
that data is available to be read.

Thus, when the user requests a particular application, the PC
sends a Read command and the identification number of the
application to the Adaptor. The Adaptor then "listens"™ to the
cable wuntil the appropriately identified data appears. The
Adaptor f£fills its internal buffer and then informs the PC that
the data is ready. The PC obtains the data from the Adaptor
putting it into the appropriate location in the RAM of the PC.

T A S . S (e e o g W T — S U . AN W S . T Y A S W S S iy i S e il S - —

Spec. 50-90020490 Page 1 - 7 June 8, 1984

NABU NETWORK

| | | |
l NABU | | CATV }
| HEAD END] | HEAD END |
| | | |
| | | !
| |] [
| (software } | (Television |
] database) -+ |] Radio etc.) f
! | |]
| /
| /
| /
| /
| /
l | /
| MODULATOR] /
| | /
! | /
\ /
\ /
\ /
\ /
\ /
\ /
! |
| |
| |
| COMBINER I
| |
| !
i]
I
!
CABULE
|
|
]
! I
| ADAPTOR I
I !
o e e |
| NABU !
| PC !
| |

R S S Sl S e U e e e T T S ok S S o e S T e Ty oy W S ——— —— . — . T Sy S Sl g e . T -

Spec. 50-90020490 Page 1 - 8 June 8, 1984

NABU PERSONAL COMPUTER

3.0 THE NABU PERSONAL COMPUTER

INTRODUCTION
This section will provide the application programmer the

necessary introduction and information to the hardware of the
NABU Personal Computer.

3.1 MEMORY ORGANIZATION

The NABU Personal Computer is a 80 Kbyte machine. The 80K is
partitioned as follows:

1) The primary memory is 64K in size. It is the only region
where 280 microprocessor code may be executed.

2) A 16K block of memory is dedicated for use by the TMS
9918A video display processor.

———— i _— ——— v ——

| I |

! | | 16k videol
! | | RAM |
| 64K RAM | ! I
[1 e
| i .

| ! .

] I -

| Z80A ! ITMS 9918Aa]|

The above figure graphically describes the memory
organization.

o T T S e e i e e ———— — T — i Wl S Wi o P " ————— T e iy Bope gy A i S S W o ettt

Spec. 50-90020490 Page 1 - 9 June 8, 1984

VIDEQO DISPLAY PROCESSCR

3.2 THE TMS 9918A VIDEO DISPLAY PROCESSOR

- ———

Spec.

The TMS 9918A Video Display Processor (VDP) is responsible
for all video display for the NABU Personal Computer (NPC).
It provides for text, graphics and animation. Detailed
knowledge of the control of the VDP is not required since
all functions of the VDP are accessed through routines
provided in the Internal Operating System (I0S) of the NPC.
This section will outline the features of the VDP and the
use of IOS routines to generate T.V. images for display on
the NPC. PFurther information may be found in the Texas
Instruments 9900 Data Manual (TMS9918A/TMS9%28A/ TMS9929A
Video Display Processors).

The VDP produces a T.V. image that can be envisioned as a
series of display planes. Each plane has a display priority.
An image on a plane of higher priority will overwrite an
overlapping image on a lower priority plane. The display
planes in order of lowest to highest priority are BACKDROP,
PATTERN, and SPRITE. Sprites are special animation objects.
The VDP provides 32 sprite planes, with sprite plane 1
having the highest priority.

The lowest priority plane is the BACKDROP, which consists
of a single colour. It can be set to any one of 15 colours.
The area covered by the backdrop plane is larger that the
other planes, and can form & border for the pattern plane.
With the T.V. displays commonly used with the NPC, the
border effect is generally limited to the top and bottom of
the screen, while the side borders are cropped by the T.V.
overscan. The colour of the backdrop is determined by write~-
only register 7 of the VDP (see 3.2.1 REGISTERS).

The image displayed in the pattern plane is determined by
the contents of 16K of Video RAM (VRAM) provided for the
VDP. The contents of the PATTERN NAME TABLE (Name Table),
PATTERN GENERATOR TABLE (Pattern Table), and COLOUR TABLE
allocated in VRAM define the pattern plane image. The mode
of the VDP determines the size and organization of the
tables and hence the way in which VRAM is mapped to the
screen. The VDP can operate in any cone of four modes, Text,
Graphics I, Graphics II, and Multicolour.

The images displayed in the sprite planes are defined in the
SPRITE ATTRIBUTE TABLE and SPRITE PATTERN GENERATOR TABLE.
These tables are alsoc allocated in VRAM, and perform the
sprite equivalents of pattern plane tables.

N —— T ——— T — —— ———— i T 1S S B o e s B od e oy T = W W et S W W — T T - — —— T S S —

50-90020490 Page 1 - 10 June 8, 1984

VIDEOC DISPLAY PROCESSOR

The VDP produces a screen image with an absolute resolution
of 256 X 192 pixels. The VDP divides the pattern plane into
blocks of pixels called patterns. In Text mode, the patterns
are 6 X B pixels, vyielding 40 text pattern per 1line. In
Graphics modes the patterns are 8 X 8 pixels (32 patterns
per line). There is a one byte entry in the Name Table for
each pattern position on the screen. For example, in
Graphics modes, the Name Table is 768 bytes 1long (32
patterns per row X 24 rows of patterns). In Text mode, the
Name Table is 960 bytes long (40 X 24). There is a one-to-
one mapping of entries in the Name Table and screen pattern
positions (see Fiqure 1 for example), The screen origin is
defined as the top left corner.

i e et
I ol 11 I 301 311
R I = |
| 321 331 | 621 631
T e R L
===t = = = = ~ ~ Fo e ——
170417051 173417351
[mm—tmeed = = = = = - Fom o= |
173617371 176617671
et e R +———t———t

Fig. 1. Graphics I Name Table Mapping
The figure illustrates the pattern positions on a T.V
screen with the VDP in Graphics I mode. The number
associated with each position maps to the entry
(offset) within the Name Table. The 0th entry in
the Name Table maps to the pattern position occupying
the top left corner of the screen.

The Pattern Table determines which pixels will be turned on
within a pattern. Each entry in the Pattern Table is eight
bytes 1long. The first byte of an entry defines the pixel
arrangement of the top row of a pattern, the second byte the
second row and so on. A 'l' bit specifies a pixel that is on
and a '0' bit specifies a pixel that is off. The offset of
an entry into the Pattern Table (i.e. the entry number)
forms the 'name' of the pattern. A pattern can be displayed
on the screen in any pattern position by writing its name

(offset} to the appropriate entry in the Name Table. The
number of patterns available in the Pattern Table depends on
the mode of the VDP.

T R S v S D S g ey e e T T T S T —— T —) e o i o o T " {— — {— o — W W S s A S ey A fr e — e —— —

Spec. 50-%0020490 Page 1 - 11 June 8, 1984

Spec.

VIDECG DISPLAY PROCESSOR

The VDP 1is capable of producing fifteen colours plus
transparent. The Colour Table determines the colours of the
pixels defined in the Pattern Table. The high order nibble
of a byte in the Colour Table defines the colour of the 'l'
bits in the associated byte of the Pattern Table. The 1low
order nibble defines the colour of the '0' bits. The
resolution of the mapping from Colour Table to Pattern Table
is dependent on the mode of the VDP. The colours associated
with each 4 bit nibble are shown in Table 1.

The base addresses of the VRAM tables are derived from the
values contained in the VDP's write-only registers, and are
subject to restrictions dependent on the mode of the VDP.
The base addresses are defined by calling the specific 1IOS
routine for that table, which will set the correct bits in
the appropriate VDP register. This process does not require
a knowledge of the register addressing scheme.

HEX VALUE COLOUR

Transparent
Black

Medium Green
Light Green
Dark Blue
Light Blue
Dark Red
Cyan

Medium Red
Light Red
Dark Yellow
Light Yellow
Dark Green
Magenta

Gray

White

HMEOOAOAR PO & WO

Table 1. Colour Assignments
The 4 bit hex values in the first column
produce the colour in the second column

M S S o iy e S . e Sy B s Y Ay S e T oy S S e W — " T —— o S G S S SAY SRS St S —————

50-90020490 Page 1 - 12 June 8, 1984

3.2.1

——— e —

Spec.

VIDED DISPLAY PROCESSOR

REGISTERS

The VDP is equipped with eight write~only registers and a
single read-only status register. The write-only registers
are used to define the mode of the VDP, table addresses in
VRAM, and the backdrop colour. All access to these registers
is by way of calls to routines in the I0S. Descriptions of
these routines can be found in the section on BQOS calls.

The write-only registers may be locaded with the IOS routine
VREGWR. Specialized routines are provided for specifying
VRAM table addresses. 1In the NPC environment a RAM image of
the write~only registers is maintained, allowing examination
of register contents. The registers may be 'read' by calling
VREGRD, or with specialized routines (see I0S document).

REGISTER 0
REGISTER 1

These two registers contain VDP option control bits. In
practise, they are not written to directly with VREGWR, but
rather are accessed through specialized routines. VSETXT is
called to set the appropriate bits to place the VDP in TEXT
mode. Other routines are VSETGl (Graphics I) and VSETG2
(Graphics II).

The VDP also has a 'vertical blanking' option (the video
screen is "blacked out") which is selected in register 1.
The screen may be blanked with no effect on VRAM by calling
the IOS routine VBLKON. The screen is restored with VBLKOFF.
Other bits in register 1 determine the size and magnifica-
tion of sprites (see 3.2.6 SPRITES).

REGISTER 2

Register 2 defines the base address of the Name Table. The
address is set by calling VNAMEST.

REGISTER 3

Register 3 defines the base address of the Colour Table. The
address is set by calling VCOLRST.

REGISTER 4

Register 4 defines the base address of the Pattern Generator
Table. The address is set by calling VPTRNST.

T i R S M e S A e e ik e S e i 1 Y e o T e iy e o B T Wt i Sy A e e S S St B S S T S e P e A A e

50-90020490 Page 1 - 13 June 8, 1984

—— o =

Spec.

VIDEO DISPLAY PROCESSCR

REGISTER 5

Register 5 defines the base address of the Sprite Attribute
Table. The address is set by calling VATRIST.

REGISTER 6

Register 6 defines the base address of the Sprite Pattern
Generator Table. The address is set by calling VSPRIST.

REGISTER 7

The high order 4 bits of register 7 define the colour code
of 'l' pixels in Text mode. The low order bits define the
colour code for '0' pixels in Text mode and the backdrop
colour in all modes. Register 7 is loaded by calling
VREGWR.

STATUS REGISTER
The status register contains the following flags.

F - The Interrupt Flag is set at the end of the raster
scan of the last line of the display. It is reset to 0
after the VDP Status Register is read or the VDP is
reset.

C - The Coincidence Flag flag is set whenever two
sprites have 'l1l' bits at the same screen location.
(see 3.2.6 SPRITES).

55 =« The Fifth Sprite Flag 1is set whenever more than four
sprites are displayed on the same horizontal line. The
number of the fifth sprite is alsc loaded into the VDP
Status Register. (see 3.2.6 SPRITES).

e T L W e S LR e e S S S — - S W . S S e S g S e B e e G R e S Wi A, B M S ey T S S Sty e W M e S e S S

50-90020490 Page 1 - 14 June 8, 1984

3.2.

VIDEO DISPLAY PROCESSCR

2 TEXT MODE

As is implied by the name, Text mode is primarily for
textual applications. The Name Table and Pattern Table are
used to define the appearance of the screen. The Colour
Table is not used. Patterns are 6 X 8 pixels, which allows
for an increase to 40 characters per line. The Name Table is
960 (40 X 24) bytes. The Pattern Table contains the library
of text patterns to be displayed. It is 2048 bytes long,
consisting of 256 eight byte entries. Since each text
position is only 6 pixels wide, the two least significant
bits of each row of the pattern are ignored. There can only
be twe colours for the entire screen, one colour for all of
the 'l' bits, and a second colour for all of the '0' bits.
The c¢olours are defined in VDP register 7 (see 3.2.1
REGISTERS) .

Typically, text patterns are loaded into the Pattern Table,
such that the entry number corresponds to the ASCII code for
the letter. For example, the ASCII code for the letter 'A!'
is 65 (decimal). With the eight byte pattern for the letter
'A' occupying pattern number 65 in the Pattern Table, the
letter can be written to screen pattern position 3 by
writing 65 to the third entry in the Name Table (Figure 2).

Text mode allows for 40 characters per 1line on a T.V
display. However, because of T.V. overscan, characters
should not be written to columns 0,1,38 or 39. This
effectively reduces the display to 36 characters per line.

3.2.3 GRAPHICS I MODE

Spec.

—— o —
- -_—.-_-..-.——-_.-—_—.___—-.——-.-.—_.———-—

The VRAM tables that are used to generate the screen image
for Graphics I mode are the PATTERN NAME TABLE (Name Table),
PATTERN GENERATOR TABLE (Pattern Table) and COLOUR TABLE.
The Name Table determines the screen position for a pattern.
The Pattern Table determines whiceh Pixels within a pattern

wil} be turned on. The Colour Table determines the colour of
a pizxel.

o e o e e e e e s e ———— > —— ——

50-90020490 Page 1 - 15 June 8, 1984

e s e

VIDEO DISPLAY PROCESSCR

The VDP divides the screen into 8 X 8 pixel patterns,
meaning that the Name Table has 768 one byte entries. The
Pattern Table contains a library of patterns that may be
placed in any pattern position on the screen. The Pattern
Table is 2048 bytes long, consisting of 256 eight byte
entries. There 1is a maximum, therefore, of 256 unique
patterns which may be displayed at any one time in Graphics
I. The offset of the pattern within the Pattern Table forms
the name of the pattern. To display a pattern at a specific
position on the screen, the pattern name is written to the
appropriate entry in the Name Table.

L S S e i e e e Wl S W o e e o e e B S = T W i S e ot St " —— - —— o e {_ - W o o S b — —

50-90020490 Page 1 - 16 June 8, 1984

———m.———q..—-—-_—--.._—-.————-—4__———--——-————-.....—_——.-...o.-——-.—..—-——

NAME TABLE

VIDEO DISPLAY PROCESSOR

{=—~ ENTRY 0

(pattern 65)
in position 95.

PATTERN TABLE

1000000-~|
1001000~~|
1010100--1
1100010~
1111110-~1
1100010--|
1100010-~]
1100010~~1

1000000--1
f111100--1
1100010~~~
1100010-~|
1111100--]
f100010--1
1100010--!
[111100--!

in screen

ENTRY 0

ENTRY &5

ENTRY 66

ENTRY 67

ENTRY 255

position 3,

———.--—.__-_————.-———.-—-.——.—————._-n——--—.-——_———.

form—————— + <{-= ENTRY 3
I (65) |
Fm——————— +
fmmmmmmmm + <-- ENTRY 95
I (66) |
R ——— +
fmmm e + <== ENTRY 959
i !
Fm——————— +
T.V. Display has 'A!
and 'B' (pattern 66)
| A
I
| B
!
Fig.
Text Mode
50~-90020490

Page 1 - 17

2. Name and Pattern Table Mapping in

VIDEC DISPLAY PROCESSOR

The colours of pixels are specified in the Colour Table. The
colour table contains 32 one byte entries. Each entry
defines two colours, the high order nibble of each entry
defines the colour of the 'l' bits, and the low order nibble
defines the colour of the '0' bits. The first entry in the
Colour Table defines the colours for patterns ¢ - 7, the
second entry for patterns 8 - 15 and so on. This scheme
imposes the following colour restrictions: 1) any one
pattern can only display two colours and 2) changing the
colours for one pattern implies a colour change for the
seven other patterns within the colour group.

3.2.4 GRAPHICS II MODE

Graphics 1II mode is similar to Graphics I mode except that
the Pattern and Colour Tables are longer.

The Pattern Table is expanded to 6144 bytes, allowing for
768 unique patterns, one for each pattern position on the
screen. Since the one byte entries in the Name Table allow
for a maximum of 256 unique entries, Graphics II segments
the Name Table into three blocks of 256 names each such that
the first block maps pattern names to the upper third of the
screen. The second and third blocks map pattern names to the
middle and lower thirds of the screen respectively. The
Pattern Table is similarily segmented. Entries in the first
third of the Name Table map to patterns in the first third
(2048 bytes, 256 patterns) of the Pattern Table.

The Colour Table is also expanded to 6144 bytes. There are
768 eight byte entries. Thus, there is one eight byte entry
in the Colour Table for each eight byte entry in the Pattern
Table. The high order nibble of each byte defines the colour
of the 'l' bits in the corresponding byte of the Pattern
Table. The <colour of the '0' bits is defined by the 1low
order nibble. Thus in Graphics II mode, two colours may be
defined for each row (byte) of a pattern. The Colour Table
is segmented into three equal parts in the same manner as
the Pattern Table.

3.2.5 MULTICOLOUR MODE

- ——

Spec.

The VRAM tables that need to be allocated for Multicolour
mode are the Name Table and Pattern Tables. The Colour Table
is not used, colours are derived from the Pattern Table. As
Multicolour mode is rarely used, a complete description is
not provided in this document. Further information may be
found in the Texas Instruments 9900 Data Manual.

...___-.-——.—_--.-....-———....._—_——-..-—_..-._-—...._-..____-_...____.--.-.__—...__-———q...—___

50-90020490 Page 1 - 18 June 8, 1984

VIDEO DISPLAY PROCESSOR

The pattern plane is divided into blocks of 4 X 4 pixels (64
X 48 blocks). The colour of each block can be any one of the
fifteen video display colours plus transparent. The backdrop
and sprite planes are active.

The Name Table consists of 768 one byte entries. The name
points to an 8 byte segment of VRAM in the Pattern Generator
Table. The colour to be displayed is determined by the
information contained in the Pattern Table.

3.2.6 SPRITES

—— e ——

Spec.

Sprites are special animation patterns. Up to 32 sprites are
available, one for each of the sprite planes. Sprites may be
used in Multicolour and Graphics modes, but not in Text
mecde. Each of the sprites can cover an 8 X 8, 16 X 16, or 32
X 32 pixel area on its plane. Any part of the plane not
covered by the sprite is automatically transparent. All or
part of each sprite can alsc be transparent. The highest
priority sprite is 0, the lowest priority is sprite 31. All
sprites are of higher priority than the pattern and backdrop
planes. The location of a sprite is defined by the top
leftcorner of the sprite pattern. The sprite can be easily
moved pixel-by-pixel by redefining the sprite origin (IOS
call SPMOVE).

The Sprite Attribute Table and the Sprite Generator Table
are allocated in VRAM. These tables are the sprite
equivalents of the Pattern Name Table and Pattern Generator
Tables. Each entry in the Attribute Table is four bytes
long, with one entry for each of the 32 available sprites.
The first byte of an entry defines the vertical position of
the sprite from the top of the screen in pixels, Values
between -32 and 0 allow a sprite to bleed in from the top
edge of the backdrop. A value of -1 causes the sprite to be
positioned at the top of the screen, touching the backdrop
area. The second byte defines the horizontal position of the
sprite from the left edge of the display., A value of 0
p051tiogs the sprite against the left edge of the backdrop.
The third byte defines the name of the sprite. This name
maps to the Sprite Generator Table in the Same way patterns
are mapped from the Name Table to the Pattern Table. The low
order four bits of the fourth byte contain the colour code
for the 'l' pixels of the sprite ('0 pixels are
transparent). The most significant bit of the fourth byte is
the_ Ear%y Clock Bit. When set to '1', the position of the
sprite is shifted to the left by 32 pixels, allowing the
Sprite to bleed in from the left edge of the display.

ﬁ-——‘-—----—-———.—I——__.--—-llh-—-—-b— -— —
———

-.-_---——---------h--

50-90020490 Page 1 - 19 June 8, 1984

Spec.

VIDEQ DISPLAY PROCESSOR

The Sprite Generator Table has up to 256 eight byte entries,
for a maximum of 2048 bytes long, and is equivalent in
function to the Pattern Generator Table. The IOS routine
VSETSP is used to set the size and magnification of the
sprites. Sprite size can be either 8 X 8 or 16 X 16 pixels.
With 8 X 8 pixel sprites, the Generator Table uses eight
bytes to define the sprite. When 16 X 16 sprites are used,
the Generator Table requires 32 bytes. A 16 X 16 sprite is
effectively divided in to four equal quadrants, with the
bytes in the Generator Table being mapped to the screen as
shown in Figqure 3. The sprites can also be magnified one or
two times. With a magnifaction factor of two, each bit in
the Generator Table is mapped into 2 X 2 pixels on the
screen display.

There is a limit of four sprites on any horizontal line. If
more sprites are positioned to the same 1line, the four
highest priority sprites are displayed normally. The fifth
and subsequent sprites are not displayed on that line. The
fifth sprite flag is set and the number of the fifth sprite
is loaded into the VDP Status Register.

A wvalue of DO (hex) in the vertical position field of an
entry in the Sprite Generator Table terminates sprite pro-
cessing. This allows programmers to blank part or all of the
sprites. The IOS routine SPMARK will write DO (hex) to any
sprite, and marks the end of the active sprites in the
Attribute Table.

Whenever two active sprites have 'l' bits at the same screen
location, the coincidence flag in the VDP Status register is
set.

S TRt e S S S G W S Sy S A ST ST Y W Mt S S S —— N e T — T — ——— s oy ‘e Ao o T o B T - B

50-90020490 Page 1 - 20 June 8, 1984

VIDEO DISPLAY PROCESSOR

OF

10
SCREEN DISPLAY OF

SPRITE PATTERN
17

18

SPRITE GENERATOR
TABLE ENTRY

Fig., 3 Sprite Generator Table Mapping
for 16 X 16 (1X magification)
sprites.

o S T (r (e Y S W o o o S S s B e Ml e e Y W W Wy g e S W Rl S S S o pyn e S e T A S Sy A S y fa Sam T — — - —

Spec. 50-90020490 Page 1 - 21 June 8, 1984

VIDEO DISPLAY PROCESSOR

3.2.7 VRAM TABLE ADDRESSES

There are certain restrictions on where tables may be
located in VRAM, dependent on the mode oflthe vbP. For
example, in Text mode, the Pattern Table is 2048 bytes

long, and must start on a 2 Kilcbyte boundary in VRAM.

VDP MODE TABLE LENGTH (max) VRAM BOUNDARY
Text Name 960 1K
Pattern 2048 2K
Graphics I Name 768 1K
Pattern 2048 2K
Colour 32 64-byte
Sprite Attribute 128 128-byte
Sprite Generator 2048 2K
Graphics II Name 768 1K
Pattern 6144 8K
Colour 6144 8K
Sprite Attribute 1238 128-byte
Sprite Generator 2048 2K

The conventions for the NPC environment are that the
Pattern Table always starts at VRAM address 0. The Name
Table is placed at the next available boundary. 1In
Graphics II mode, the Pattern Table is located at VRAM
address 0, and the Colour Table at 8192.

Note that in Text and Graphics I modes several screens
may be defined in VRAM with multiple Name Tables. Each
Name Table starts on a 1K boundary. To display a
particular screen, the address of the desired Name
Table is written to VDP register 2 with the IOS routine
VNAMEST. This is particularly useful for setting up
several screens of text.

O —— —— et i S
——— — — — --...——-...-._-..q...__.._--——-.-__..._-.-_—_.___-...__——--——-.4_—.--.. — o —

Spec. 50-90020490 Page 1 - 22 June 8, 1984

Spec.

3.2.8 GRAPHICS I EXAMPLE

It is desired to place the following pattern at
(hex FF) in Graphics I mode using
The pattern is

pattern

VIDEO DISPLAY PROCESSOR

position 255
pattern number 8 in the Pattern Table.

to be black on a grey background.

screen

each * represents one pixel on the screen

PATTERN TABLE

entry 00 -->

entry 08 -->
NAME TABLE

entry 0 ~~> +

entry FF ~->

— v e ————

e S e e g ———

———— —— —

(BIT MAP)
(10000001)
(01000010)
(00100100}
(00011000}
(00011000}
(00100100)
(01000010)
(10000001)

entry 0

entry 1

Page 1 - 23

COLOUR TABLE

- fmm——————— +

I |

- m—————— +

] 10 [

Fm——————— +
June B8,

T e T T e ¥ T . i e o e ™ e ot o o Tt (o e B e i e b et e e ke e Bk o e e .t e S = T Y B T " i S e g

50-90020490

1984

VIDEO DISPLAY PROCESSOR

The '10' (hex) in the Colour Table sets the 'l' bits in
patterns 8 - 15 to black and the '0' bits to transparent. To set
the screen to grey, VDP register 2 is set to 'OE' (hex).

e e e = S W W W e G S A S WA Sy S S W G Sy e S, b b dpe e o T T Y N SN W . T S S . S Tt ———— —— T ——

Spec. 50-90020490 Page 1 - 24 June B, 1984

3.3

Spec.

THE SOUND GENERATOR

The Programmable Sound Generator

As previously mentioned, all sounds produced by the NPC are
under the control of the AY-3-8910 programmable sound gen-—
erator (PSG). This device uses 14 registers to generate a
variety of complex sounds. The PSG has three individual
channels to produce the sound effects.

Producing sounds using the audio generator may be divided
into several sound generating blocks. They are:

1) tone generators
2) noise generator
3) amplitude control
4) envelope control

The registers of the PSG are used to enable/disable each of
these blocks and to select the parameters of the channel in
the PSG To read or write to the registers of the sound chip,
the 1I0S BOS routines AUDWR and AUDRD MUST be used. See
secticn 4.3

Register 0 and register 1 provide the period or frequency of
the tone to be produced by channel A of the PSG. All 8 bits
of register 0 is used but only the lower 4 bits of register
1l are used. This provides a tone freguency resolution of 12
bits with register 1 containing the most significant 4 bits
and register 0 providing the remaining 8 least significant
bits.

Register 2 and register 3 provide the period of fregquency of
the tone to be produced by channel B. Twelve bit resolution
is provided with register 3 providing the most significant 4
bits.

Similarily Register 4 and register 5 provide the tone period
for channel C with register 4 providing the most significant
4 bits of the twelve bits.

A S e e Sirs e WY T — Y — T ——— e S . U S W . e o e o e e P Y T e e e - o — — e Wil e oy . W S Yo o i o

50-90020490 Page 1 -~ 25 June 8, 1984

THE SOUND GENERATOR

The following diagram should clarify the above information. .
coarse reg fine reg

| 31 21 11 ol | 71 61 51 41 31 21 11 o

reg 1,3,5 " reg0,2,4

—— ——— — — T T T T S, R Yoy Sy Sy e T T W S — T ———— — —

tone value of the channel

There are two formulae that relate output tone frequency to
the value in the twelve bit register. They are:

f= 223,750
tp

and
tp= 256ct + ft

Where
f = the frequency of the sound to be generated
tp= the tone period to be written to the registers
ct= the coarse tune register (registers 1,3,5)
ft= the fine tune register (registers 0,2,4)

Register 6 provides the tone period of the noise to be
generated. It uses only the least significant 5 bits of
register 6 and is the only register controlling the noise
frequency.

Similarily, the fregency of the output tone may be related
to the ncise period by the following formula:

f= 223750
np

Where £ = the frequency of the noise to be generated
np = the noise period to be written to register 6

T — —— gy T S T Pt Gy T oy W i T e e B i Bt S My e Ry S S o N Wt M S S M M S S S S S A -

Spec. 50-90020490 Page 1 - 26 June 8, 1984

————

Spec.

THE SOUND GENERATOR

Register 7 enables and disables each of the three channels.
Register 7 uses inverted logic therefore, a 1 indicates that
the channel is disabled.

channel I C B Al C B Al
function | NOISE | TONE |
716t 51 4131211101 -register 7

e S T S S S e S et Wt TSt A S ———— ——

Bits 7 and 6 are not used for generating sounds.

Register 8, 9 and 10 controls the amplitude for channels A,
B, and C respectively as well as the envelope pattern.

If bit 4 is zero then the least significant 4 bits provide
the amplitude (volume) of the channel's sound. This provides
16 levels of amplitude with 15 being the greatest and 0
producing no sound.

1f bit 4 is 1 then envelopes are enabled and amplitude of
each channel 1is determined by the envelope pattern as
defined by the lower four bits of the register.

The remaining registers 11, 12 and 13 provide envelope
control. There are two ways of controlling envelopes. First
is to vary the frequency of the envelope using registers 11
and 12, the second way is to vary the shape and cycle
pattern of the envelope.

The envelope period may be resolved to 16 bits by combining
registers 11 and 12. Register 12 provides the most

significant 8 bits and register 11 provides the least
significant 8 bits. As before, 2 formulae may be used to

relate the envelcpe period to the output envelope frequency.
They are:

f= 13984
ep

and
ep= 256¢ct + ft

Where
f =the desired envelope frequency
ep =the envelcope periocd
ct =the coarse tune register (reg 12)
ft =the fine tuning register (reg 1l1l)

T rn o T T S S T S o —— —— T ———— T T S (e T T ———] — — W S - S W= - - i S - A

50-90020490 Page 1 - 27 June 8, 1984

THE SOUND GENERATCR

Register 14 controls the envelope shape or cycle. Only the .
lower four bits of the register are used. Each bit has an
individual function.

T —— ——————— ———— — ———

b 71 61 51 41 31 21 11 01 register 14

!

[—e—— hold

I B et alternate
| e—————————— attack

| ——memcmcem————— continue

| em——m— e ———— not used
| —mm——m————————————— not used
| e ——————— not used
-------------------------- not used

If hold is set to 1 the envelope is limited to one cycle and
holds the current state of the envelope counter.

If alternate is set to 1 the envelope reverses the direction
after each cycle.

If attack is set to 1, the envelope will count up.
If attack is set to 0, the envelope will count down.

If countinue is set to one the cycle pattern will be defined
by the hold bit otherwise the envelope counter will reset to
zero and then hold.

T e e e e o o e T T B e e o (e ot e o i B e e e) S e o B e i B 4y S Bt e o e P R P ot o o S St O . o S i R

Spec. 50-90020490 Page 1 -~ 28 June 8, 1984

INTERNAL OPERATING SOFTWARE

4.0 THE INTERNAL OPERATING SOFTWARE

The INTERNAL OPERATING SOFTWARE (IOS) is a versatile operating
system used to run the application software. It provides a
standard interface and sgets of common routines to 1link the
applications to the hardware of the NPC.

The IOS may be broken into 2 distinct portions for the
application programmer. They are:

1) The Downloadable Operating Software (DCS)
2) The basic operating software (BOS)

Downloadable QOperating Software

This is the highest layer of the internal operating software. It
interfaces to the BOS and applications programs to provide:

Configuration Identification

Functional Level I/0 handling

Calling of I/0 handlers and device control code
Interrupt and task handling control

Common Entry Points for Applications

I/0 Routing

000000

Basic QOperating Software

This level of the operating system provides the key operating
control software for the NABU P.C.. It interfaces to the
Downloadable Operating Software and applications programs. The
BOS provides:

o Functional Level I/0 handling
o Common entry points for applications.

———-——...——--.—-u.....——--——;-..——___-..-.-..._—_-—........—...._.-____.--—_._—-..—.-—-.....—————_———-—q..q—-——

Spec. 50-50020490 Page 2 - 1 June 8, 1984

CONVENTIONS

4.1 CONVENTIONS USED BY THE INTERNAL OPERATING SOFTWARE

The 1IOS memory map structure is similar to that of Digital
Research's CP/M operating system. Thus, any CP/M system may be
used as a development system for the NABU P.C. Programs written
in a high level language compatable with CP/M will run under the
I0S. However there are differences between CP/M and I0S. Not all
CP/M calls are implemented in the basic I0S and the stack
requirements are different.

The memory map below IOS is layed out as follows:

e Sl T ————— —— s A S — T — T " ——— Ay o "

BASE to FFFFH| reserved for IOS !
e [

BASE~1 ! Applications Program |
0100 hex: | Area + Stack(s) I
R et E L !

OOFF hex: | Reserved Area for 108 [
000B hex: | I
et I

00CA hex: | I
0008 hex: | Jump to DOS IOS calls !
R e |

0007 hex: | Jump to BASE I
0005 hex: [(the jump to DOS CPM calls) |
e I

0004 hex: | reserved for I0S I
0003 hex: | |
[e e e el]

0002 hex: | Jump to I0OS warm start I
0000 hex: -———cem—mmmmm

(Note that there is a data area within IOS that is reserved for
the use of applications. This area is unique in that the memory
contents remain intact across resets and warm starts. This can
be useful for "chaining" programs. This area is at locations
FF80 (HEX) through FFDF (HEX) inclusive.)

Applications programs interface to the IOS through three entry
points only. These are locations 0000H, O0005H and 0008H. A
discussion of each location now follows. (Note also that
applications may also enter IOS routines through BOS calls. See
section on BOS Calls elsewhere in this manual.)

——.—._——h—_—._-_——._.-.-_—._—_—-4,_—.__—-..q.__...'--———-.u-——.—.-.-_-————-—..._——.——._—-_—-.-.---._

Spec. 50-50020490 Page 2 ~ 2 June 8, 1984

CONVENTIONS

JUMP to LOCATION 0000 Hex

An application program that CALLs or JUMPs to.location 0 will
cause a warm start of the IOS. This CALL is used when an
application program is finished running and wishes to return to
whatever human interface program invoked it. In order to be
compatable with CP/M, this entry point jumps to the WARMBOOT
entry in a jump table which is identical to CP/M's BIOS Jump
Table. It is recommended that applications programmers avoid
attempting to use the BIOS Jump Table. The IOS is structured this
way to be compatable with CP/M applications programs and to
provide support expansion to the 10S.

CALL to Location 0005 Hex

Location 0005 Hex is the same as the standard CP/M entry point.
Details on this entry point are found in the section on CP/M
Compatible Calls. Note that locations 6 and 7 contain a pointer
to BASE, the first location used by the I0S. This allows applic-
ations programs to determine how much memory is available. BASE
may vary between different versions of the IOS.

CALL to Location 0008 BEex

Location 0008 BHex is the entry point into the DOS I0OS calls.
These calls are detailed in the section on DOS Calls. This entry
point has the same calling conventions as the entry point at
location 0005, except it is used for non-CP/M compatable operat-

ing system calls. Note that locations 9 and A do NOT point to
BASE.

When the MAIN MENU starts executing it will find the following
initial conditions have been set:

0 The Stack Pointer is set to BASE
(the first PUSH will write to BASF-1 and BASE-2)

0 All other 7-80 registers are undefined

0 All clock processing turned on
—-Flashing Cursors Enabled
—-Clock User Task Handling Enabled
-Real Time Clock Incrementing Enabled

¢ The Video Chip is set to text mode.

——q-h_—-——_——.-—_—_.g.__—._—“_——-—4-——_—.-_—_.-..—_—._——-..-—_——..-—.-_————--p-—_——.—n..-—

Spec. 50-90020490 Page 2 - 3 June 8, 1984

CONVENTIONS

0 Logical to Physical I/0 Routing Set up to emulate
Standard CP/M assignments:
-Video Device Location 1 set to:
38 wide by 24 deep window with
underline flashing cursor
-Console Output Routed to Video
Device Location 1 (see window above)
-Console Input Routed to Human Interface
Device Location 1 (Keyboard)
~List Routed to Printer
~Reader Routed to Human Interface
Device Location 1 (Keyboard)
-Punch Routed to Video
Device Location 1 (see window above)

After the MAIN MENU program gains control, it has the ability to
alter the initial conditions for the application program which is
to be loaded. For a complete list of the initial conditions as
set up by the MAIN MENU program, please consult the Master
Directory and Main Menu Specification 02-50020480.

4.1.1 Stack Operation and Requirements

The IOS only supports a single stack which is used by both the
1058 and applications programs. This is different from CP/M which
has two or more stacks, one or more used by CP/M and one for the
application. Note that the IOS initializes the stack pointer to
BASE so the stack will start at the highest available memory
location and build down. The number of bytes of stack required by
I0S depends on the number of peripheral devices attached. For
the basic 10S, up to 64 bytes may be used by the operating
software, This means an application program must be sure to
allow for a stack size 64 bytes larger than what the application
requires. The addition of peripherals to the NPC may increase the
minimum stack requirement.

———-—.-—-—_—-—w——.—_—__—_-.--—_—-._-..____——-.-...-.__—-..._-——..—-.—————-.-—-...-—————-.-—.——

Spec. 50~90020490 Page 2 - 4 June 8, 1984

CP/M COMPATIBLE CALLS

4+2 €P# M Compatible calis

Phe 3IO06 supperts a number of ealls which are similar ke astandard
€PFM nen-disk 0 eatis Ne disk oriented caiis are supporteds:
Phe €P/M compatibie eatls thet are provided are for resetting the
systemy and for perferming I0 frem the legical deviees CONSOREs
READERy PHNEH and BISP~r

The 65 BOS €P£AM compatabie 370 facilivies deal enty with legieal
devieesy <evgr EONSOREy b¥S5¥y READBERy; PUHNEH>- FThe IS5 I/O
Handiers operate with specifie physieat devieess tPhe 65
fattachesd the logieat devices +e khe physteatr devicess Por
exampier this allows anm ASEIF eharmcter to be sent ke the logieak
deviee and it ends up at the physieal devieesd

The fellowing tegieal deviees mre defimeds

KB¥BOARDB+ {input peortienm of EONSORE}
SEREENS foutput pertion of CONSOBEY
BESPs foutpuey

REABER<~ ‘tinput deviee’

PYNER~ {output deviee’

b WD H D

The foilewing physieal devieces are defimeds

HOMAN INFERPACE -

KE¥PAB+ €+ {inpue)
FO¥SPIER 3+ 62 <inputy
dO¥SPIEK 2+ 93 <input)
SEREEN WINDOW #1+ 3t {output)
PRINTERs 2% {output)

Assign@ents of physieal deviees ke togieat devieces are perfermed
by usSing the /6 Retter Entry Peintr Whem a program begins
execttron the follewing tegieat e physieal attachments are made=

bEGIEAR PH¥STICAR
KE¥BOARB KE¥BOARE
SEREEN SEREEN WINDOW 4%
bES¥ SEREEN WINDOW #1
REABER SEREEN WINDOW #%
PUNEH SEREEN WINDSW 41

Netg that SEREEN WINDOW #% 4s defined by the system and +s
avatiable ¢o the appiicabion when it searess

The €P/M compatible eatis provided in ehe ¥65 through leeatien 5
are as foliewse

—— - — - — - ——— — ——— - e g
—— T e iy —— L o o o e o S S T — . — — ————
— -~ - — M

Spees 56-90028408 Page 2 ~ 5§ dune 87 19584

CP/M COMPATIBLE CALLS

S¥SPEM~-RESEY ‘eald mnumber G66HF
-performs same fumebion a3 & Sump te leeation 8666 Hex
—entry parameserss
€ Registers 66 Hex
-8 mot rewentrant

CONSOLE-INFPEY . “eatl number 61HI
-reads the next eharscter from the fegiteat econseie with eche
The eatl does not return until a charaseter is ready-
+Fhis eat witt eonity aecept €PAM eompatibie ASEEXE
eharacterss 3§ the P¥ESY key 8 hity a L¥L ia returneds ¥f
the INO" key is hit & 2N" is returned: Al: other key codes
abeve FFH are ignereds?
~entry parameterss
€ Registers 61 Hex
~Returned vVatnpess
A Register: Chareeter Input
—is net re-entrant

EONSOLE-CUTFPHP teatt number 8243
-ountputs & charecter to the tegiecal eonsetre
t5inee the default physical eonsele driver +s BOS5S emiil
0A2 and 6A3 eonsult the specifieatien fer BOS emll A3H
for contrel echaracter interpretatrionsi
~entry parameserss
€ Registers 82 Hex
E Register: €haraseter to be output

REABER-INPHEP teatl number G3H}
—get & byte from the legicat PAPE reader contrelr wiitd
not return to the eatriing program until the eharacter
has been read:
+Phis entl Wil enty eaeeept €EPAM eempatibile ASEIT
c¢haraeterss 3If the I¥BS! key 48 hit; a U¥! i3 peburmneds FF
the INOT key +3 hit a IN! ¢s retturned: Al: ebhes key eodes
above FPH are ignoredsd
—entry parameterss
€ Registers 03 Hen
-returned vaiues
A Registers echaracter read
~i® net re-entrante

PHNEH-OBFFHP teatl number 84H)
~otutput a byte +e the legiecal PAPE puneh
tS5inee the defauit physieal censele driver +s BB5 eaii
8A2 and 8A3 eonsult the specifieation fer BES eatt A3IH
for eontrol eharacter interpretations
—-entry parameters-
€ Register:s 84 Hex
B Registers character te be output

——--n---——_———————————_-—.___.-_-—.._.___—.-—-_-——-..-.-—-———-...._..-—._q....—_-——-—...—————

Spees 58-58620498 Page 2 - 6 June 87 1984

CP/M COMPATIBLE CALLS

. hESP-O8PPYUP tcall number 85H} ’
~output a character te the legieal 1ist deviee
—entry poarameterss
€ Registers 05 Hexn
E Register: eharacter to ke eoutput

BIRBEF-CONSOEE-F60 teall number 06H>
~provides unaderned I/ £romite the logical eonseoile
Bpon entryr the E register either contains an OFFP Hexy
deneting & econsole input regquest; or a characteyr to be
outpuer If the input vatue £f EGPFF Hews ¢hen the
funetiens returns with the A register set e 86 if ne
eharacter ¢a ready at the tegiecal otherwise the 2
register is set to the charaseter vatue input frem +he
jegieat eonseles
+Phis eatl witt eniy aceept EPAM eompatibie ASEXE
eharacterssy ¥£ the B¥ESL key 48 hity a E¥L ig meburneds 36
the INO" key is hit a SNT is returned: A1l other key codes
above FFH are ignoredz+
t5inee the default physieal econsete driver is PES eati
6A2 and BA3 eonsult the specification for BOS eald A3IH
for contrel echaracter interpretationsd
-entry paremeterss
€ Registers 66 Hex
E Register: PP Hex {input) eor
character to be output
. ~returned vatrunes
A Register:s eharecter of 58 Hex <tinputy
nethirng +£ ouepute
-8 not re-entrant

PRINC~-SPRING {teait number G9HY
~prime a sering te the legica:r conseie frem g buffer
The chareseter sering astered in memory at the leocation
peinted te by the BE register i3 sent te the iegieal
eonsotrer A 181 is used as a delrimiter ko end the printe
strings
t8inee the defanit physteat consele driver is BOS eatr?
€AZ and OA3 eonsuit the speetrfieation for BES emati AR
for control eharactar interpretationsi
—entry parameterss
€ Register: 89 Hexm
BE Register: peinmter teo string

. Epees 56-950026450 Page 2 - 2 gune 87 1984

CP/M COMPATIBLE CALLS

REAB-CONSOLE-BUFFER +“esll number GAH)
-read e tine of editied legical conseie input to a buffer
The input is stored in the memory buffer peointesn te by
the BE registers If the buffer overflows consele inmpub
ts terminateds The format of the buffer iss

MAX-BUP-SIFE- BY¥E+
NUMBER-OP-€CHARAEPERS-READB+ -B¥PEs
CHARACTER-BUPFER+ ARRA¥+1+<-MAX-BHF-SIRET B¥PE+

Phe 266% key 40D Hex} er ENTRE J +46A Hex) will terminate
the input linesr The DEBHETE key witl delete the previesty
typed characters
tFhis eait wii: eoniy aceept EPAM compatiblte ASCIF
eharacterss If the I¥ESY key is hity a I¥L i@ sepupmed- J4&
the ENOY key 43 hit a 2N is returneds A}} other key ceodes
abeve 7PH are iqnored:3
—entry parameterss

€ Regtsters HA Hew

BE Regtisters Poinker o MAX-BHF-SIGE

fMAX-BUF-S5IZE must be set as well}

~returned vatuess

€ensele Charecters in Buffer

NUMBER-OF-€HARACTERS~READ set
~i8 not re-entrant

SEP-CONSORE-STATYHS +ecatl number OBHY

~cheek to see £ charmeter has bean typed at legicat ecensete
—entry parametesss

€ Register: OB Hex
—returned vatues

A Register: 66 Hex -Ne charsetes ready

FF Hex -Character is ready and waiting

~t8 not re—entranme

$/0-ROUTER: ATTACH feat: number BAHY
~attaches a partieuiar physieal deviee ko a tegieat deviee
~entry parameterss
€ Register: 8A Hex
E Register: PH¥STICAR-BEVICE
B Regiseer- EOGICAR-BRVICE

Whege BOGICAL-DRVIEE ts the byte vaiue of a togteatl
device as tdentified in the section above and
PH?SEEAL;BEV?EE 3 the byte vaiue of & physies: devieer
Phis eaii will eaunse ail subsequent I/6 e the iegieai

deviee to be pPerfermed by the physi :
; . cat de -
This eail is avaiilabie tn the Bgsz viee attacheds

ey . s i
——— —— e et]
—-—u.--...-.—._—.——.—-. ——
— S e
T e s
o ——

June 8, 1984

DOS CALLS

@ :.2 mvTrRoDUCTION TO DOS

The highest (and simplest) 1level of access to the I0S for
applications programs is through the Downloadable Operating
Software (DOS).

The entry points to the IOS use a standard calling convention and
calling procedure. Each particular function is given a call
number. This number is passed in the 2-80's C register. A
function call may also accept zero, one, or two parameters as
inputs and return zero or one value as an output. These
parameters are passed as follows:

Function Number: Passed in C register if a BYTE

Return Value: Returned in A register if a BYTE
Returned in HL registers if a WORD

One Parameter: Passed in E register if BYTE
Passed in DE register if a WORD

[+)]

Two Parameters: Passed in E register if a BYTE
Passed in D register if a BYTE

. If more than 2 parameters need to be passed, then a dedicated
data structure is implemented.

June 8, 1984

DOS CALLS - SEGMENT HANDLING

4.2.1 SEGMENT HANDLING ROUTINES

4.2.1,1 INTRODUCTION

The 1IOS provides the mechanism for interfacing with the data and
programs that are found on the broadcagt cycle., All Qata or code
(program) which can be loaded at one tlmg forms what is called a
Segment. Segment locads can be of varying size from a few bytes
up to the NPC's available free RAM space. (By using segment load
of fsets, the application can manipulate data segments of much

larger size.)

The interface that IOS provides is composed of two components.
The first is that we provide DOS entry points which perform
different segment handling functions. The second is that the I0S
contains a data structure called the segment control/status
block. This block of data is the Place where data is passed to
the segment handler and where data is received from the segment
handler.

The following section will describe the theory or specification
that the segment handler obeys. Following that are examples of
how a programmer could use the Segment handling functions.

4.2.1.2 SEGMENT CONTROL AND STATUS BLOCK

The 108 contains a data structure called segment control/status
block. This block is used to pass information to and from the

Segment _handler. This block resides inside the I0S and not in
the application work space.

The programmer gains access to address of this block using DOS

call 87H. By using a template of the control block as described
below, the block can be modified as needed.

—-——-..-.-_-.-.-—_.-..—-..—.-—_u._—-——_....—-—.-——.-.-——-..——-—...._—-—__—....__-_——_-...._-_._-.-__—-.-.._

Spec. 50-90020490 Page 2 - 10 June 8, 1984

DOS CALLS - SEGMENT HANDLING

. CONTROL/STATUS BLOCK
STATUS | [
- |
BYTES TRANSFERRED| LS | MS i
. I]
OPTIONS | |
| !
SEGMENT ADDRESS | MS I i LS |
| : i ! : [
BUFFER POINTER | LS | MS |
I | !
BUFFER SIZE ! LS ! MS i
| I : I
CONDITIONS] |
| |
OFFSET I LS I I M8 I
| - I i l
Where:
STATUS: - is a one byte variable
. - is an output variable set by segment handler
- indicates the status of the segment operation as:
1 busy doing operation
0 operation finished with no error

MINUS NUMBERS

BYTES TRANSFERRED

- operation finished with error

tier not authorized

segment buffer overflowed

adaptor did not respond in time and
segment handler timed-out

segment contained a bad packet
communication protocol failed between
adaptor and P.C.

is a two byte variable least significant
byte first

is an output variable set by segment
handler

indicates number of bytes transferred
into segment buffer

..__.—._..-..._—_.............__..____._.._.,______..._....._____.__....._._..._.___...._..._______....._......___

Spec. 50-50020490

Page 2 - 11 June 8, 1984

DOS CALLS - SEGMENT HANDLING

OPTIONS -

If:
bit 0=0

bit 0=1

bit 2=0
bit 2=1

bits 3-7

SEGMENT ADDRESS -

RAM POINTER -

is a one byte variable

is an input variable initialized by the
application prior to segment operation
indicates information on how segment is
to be loaded:

control is returned immediately back to
calling program after segment operation
has started .

control 1is returned back to calling
program after operation is finished.

data segments will be loaded into RAM.
data segments will be loaded into VRAM.

are reserved and should be 0.

Is a 3 byte variable, most significant
byte first.

Is an input variable provided by the
applicatiocn, normally based on
information from the directory.

Indicates the segment identity to be
lcaded.

This will be a number from 3 to 7FFFFFH.

Is not required for all segment
cperations.

Is a 2 byte variable, 1least significant
byte first.

Is an input variable provided by the
application.

Indicates where the segment or the
status information 1is to be loaded.
This would be some area inside the
application or in VRAM.

Is not required for 1loading segments
where segment contains its load
address.

i ik i i B e S S e e e S S — S g . o S S Sy B W T M WA W WM W i BT S S S B A S it Bt S B o o e B S e e R Bl B B W S

Spec.

50-90020490

Page 2 - 12 June 8, 1984

DOS CALLS - SEGMENT HANDLING

. RAM SIZE - Is a 2 byte variable, 1least significant
byte first.
- Is an input variable provided by the
application.

- Indicates size of buffer in bytes; as
pointed to by buffer pointer.

- Only required if buffer pointer is
required.
CONDITIONS - Returned. Can be ignored.
OFFSET - This value (3 bytes) represents the num-

ber of bytes, from the beginning of the

data segment, to ignore when loading the
segment (an offset to the first loadable
byte). Ensure that this is zeroed if you
do not wish an offset.)

4.2.1.3 DOS INTERFACE

. The segment handler performs operations based on the segment
control block being correctly initialized, and a call being made
to a DOS entry point. -

*** NOTE *** 1In order for the segment loader IOS to properly
interface with the Adaptor, the application
program must NOT be within an interrupt protected
area of code when making segment handler requests.
Interrupts must be enabled and this implies that
the call to the segment handler does not occur
inside of a CRBEG -~ CREND code block.

(See "Interrupt Structure and Tasking Support"
for more information on CRBEG, CREND and
"Critical Regions".)

Spec. 50-50020490 Page 2 - 13 June 8, 1984

DOS CALLS - SEGMENT HANDLING

The DCS call is made by initializing register C and "calling"™ to
‘location 8. The following calls will be the ones used by
applications.

IF
REG C = 80H Segment handler is reset
REG C = 84H Segment is loaded and
interpreted if necessary
REG C = 87H Base address of control

block is read

All parameters passed and returned are made through SEGCST.
SEGMENT HANDLER IS RESET Call Number B80H

When this operation is invoked, any pending segment operation is
ignored and the adaptor is reset to a known state. The segment
control/status block does not have to be initialized because it
is not used by this operation.

SEGMENT IS LOADED AND INTERPRETED IF NECESSARY. Call Number 84H

This operation attempts to load in a segment as indicated by
segment address in the control block. If the segment is loaded,
the segment header may be interpreted to help with the 1locad
address and the location where execution of code is to begin or
continue, If the load is unsuccessful, error information is
returned in the status byte,

LOADING A DIRECTORY-ONLY SEGMENT
The control block requires that:

Options = 01 or 00
Segment address contains the number of a directory segment
Ram pointer and Ram size are not used

The segment will be loaded into the directory area inside 1I0s.
The previous directory will be overwritten and the IOS will be
notified that a new directory is present. The code-to-load field
in the segment header will have been 000000 indicating that this
directory has no code associated with it. After the directory
has been loaded in, control is returned to the calling program.

—4--———-.-—..-.—————-—q___——_-___—_—__“m._—__—..___-.-.,-__-.-_—_...-_———._-———-4--.-.-.4-

Spec. 50-90020490 Page 2 -~ 14 June 8, 1984

DOS CALLS -~ SEGMENT HANDLING

LOADING A CODE SEGMENT:

The control block requires that:

The

Options = 01 {or 00}
Segment address contains the number code segment
Buffer pointer and buffer size are not used

segment 1is loaded. The segment header contains the load

address where the code is to be loaded. It also contains the

start

address where execution begins in the code after it has

successfully loaded. Just prior to execution beginning in the
newly loaded code, initialization occurs. The stack pointer is

set

to just below IOS, all attached tasks are removed, and the

keyboard and clock interrupts are enabled.

LOADING A DIRECTORY WITH CODE-TO-LOAD

The control block requires that

The

Options = 01
Segment address contains the number of the directory segment
Ram pointer and Ram size are not used

directory portion of the segment is loaded into the IOS

directory area. Then the code-to-lcad field in the segment
header is checked. If the value is FFFFFFH, then a code segment
complete with header will immediately follow the directory in

this

same segment. If the value is not 0 and not FFFFFFH, then

the code segment specified by the value is loaded in.

LOADING IN A DATA SEGMENT

The control block requires that:

Options = 01 or 00

Segment address contains the number of the data segment

Ram pointer contains the pointer to the area where the

data is to be written

Ram size contains the size of the area where data is to be
written

Offset is set to the number of bytes to ignore in the segment
before loading (usually 0).

The data is loaded into the buffer as specified. After the data
has been loaded control is passed to the calling program.

Spec.

T LD S e e e e e e o S e o e T St it W T D e At S e e v W WS W Sy S vy sl T M —— _— AAS S e o e

50-90020490 Page 2 - 15 June 8, 1984

DOS CALLS - SEGMENT HANDLING

LOADING IN A OVERLAY SEGMENT:
The control block requires that:

Options = 1 or 00
Segment address contains the number of the overlay segment
Ram pointer and Ram size are not used

The overlay 1is loaded in at the locad address specified by the
segment header. After the segment has been loaded, control is
returned to the calling program.

BASE ADDRESS OF SEGMENT CONTROL/STATUS BLOCK IS READ.
Call Number 87H

The application is returned to the base address of the control
block in the HL register pair. This will allow the programmer to
place a template of the control block at that address in order to
initialize the block as required.

4.2.1.4 SEGMENT HEADERS

Each segment requires some overhead to describe what the segment
contains. The extra data is called a segment header.

Segment headers have differing lengths. The minimum size of a
header is 2 bytes long and the maximum size is 255 bytes.

The first byte of each header always contains the length of the
header (2-255) in number of bytes.

The second byte of each header always contains the segment type.
Four types of segments are currently defined:

Type 0 = Directory segment with or without code-to-load
Type 1 = Code segment

Type 2 = Data segment

Type 3 = Overlay segment

—— s —— . — e — —
- ———— - — T S T S S et e oy e T i o T . — - P} —

Spec. 50-90020490 Page 2 -~ 16 June 8, 1984

DOS CALLS - SEGMENT HANDLING

DIRECTORY SEGMENT HEADER

NAME LENGTH

NAME

LENGTH : :
TYPE I o0 |
I .
ENTRY WIDTH [I
! !
NUMBER OF ENTRIES | l
i |
CODE-TO-LOAD I Ms |
I i
I |
| |
! I
l r

Entry width 1is the width of the directory entries. Each
directory entry has the same width. The width has a minimum size
of 10 and maximum size of 255. (See section on directory calls.)

Number of Entries is the number of directory entries. This value
could have a minimum of one and maximum of 255. However since
the maximum directory is 1000 bytes, the product of entry width
and number of entries must not exceed 1000.

Code-to~lcad 1is the field which indicates if code 1is to be
loaded, and where this code can be found. If this wvalue is
FFFFFFH, then code follows the directory. All other wvalues
indicate the segment number of the code segment.

Name length 1is the number of characters in the name cf this
directory segment. The minimum is 1 byte and maximum is
255 bytes.

Name is the actual ASCII name of this directory segment.

———-.—-—-.—-.-_—-———-_—--—-_-..q-.__—--_.—_—--—__.-.-__-._—--._——.—.—_-.--——.——-..c————--—-——

Spec. 50-90020490 Page 2 - 17 June 8, 1984

DOS CALLS - SEGMENT HANDLING

CODE SEGMENT HEADER

mI

=
-t
e

(V)

LENGTH l :
TYPE : 1 :
LOAD ADDRESS i MS | I LS :
START ADDRESS i 5 E :

Load Address is a 3 byte variable, most significant byte first,
which tells the segment handler where to place the code.
Currently the first byte is always 0.

Start Address is a 3 byte variable, most significant byte first,
which indicates where execution begins. Currently the first byte
is always 0.

DATA SEGMENT HEADER

LENGTH | 2 |
|
TYPE | 2 i
I i

This header is the shortest one. Its purpose is to notify the
segment loader that it is a data sSegment.

OVERLAY SEGMENT HEADER

LENGTH 5
I _|

TYPE I3 |
- !

LOAD ADDRESS I Ms | I LS |
I !

Load Address is the address at which this overlay is to be

loaded. It is a 3 byte variable, most significant byte first.
Currently the first byte is always 0.

—-—_———.-———-..._—-..._——.._—-.-._—_.-.-..__—--——..—.___—_._._-..__—-.....—_-.-._..—-..-—__.-.._—4.-—-_

Spec. 50-90020490 Page 2 ~ 18 June 8, 1984

DOS CALLS -~ SEGMENT HANDLING

4,2.1.5 EXAMPLES

In order to help illustrate the calls to the segment handler,
examples written in assembler are included. They are arranged in
some order from least difficult to more difficult.

>>>> ABORTING A SEGMENT LOAD <<<<

SCENERIO: The program has requested a large data segment,
and decides that the data is not required. The
segment load is aborted.

CODE: LD C, 80H
CALL 8

>>>> RESET SEGMENT LOAD DEVICE <<<X<

SCENERIO: Although it is not required, a program may choose
to reset the segment load device prior to loading
a segment.

CODE: LD C, 80H
CALL 8

" " ——— T " .l B ok B Ao o S B R it Bk Bl et ERE ERA Bt M S M Mk N e S S S S A ML S — N " o o T

Spec. 50-90020490 Page 2 - 19 June 8, 1984

DOS CALLS — SEGMENT HANDLING

»>>>> LOAD A DATA SEGMENT <<<X<

SCENARIO: The program has determined that it needs to 1load
data segment "tax-table". It has searched through
its directory and found that "tax-table" is data
segment no. 000234H. The table is to be loaded at
location 8000H. Buffer is 1200H bytes long.

CODE:
LCB: create a local
STATUS: DB t] control block
BYTES: DW 0

CPTIONS: DB 1l return contrecl after 1load
finished

segment no.= 234

buffer pointer

buffer size = 1200

condition byte {returned)

load from beginning of segment

SEG ADR: DB 00,02H,34H
RAM PTR: DW 8000H

RAM SIZE: DW 1200H
CONDIT: DB 0

OFFSET: DB 0,0,0

BASE: DwW 0 value of base address
START: LD C, B87H get base address of segment
block
CALL 8

LD {(base), HL
EX DE, HL

LD HIL., LCB

LD BC,BASE-LCB
LDIR

temp. storage

DE=PTR to IOS control block
HL=PTR to local control block
$# of bytes to move

I0S control block initialized
LD C, 84H load data file
CALL 8
check for error
restore base address
read status

if status = 0

then no errors occured

LD HL, (base)
LD A, (BL)
CP 0

ME WE WA WA WA WG WG WH WG W WF WG NP WP U MG WE M WA MG WA WS WG WG WY WS WP

e it e S —— Y W T T T EMe ST WE R S T R W S W S B e e W T W W e e BT e e e v e At e et et S Sy e e e S - =

Spec. 50-90020450 Page 2 ~ 20 June 8, 1984

DOS CALLS - SEGMENT HANDLING

. >>>> LOAD AN OVERLAY SEGMENT <<<X<

SCENERIO: The program requires that an overlay be loaded and

a2 subroutine in the

overlay executed. Overlay

segment number is 54321 Hex.

CODE :
LCB:
STATUS: DB 0
BYTES: DW 0
OPTIONS: DR 1

SEGADR: DB 5H, 43H,21H
RAM PTR: DW 0
RAM SIZE: DW 0

BASE: DW 0
START: LD C, B7H
CALL 8
. LD (BASE), HL

EX DE, HL
LD HL, LCB

LD BC, 7
LDIR

LD C, 84H
CALL 8

LD HL, {BASE)
LD A, (HL)

cp c
JR NZ, ERROR

CALL SUBROUTINE

M me ME e N NE WE RE NS %R NP WD NS NS mp Mg M WA NS RS NP WG NP WG ™ W wE ws wa we

local control block

return contreol after load
finished

seg number = 54321

don't care

don't care

storage for base address

get base address
temp. storage
move local block
to I0S block

load overlay segm

check status

if status NE 0
then go to error

else do subroutine

. Spec. 50-90020490 Page 2 -~ 21 June 8, 1984

DOS CALLS - SEGMENT HANDLING

>>>> LOAD A CODE SEGMENT <<<<

SCENARIO: A code segment is to be loaded in and executed.
If an error occurs, during loading, execution is
to re-boot the system. Segment number is 1234H.

CODE: LCB: local control block
STATUS: DB 0
BYTES: Dw 0
OPTIONS: DB 0 return control

immediately
seqg no. 1234
don't care
don't care

SEG ADR: DB 0, 12H, 34H
RAM PTR: DW 0
RAM SIZE: DW 0

START: LD C, 87H
CALL 8

get base address

e mp Me ‘mA WE WS W A Te W Wy

EX DE, HL move local block

LD HL, LCB to I0S
LD BC, 7
LDIR

LD C, 848
CALL 8

load code segment

JP 0 error occurred, reboot

“UE ME WA ME WP Wy wg wp WP we

>>>> LOADING A DIRECTORY SEGMENT WITH NO CODE TO LOAD. <<<X<

Example is identical to lcading an overlay segment.

>>>> LOADING A DIRECTORY SEGMENT WITH CODE TO LOAD. <<<X<

Example is identical to loading a code segment.

- e e o T oy o o o o e o S S e St WY S e WY W ot S T ————— W T v S — T —— o o T -

Spec. 50-200204590 Page 2 - 22 June 8, 1984

DOS CALLS - DIRECTORY ROUTINES

4.2.2 DIRECTORY ROUTINES
4.2.2.1 INTRODUCTION

Each application which requires segments off the cable will have
a segment directory loaded into memory. The segment directory
will be stored as a 1K buffer as part of the IOS. Each entry of
the directory will contain information about one segment being
transmitted on the cable.

This section describes the format of the directory in memory, and
the method that applications use to access information in the
directory.

4.2.2.2 FORMAT OF DIRECTORY

The segment directory is stored in a 1K buffer in the 10S. The
format of the information in the buffer is as follows:

|

! DIRECTORY
i SEGMENT
! HEADER

I ENTRY 1 I

! ENTRY 2 |

- ———————— — ey i . o

The DIRECTORY SEGMENT HEADER is the standard segment header as

described in section 4.2.1.2.3. Following the header, are a
number of entries, one entry per segment in the directory.

. ——— S S . S e e T W T ST T W B S S G i Gt Gt S Gy M S S L S Ry . ey o T T W T S f— T — o o Prve S iy

Spec. 50-3900204%0 Page 2 - 23 June 8, 1984

DOS CALLS — DIRECTCRY ROUTINES

Each directory entry has the following format:

o S ——— i o =y f————

; TYPE | 1 BYTE
___________________ |
| OWNER | 1 BYTE
[mmmmmmmm e »
l |
I TIER LEVEL | 4 BYTES
! |
| |
[m e I
| |
| SEGMENT ADDRESS | 3 BYTES
| 1
| = e |
1 I
| |
I |
I NAME | 18 BYTES
| |
! |
| |
| e |
RESERVED 4 BYTES

TYPE and OWNER are each one byte values that are currently
undefined in the NABU NETWORK. TIER LEVEL is a four byte value
which gives the tier access information of the segment, each bit
corresponding to a different tier level. The SEGMENT ADDRESS is
a three byte value which gives the address number of the segment
on the cable. This three byte value is the number that must be
put into the SEGMENT ADDRESS of the SEGMENT CONTROL AND STATUS
BLOCK when a request is made to load the segment off the cable
{see section 4.2.1).

The NAME of the segment is given by the applications programmer
when submitting the segment to the APS. It can be up to 18
characters 1long. In the directory entry the name is left
justified and right padded with blanks. In most caseg the
application will know the name of the segment to be loaded, and
search through the directory to find the segment address in order
to request the segment off the cable.

The last four bytes of each directory entry are reserved for
system use and should not be used by the application.

———— T T T o AL T S Tt Bk St B e B e T T S W o o e s A ot et o vy i SE M S M Bt Sy Pk W) W S o - ——— —

Spec. 50-90020490 Page 2 - 24 _ June 8, 1984

DOS CALLS - DIRECTORY ROUTINES

4.2.2.3 ACCESSING THE DIRECTORY

Multi-Segment applications require a means of loading overlays or
data. The segment locader requires that a segment number or
address be present 1in the segment control block. The user
directory contains the information which links the segment name
with the segment address. This directory is loaded into an IOS
directory area. This is an internal 1K buffer.

An application has one DOS calls available for accessing the
directory: the routine to search through the directory for a
particular entry.

DIRECTORY SEARCH DOS CALL 88H
PURPOSE: To search for a particular entry in the directory.
PARAMETERS PASSED: C Register - 88H

DE Register - Address of a Directory
Search Block (see below).
PARAMETERS RETURNED: All information returned is done so in
the Directory Search Block as described
below.
DATA STRUCTURES: The Directory Search Block 1is a data
structure declared by the application and passed to the
I0S when the directory search call is made. the
Directory search Block has the following format:

T S T M e R b S e e e S TTY ST e S O G T . e Sy g T o N W —a iy iy mn i S . o ——— —— -

Spec. 50-90020490 Page 2 - 25 June 8, 1984

DOS CALLS ~ DIRECTORY ROUTINES

! MATCH PATTERN |

1 BYTE
" entRY wivth | 1 ByrE
e — | 1 By
i ------ 5&8%& ------ i 1l BYTE

| [
I TIER LEVEL | 4 BYTES
] !
| I

| SEGMENT ADDRESS | 3 BYTES

!
I
I
NAME [(ENTRY WIDTH) - 9 BYTES
I
I
!

The MATCH PATTERN is set by the calling application and is
used to indicate which fields in the directory entry are to
be searched for. The meaning of each of the bits in the
MATCH PATTERN byte is as follows:

o ———] s Ty . Tl . e T T T — — — —————— T — — ——

| I I_ match TYPE

] | | match OWNER

| } ' match TIER LEVEL

] match SEGMENT ADDRESS
match NAME

not used

not used

0 => search for first
1 => search for next

L S T — —— e W e Wi S b ek e i e e i O TR T e i e e e e e ey T T Y o - o Sl ey f—— — e S —— - — ————

Spec. 50-~90020490 Page 2 - 26 June 8, 1984

———— —

Spec.

DOS CALLS - DIRECTORY ROUTINES

If the N, L, T, O or Y bits are set in the SEARCH BLOCK,
this indicates that the corresponding fields of the search
block are to be matched with the directory entry. For
example, if the application wished to search for a segment
with the name COSMOS, it would set the N bit, and reset the
L, T, O, and Y bits, 1If the application wished to search
for a segment with the name COSMOS and with owner 33, it
would set the N and O bits, and reset the L, T, and Y bits.

The S bit of the match pattern indicates whether to search
for the first directory entry which matches, or the next
directory entry after the last search.

The ENTRY WIDTH gives the number of bytes in the search
block following the ENTRY WIDTH byte. It is required to
compute the number of characters in the NAME.

The fields TYPE, OWNER, TIER LEVEL, and NAME correspond to
the fields in the directory entry. The application will set
these fields if it wishes to search the directory for a
corresponding entry. For example, if the application wished
to search for a segment with owner 33, it would set OWNER to
33; if it wished to search for a segment called NEUTRON BOMB
it would set NAME to 'NEUTRCN BOMB'.

When matching on NAME the application can use "wildcard"
features. A '?' with the high bit set (i.e., OBFH) will
match any single character in the corresponding position.
For example if NAME is two bytes long and is set to 41H,
OBFH, the directory search routine will match Al, A2, AN, or
any other segment whose name starts with A. A '*' with the
high bit set (i.e., OAAH) will match any string in the
corresponding position. For example if NAME is two bytes
leng and is set to 41H, COCAAH, the directory search routine
will match on A, AA, Al, Al2, Al23, AAASSSDDD, or any
segment name beginning with 'A'.

The matching of the tier level fields is done in the same
manner as the tier authorization match in the Adaptor. That
is the two fields are ANDed together. If the result is non-
zero then there is a match.

B e e i i S B ek Sy Bt M o A i o o ey B oy M o S Bt B g B e oy oy M e S B e M L e o S o S S ot e o S Al S A —

50-900204%0 Page 2 - 27 June 8, 1984

DOS CALLS = DIRECTORY ROUTINES

All wvalues returned to the calling application are done so
in the SEARCH BLOCK in the following manner:

-If the search was successful the MATCH PATTERN is set
to OFFH by the search routine.

~If the search failed then the MATCH PATTERN is set to
0 by the search routine.

-If the search was successful, then the TYPE, OWNER,
TIER LEVEL, SEGMENT ADDRESS, and NAME fields are filled
in to correspond to the entry in the directory that was
found.

The following are a few examples of how the directory
search routines work.

tRead in a segment named BOMBAST

[
!

sSearch the directory for the first entry with the name BOMBAST

[
r

LD A,10H

LD {MATCH_PATTERN) ,A :Search for first occurrence,
sMatch on name.

LD A,23

LD {ENTRY_WIDTH) ,A :Set entry width

LD HL, SEGNAME
LD DE , NAME

L.D BC,14

LDIR :Copy BOMBAST into NAME field.

LD C,88H

LD DE, SEARCH_BLOCK

CALL 8 1Call IOS to search the directory.
LD A, (MATCH_PATTERN)

OR A

JP Z ,NOT_FOUND ;Was search successful?

:Search was successful. Read in segment.
:Segment address is in SEG_ADDR
CALL READSEG

T = S e o R S A oy " S P e S S S St ———— ————— —— —— s oy iy e A M e AL . —— O Gy G G T S Gm S — -

Spec. 50-90020490 Page 2 - 28 June 8, 1984

DOS CALLS - DIRECTORY ROUTINES

sRead in second segment in directory which begins with the
;letter 'A' and is owned by 69. This will require doing two
sdirectory searches; one for the first occurence; and cne
;for the next occurence.
LD A,128
LD (MATCH_PATTERN) ,A :Find first occurence. Match on
;:NAME and OWNER.

LD A,23

LD (ENTRY_WIDTH) ,A :Set ENTRY_WIDTH to 23

LD A,'A

LD {NAME) , A :First character of NAME is '"A'.
LD A,Q0AAH

LD (NAME + 1) ,A ;Wildcard feature

LD B,12

LD A,' !

LD HL, NAME + 2

BLANK: LD (HIL),A

INC HL

DINZ BLANK ;Blank out remainder of NAME
LD C,88H

LD DE, SEARCH_BLOCK

CALL 8 ;Call directory search

;Search for first is done. If successful then search for next.
LD A, (MATCH_PATTERN)

Cp 0

JR Z ,NOT_FCUND ;Was search successful

LD A,92H

LD (MATCH_PATTERN) ,A :Search for next occurence of
;NAME and OWNER

LD A,0AAH

LD (NAME + 1),A ;:Wildcard feature

LD B,12

L.D A," !

LD HL,NAME + 2

——— ————— — —————— —————
o — o o i e L S e S ey e L el e e " B St o e e . W e

Spec. 50-90020490 Page 2 - 29 June 8, 1984

DOS CALLS - DIRECTORY ROUTINES

BLANK1: LD (HL).,A

INC HL

DINZ BLANEKL ;Blank ocut remainder of NAME
LD C,88H

LD DE, SEARCH_BLOCK

CALL 8 :1Call directory search

LD A, (MATCH_PATTERN)
Cp 0

JR Z ,NOT_FOUND

;Read in the segment
CALL READSEG

SEARCH_BLOCK:

MATCH_PATTERN: DS 1
ENTRY _WIDTH: DS 1
TYPE: DS 1
OWNER: DS 1
TIER_LEVEL: DS 4
SEG_ADDR: DS 3
NAME : DS 14
Spec. 50-90020490 Page 2 - 30 -

June 8, 1984

DOS CALLS - INTERRUPTS AND TASKING

4.2.3 The Interrupt Structure and Tasking Support

4.2.3.1 Introduction

Because of the Real-Time requirements of the NABU P.C., some
sort of real time operating support is required. Because of
the overhead involved in context switching and maintaining

task descriptors and the guestionable utility

to

applications programs, full multi-tasking is not supported.
Instead, a modified forground/background tasking approach is
used. The application program runs as the foreqround task,
and is in complete control of the NPC. The application

program may also call 1I0S routines which run in
foreground, and may also start other tasks running in
background. The application program may also use
routines to start applications tasks running in
background.

The background tasks are always started by the occurance

the
the
I0S
the

of

interrupts and must "run to completion™. The NPC supports
eight vectored, maskable, nestable, priority interrupts.
Each interrupt has an interrupt service routine or "system

task" associated with it. Some of the interrupts may

also

have one or more "user tasks" associated with it. These
"user tasks" will start after the system task for the given

interrupt has completed. The NPC interrupts in order
priority are:

1. NNI Receive
—activated when a character is received from
the NNI
-system task for packet/segment reception
handling attached to this interrupt
-No user tasks may be attached

2. NNI Send
-activated when a character has been sent from
the NPC to the NNI (Transmitter Buffer Empty)
—~System task for packet/segment reception handling
attached to this interrupt
-~No user tasks may be attached

3. Human Interface Input

—activated when a character has been received
from the remote keyboard

i r; ————— i r —t— ——
-— e e S e e . o B i i o o o B i st e o ot o B B B e S e e o7 o e e

of

Spec. 50-90020490 Page 2 - 31 June 8, 1984

DOS CALLS -~ INTERRUPTS AND TASKING

4, Video Frame Sync (60 Hz Clock)

~activated every 1/60 sec by start of _
vertical retrace on the TMS 9918A Video Dlsp}ay

-System task to: flash cursors, update real time
clock, etc. etc attached to this interrupt _

-System task to timeout on NNI response attached to this
interrupt

—-Any number of user tasks may be attached.

5. Option Card Interrupt from Slot No.
6. Option Card Interrupt from Slot No.
7. Option Card Interrupt from Slot No.
8. Option Card Interrupt from Slot No.

WhN=O

Option Card Interrupts
—activated by option cards
-one system task per card may be attached
as required
—-one user task per card may be attached

4.2.3.2 Critical Regions

Spec.

--..———..._—-__-.-——._—-..—--.__—.-——._-..—-..-_

For the purposes of the I0S, a critical region is defined as
a section of executable code, or data structure which may be
accessed by only one concurrently executing task at a time.
Critical regions are bound to exist in any system which
supports more than one concurrently executing task.

Two IOS BOS calls are used to protect critical regions in
the IOS and in applications programs. When entring a
critical region, an application task must call the routine
"CRITICAL_REGION_BEGIN". This is call number 02 in the IOS
BOS and its assembly language name is CRBEG. It takes no
parameters. When leaving the critical region the routine
"CRITICAL_REGION_END" must be called. This is call number 03
in the I0S BOS and its assembly language name is CREND. No
registers are destroyed by these calls.

Critical regions are nested by CRBEG and CREND. This nesting
is analogous to opening a left bracket for each CRBEG that
is performed and closing the critical region with a right
bracket each time a CREND is performed. In this way it is
easy Fonv1sualize that one may have a critical region within
a crltlca% region and that interrupts will only be enabled
whep the final right bracket (CREND) is reached. It is also
obv1ous_ that there must be as many CRENDsS as there are
CRBEGs in order to keep the interrupt control in order.

—.————-...—-.-——--———-.-_—.-——-.-.-——

50-90020490 Page 2 - 32 June 8, 1984

DOS CALLS - INTERRUPTS AND TASKING

Since all interrupts are disabled inside critical regions,
they MUST be kept as SHORT as possible.

*%% NOTE ***

Attempting to interface with the segment handler while
in a critical region, may yield unpredictable results.
Avoid this situation.

It 1is also strongly recommended that applications not
use the EI and DI assembler instructions for critical
region protection. Use the IOS CRBEG / CREND routines
instead. (See BOS Calls.)

e o —— Tt e S —— —— ——
e T e e e e e e e e - — et ———

50-90020490 Page 2 - 33

T v S o — ——— - ———

June 8, 1984

DOS CALLS - INTERRUPTS & TASKING - CLOCK

4.2.3.3 User Task Attachment Routines

4.2.3.3.1 Attaching Tasks to the Clock

An application program may attach tasks to the TMS-9918A VDP
frame interrupt. As many tasks as desired may be attached.
Tasks may be attached and removed from the clock by both the
main application program and by other tasks. 1In fact a task
may remove itself from the clock. It is also possible to have
multiple invocations of the same piece of code as separate
tasks.

BEFORE CLOCK-ATTACHED TASKS ARE EXECUTED, ALL REGISTERS
ARE SAVED, AND THEY ARE RESTORED AFTER THE COMPLETION OF
THE TASK.

A data structure called a TASK_CONTROL_BLOCK (TCB) is used
to keep track of the relevent parameters of a task which is
attached to the clock. The TCB has the following structure:

VAR
TASK_CONTROL_BLOCK: RECORD OF
BEGIN
NEXT_BLOCK : WORD
RESET INTERVAL : BYTE
CURRENT__INTERVAL : BYTE
TASK_ADDRESS : WORD

[PARAMETER_BLOCK USER_DEFINITION 1]

The NEXT _BLOCK word is used by the operating system to place

the TCB on a linked list with other TCB's. This word should
not be altered by applications tasks at any time,

The CURRENT INTERVAL byte counts the number of ticks that
bave gone by since the last time the task was activated. It
1s accessed by the I0S but may also be accessed by

applications tasks. The I0S algorithm in which this byte is
used is as follows:

—— — ———— i — —— e ————
-— — ——— — ——.—-..--...—-——-..-..-.....___—._-.——..—_.-..__....._._—_-._.____-.-—_—_—-.—......

Spec. 50-90020490 Page 2 - 34 June 8, 1984

Spec.

DOS CALLS - INTERRUPTS & TASKING - CLOCK

ON EACH CLOCK INTERRUPT DO

BEGIN
FOR EACH TASK_CONTROL_BLOCK DO
BEGIN
CURRENT_INTERVAL = CURRENT _INTERVAL - 1;
IF CURRENT_INTERVAL = 0 THEN DO
BEGIN
CURRENT_INTERVAL := RESET_ INTERVAL;
RUN_THIS_TASK(TASK_ADDRESS);
END
END
END.

The byte CURRENT_INTERVAL is decremented every clock tick
until it equals zero. When CURRENT_INTERVAL = 0, the task is
executed. Therefore an INTITIAL DELAY may be issued before
the task is dispatched by initializing CURRENT_INTERVAL to a
value greater than one. Before executiocn of the task,
CURRENT_INTERVAL is reset to the value of RESET _INTERVAL.
CURRENT_INTERVAL is measured in clock ticks which are approx
1/60 of a second long. For example a value of 5 means the
task will every 5/60 of a second and a value of 1 means the
task will run every 1/60 of a second or 16 milliseconds.

NOTE: That initializing CURRENT INTERVAL to zero will
cause the task to be delayed for 256 clock ticks
(approx 4 seconds) before it is executed a first
time.

The CURRENT_INTERVAL byte can be used to determine when a
task has last run or when a task will next run. It will also
determine when a newly created task will next run.

The RESET_INTERVAL byte is the value to which the byte
CURRENT_INTERVAL is initialized to after RESET_INTERVAL has
been decremented to zero. This byte is never changed by the
operating system, but can be changed for purposes of
changing the re-execution time of an active task.

The TASK_ADDRESS word contains a pointer to the start of the

Fask or user subroutine. When control is given to the
interrupt subroutine, the pointer to the TASK_CONTROL_BLOCK
(TCB) is in the BC register so that the user may access any
of the bytes in the TCB and modify them if he so desires.
NOTE alsc that this pointer is useful for accessing vari-

ables (bytes or words) immediatly below the &
TASK_CONTROL_BLOCK. Y e byte

T L S S Sy i ———— — - — -
-— — — - e e e P o e e e e e e e e e et e ek e e e B = —— ——

50~90020490 Page 2 - 35 June 8, 1984

DOS CALLS = INTERRUPTS & TASKING - CLOCK

Also note that an interrupt subroutine or task should always
end with a RETURN (RET) statement in order to return control
to the application's mainline and never jump out of a user
task otherwise interrupts will remain permantly disabled.
Interrupt subroutines should also always be as short as
possible and never take longer than 16 milliseconds (1 CLOCK
TICK) to execute. If it should be neccessary to run a task
that takes longer than 16 miliseconds, it should be broken
up into two tasks which execute on alternate interrupts. To
do this start one task immediatly and delay the second
task one clock tick by setting CURRENT_INTERVAL
initially to two.

The PARAMETER_BLOCK is an optional data structure which may
be accessed by an applications task. When a task is started
the address of the TASK_CONTROL_BLOCK (ie a pointer to the
NEXT_BLOCK word) is passed in the BC Register. This gives
the task access to its own TCB. Using the parameter block to
keep all of the task's data will allow several
instantiations of the same code as separate tasks without
resorting to keeping data on stack frames.

There are a few important calls which should be mentioned at
this point, because tasks may not run if they are not done.

A call must be done at the start of every program to link in
the BOS routines so that calls to CRBEG and CREND will work.
{See section on BOS Calls for information on 1linking BOS
routines using DOS call 90H.)

ex:
MAIN: ¢
LD C,90H ¢DOS CALL 90H
LD DE,LNKTB## ;ADDRESS OF
;LINK TABLE
CALL DOS ; CALL SYSTEM

A call must be done to CLKPRM (BOS CALL #37) should be done
to enable user task dispatching when the user is ready to
have the tasks dispatched.

ex: LD C,4 ;CONSIDER CLOCK
; TASK

tDISPATHING BIT

LD E,4 ;SET BIT #2 TO

+ TURN ENABLE
: TASK DISPATCHING

CALL CLKPRM#% :NOW TASKS WILL
jRUN IF INTERRUPTS
;ARE ENABLED

o e e e e e e e S o e 1 et e o . e e e e e T et et e . T e S B e by it T e o o S e i e v e e i e e e o e e

Spec. 50-50020490 Page 2 - 36 June 8, 1984

DOS CALLS - INTERRUPTS & TASKING - CLOCEK

NB: a call to CLKPRM should be used instead of a call to
CRBEG if the user wishes to disable ALL tasks for a 1long
period of time. Because a call to CRBEG will disable ALL
interrupts, and not only user tasks.

The IO0S DOS Routines which support attaching and removing
clock tasks are as follows:

CLOCK_USER_TASK_ATTACH (DOS call number 8BH)
-used to attach a user task to the clock ISR
—entry parameters:
C Register: 8B Hex
DE Register: Pointer to a Task Control Block

CLOCK_USER_TASK _REMOVE (DOS call number 8CH)
-used to remove a user task from the clock ISR
-entry parameters:
C Register: 8C Hex
DE Register: Pointer to a Task Control Block
If DE = 0, then all tasks are removed

Note that although there is no limit to the number of tasks
which may be attached to the «c¢lock, attaching too many
tasks, or attaching 1long running tasks may cause clock
interrupts to be lost.

—— e —— -
A ——— e e o S e . o T o S e = —— — -—
—————— — — —— — —
o ———— ——

Spec. 50-90020490 Page 2 - 37

——— i —— ———

Juhe 8, 1984

DOS CALLS ~ INTERRUPTS & TASKING -~ CLOCK

EXAMPLE

This routine demonstrates attaching and removing tasks.

DOS EQU

COUNT: DB

CNTTCB:
DwW
DB
DB
DW

MAINLINE::

DRIVER::

0008 ; DOS ENTRY POINT

0 :Data byte incremented every 5/60
;a second by interrupt subroutine
; COUNTER
s TASK_CONTROL_BLOCK

0 ;point to next block = NIL

5 tRESET_INTERVAL

1400 ; INITIAL_DELAY 0f 100 ticks

COUNTER ;Interrupt subroutine

LD C,90H
LD DE,LNKTB##

CALL DOS

LD C,08BH
LD DE,CNTTCB
CALL DPOS

LD A, (COUNT)
CP 100
JP NZ,DRIVER

LD A,Q

LD (COUNT),A
LD C,8CH

LD DE,CNTTCB
CALL DOS

JP DRIVER

COUNTER:

LD A, {COUNT)
INC A

LD {COUNT) ,A
RET

tLINK_BOS_ROUTINE
;call number
;address of user
sLINKTARLE

;call location 8

{SOME MORE MAINLINE CODE

:C REG = 08BRH = CLOCEK_USER_ATTACH.
;DE REG = ADDRESS of TCB

tCALL location 8 to attach task
iNow task is ATTACHED!! .

+MORE MAINLINE SETUP

sMAINLINE DRIVER

iget count in A regq.
1Is count = 1007

:NO. Then wait till
:COUNT = 100

;YES. count = 100 so
;then reset count to 0
sUSER_TASK_REMOVE

:TCB ADDRESS

iNow counting task will
:no longer and the byte
iCOUNT will no longer be
rincremented.

;and do forever.

:USER'S INTERRUPT SUBROUTINE
iget current count
;iincrement count

istore new count

;return to mainline.

e e e e e o - o e Mo v o e o e e T S e e e Tl ke S e e e e e T et W o e B o s k4 T T o s S o e B

Spec.

50-90020490

Page 2 - 38 June 8, 1984

DOS CALLS - INTERRUPTS & TASKING - KEYBOARD

. 4,2.3.3.2 Keyboard User Tasks

—— . —

The IOS DOS call 95H will permit tasks to be attached t9 the
keyboard. The user passes, in the DE registers, a pointer
to a table whose format is as follows:

e e e e e S e e o

| Number of |

| Entries (Byte) | / eermmmemccememem e —e e —————
---------------- [I Character Code (Byte) [
| ENTRY #1 | | e e
---------------- ! | S¥YM Key Qualifier (Byte} |
| ENTRY #2 | mmmmme e e
---------------- I | Pointer to I
. | I User Routine (Word) |
- \ ———————————————————————————
| ENTRY #n !

The character code is the code sent by the keyboard.
Joystick data is ignored. The SYM key qualifier indicates
when the task is to be performed as follows:

bit 0 = 0 then do not execute user routine when SYM
key is down.
0= 1 then execute user routine when SYM key is
down.
bit 1 = 0 then do not execute user routine when SYM
key is up.
1l = 1 then execute user routine when SYM key is
up.

The user's routine must end with a RET to prevent disaster.

If a wuser's routine is to be executed, then all normal
processing of the key code received is superseded. This
means the key will not be put in the gqueue and the PAUSE and
TV/NABU keys will not be processed - only the user routine
will be performed. A number of tasks may be attached to the
same keyboard input code. This allows the application the
option of having different tasks execute based on the

condition of the SYM key qualifier for the same keyboard
input code.

Attaching a task to the SYM key may produce unusual results.
This 1is due to the fact that the attached task will not
allow the SYM key to execute in the pProper manner.

———._.——__——.—.-—_._-..._....——__.—-.._.____——_._.—-.-—-—__—————-.—-.__——-_-_—_—_—

50-90020490 Page 2 - 39 June 8, 1984

DOS CALLS - INTERRUPTS & TASKING - KEYBOARD

WARNING -

To remove
keyboard,

When attaching tasks to the keyboard that will
attempt to write to the video control register
ensure that no other foreground or background
task is wusing the video routines FASTLD and
FASTDU (and their 256 byte cousins) as they allow
keyboard interrupts to occur.

the keyboard task table in its entirety from the
DOS «call 95H is performed with the DE registers

set to zero.

" — . T — T S T T e e dl d Bk S S L B W W S - St o i A ey Y Mt it S (et S o Sy S S WM L . S e S ey g M Sy o S

50-500204890 Page 2 - 40 June 8, 1984

Spec.

DOS CALLS - INTERRUPTS & TASKING - EXPANSION SLOTS

4.2.3.3.3 EXPANSICN SLOTS

Expansion slots in the NABU PC will be used to allow a number of
different option cards to be added. There are four expansion
slots in each PC. The option cards send an identification (id)
code to a port at the opticon slot. The NABU PC picks up the ids
by specifying the hex value COH for slot 0, DOH for slot 1, EOH
for slot 2, and FOB for slot 3. Since there can be so many
different cards which can be installed in the NABU PC, and
different configurations of these cards in the slots, it is not
reasonable to include drivers for each option card in IOS.

The solution is to have the application identify the cards
installed in the expansion slots, and have interrupt service
routines which will handle the option cards.

To find out what is in the expansion card slots, a DOS call 94H,
(GET_CONFIG) can be made. The input parameter is 94H passed in
the C register. This call returns the address of the configura-
tion block in registers HL. The format of the block is as fol-
lows;

CONFIGURATION BLOCK

STRUCTURE (IOS_VERSION_NO BYTE,
I0OS_LEVEL_NO BYTE,
RESERVED WORD,
SLOT_O0_CONTENTS BYTE,
SLOT_1_CONTENTS BYTE,
SLOT_2_CONTENTS BYTE,
SLOT_3_CONTENTS BYTE)

END STRUCTURE

An interrupt service routine can then be attached to an option

s;ot interrupt letting the application deal with the option card
directly.

DOS call 8DH is the Slot Interru i i
Pt Service Routine -
entry parameters are: Artach The

reg C: 8DH
reg DE: pointer to ISR Control Block
where the ISR Control Block contains

byte 1 = slot number (C0,DO0,EQ0, or FQ cor-
responding to slots 0,1,2 or 3)
byte 2,3 - pointer to start of interrupt

gservice routine.

The address of the ISR i i 3
by the I0S. 1$ placed into the interrupt vector tabla

——
- e s e e e 0
- e Y e s ey By e

Spec. 50-30020490 = g o TTTTTeTmmmeeeeeo R
une 8, 1984

DOS CALLS — INTERRUPTS & TASKING - EXPANSION SLOTS

Dos call 8EH is the Slot Interrupt Service Routine Remove.
The parameters that must be passed to this routine are:

8EH
Slot number (C0,D0,E0,F0 corresponding ¢to
slots 0 to 3).

Reg C
Reg E

This routine disables interrupts from the slot and then removes
the address of the ISR from the interrupt vector table.

The applications programmer must know the identification codes
which are sent by the different option cards which the
application will be using. The programmer must also initialize
the interrupt hardware on the option card (if applicable).

——— . B b —
——— T e e S e e T e e) e e e . e e
e e S e — — . W 4 B o .
——— o —

Spec. 50-90020490 Page 2 - 42 June 8, 1984

DOS CALLS - HUMAN INPUT DEVICES

4.2.4 HUMAN INPUT

4.2.4.1 INTRODUCTION

This section explains how keyboard and joystick data may be
accessed through the I10S.

4.2.5.2 SPECIAL REY OPERATION

5€VCIﬂl KEUQ have 8pecial teserved functions and the 10g traps
and handles these keys:

EXIT OPERATION:
PAUSE OPERATION:
TV/NABU SWITCH:
SYM CPERATION:

The Exit Operation simply consists of jumping to location 0000H.
This will cause a system re-boot to occur. (See also the section
on XI085.)

The Pause operation sgtops the execution of the applications
Program. A LED on the NPC front bannel is turned on to indicate
that the NPC is in Pause mode. While paused, only the SYM, EXIT,
and PAUSE operations are interpreted. al1 other keys and human
interface inputs are ignored, Pause mode is quit either by the
reset operation or by another Pause operation.

The TV/NABU switch is used to switch between the external video
input and the NPC generated video. When the NPC is booted NPC
video is switched in. When the NPC is powered off, the hardware
ensures that the external video is switched in. At any time when
the NPC is operating the TV/NABU switch may be used to switch
between computer generated and external video sources,

For details as to what keycodes constitute the EXIT, PAUSE,
TV/NABU and SYM operations, see TABLE 1.

The 1IOS handles all SYM key operation. See section 4.2.5.5
for more information.

N v ek e = — i
-———_—-.-——_-.._-————-..—-._—.———-—-.--—._-.._—-.q-._-.--.._—-__-..-_.-_— ——— ———— -—

Spec. 50-90020490 Page 2 - 43 June 8, 1984

DOS CALLS - HUMAN INPUT DEVICES

PUT CHARACTER CODE TABLE HERE

v ———— T —— — — ——————— i — T P S T S Y oy St . S S Y A S B Sy S g Pt W S S Gt S v o et G W Wy W W S =

Spec. 50-90020490 Page 2 - 44 June 8, 1984

bos CALLS - HUMAN INPUT DEVICES

4.2.4.3 OBTAINING DATA FROM THE KEYBOARD

The keyboard device driver has two entry points which are set up
as standard serial device drivers. They are as follows:

The routine "HUMAN_INPUT: DEVICE_READY" can be called to see if a
particular keyboard device has data available. This call returns
0 if nothing is ready and some non-zero value if there is a
character ready. Note that the keyboard unit only sends joystick
data if the value changes from the previous reading. Also, the
keyboard unit "de-bounces"™ digital joystick data. This means that
if HUMAN_INPUT: DEVICE_READY returns TRUE for a particular joy-
stick port, the wvalue for that device is guaranteed to have
changed.

The parameter passing for the human interface is as follows:

HUMAN_INPUT: DEVICE_READY (call number AOH)
-returns a data ready indication for a specified human
interface input

-entry parameters:

C Register: AQ Hex

E Register: device location to be checked
~returned value:

A Register: 00 if device not ready

non-zero value if device is ready

HUMAN_INPUT: GET_DATA {(call number AlH)
—gets a data byte from a specified human interface input
~see section 3.3.7.1
-entry parameters:

C Register: Al Hex

E Register: device location to get data from
-returned value:

A Register: data input from human input device

T —— G ——
T ——— gt ——— e ey
N ——— —————
e T T ——

Spec. 50-90020490

" —— — —— -

Page 2 ~ 45 June 8, 1984

DOS CALLS - HUMAN INPUT DEVICES

Both routines pass the device location in the E register. The
following device locations are defined:

00H -Reinitializes the keyboard device driver by
making all devices "not ready" (throws away any
ready data) (Works with DEVICE_READY only)

01H -Keyboard

02H -Joystick 1

03H ~Joystick 2

FFH —returns the base address of the

current SYM key re-definition
table. (returns address in HL)
{Works with DEVICE_READY only]

The values returned from DOS call Al are either joystick data,
or keybocard data.

Joystick data uses the first five bits of the byte to
determine the joystick's new change of direction.

l direction

| | | ; left

| l___ - - down

| o right

up

fire button
not used
not used
not used

Keyboard data is sent as single 8 bit bytes, usually in an ASCII
format. There are however function keys which transmit special
byte values. Table 1 should be consulted.

e S AL A S AL D S SN . ST . T T T T M W S . W T T oy S ekl gy i sy e ey s S e S AP Y St S L —————— o Sy oy P ke, A .t

Spec. 50~90020490 Page 2 - 46 June 8, 1984

DOS CALLS ~ HUMAN INPUT DEVICES

4.2.4.4 Set SYM Table

The 1IO0OS performs all SYM key decoding. A 128 character look-up
table, is maintained if it has been defined by an application
program and passed to the I0S. Any key which is NOT release coded
may have its meaning changed by holding down the S¥YM key while
the key is pressed. A new key-code is chosen by doing a look-up
in the re-definition lookup table. The resulting value is then
passed on to the application program. If the SYM key is pressed
when there is no defined redefinition table, then the ASCII value
of the key pressed with the high bit set is passed on to the
application program.

SYM key re-definition is NOT performed on any key which is
release coded. Release codes are sent onto the application by the
device handler. Tt is up to the application to ignore them if
they are not desired.

The call SET_SYM_TABLE {(call number 91H) is used to set the S¥YM
redefinition table base address. The base address of the
redefinition table is passed as a parameter. If the address
passed 1is 0000H then any redefinition table currently in use is
freed, and the new redefinition consists of setting the high bit
in the ASCII code. The format of this call is as follows:

SET_SYM TABLE (call number 91H)
-used to set the SYM key Redefinition table
-entry parameters:
C Register: 91 Hex
DE Register: Pointer to new SYM key table
where the S¥YM KEY TABLE has the
following format:
128 Entries each one byte long

Entry 0 contains the
redefinition code of
keyboard input code 0 when
S5YM key is down. The

redefinition code is placed
in the keyboard buffer or
gueue.

Entry 1l contains the
redefinition code of
keyboard input code 1 when
SYM key 1is down.

—— i ————— e A ———
S L i P S T) By S B S B i e i e i e et s . s e it e e o B e B o e e o e B

Spec. 50-~%0020490 Page 2 - 47 June 8, 1984

DOS CALLS - HUMAN INPUT DEVICES

Entry 7FH contains the
redefinition code of
keyboard input code 1 when
SYM key is down. }

-returned value:
HL Register: 0ld SYM key table

The SYM Key Redefinition table is 128 bytes long. The
contents of this table are used to redefine or
translate the received ASCII character (values 0 to
7FH) into a different ASCII character. For example,
if the first entry in the table is 7FH (delete
character), and an ASCII 0 (ctrl @) is received, the
CTRL € will be replaced with the delete character.
See TABLE 1 for the Keyboard ASCII Code Chart. ‘

-— e e i > ——
— s St e e S Ay S —— " S S T Ty Sy S Mt G Ty S Y T L W et e S S ——

Spec. 50-90020490 Page 2 - 48 Junhe 8, 1984

DOS CALLS - VIDEO SCREEN DEVICE DRIVER

4.2.5 Video Screen Device Driver

In keeping with the standard for physical device drivers,

two entry points are provided for the Video Screen Device
Drivers. These are as follows:

VIDEQ_SCREEN: DEVICE_READY (call number A2H)
-returns a data ready indication for the video screen driver.
-entry parameters:
C Register: A2 Hex
-returned value:
A Register: 00 if device not ready
non-zero value if device is ready

VIDEQO_SCREEN: SEND_DATA (call number A3H)

-writes a character to the specified window
-entry parameters

C Register: A3 Hex

D Register: data to be output
-returned value:

A Register: 00 if device not ready

non~zero value if data was sent

-It will handle control characters: carriage return, line
feed, delete, backspace, form feed, and horizontal tabs.
The routine puts the character at the current cursor
position. Bit 7 is stripped off each ASCII character by
"anding™ with 7FH priocr to displaying. It will interpret
the control characters as follows:

LINE FEED: CONTROL J

If the cursor is on the bottom line of the window, the
window will scroll up one line and leave the bottom
line filled with SPACES and the cursor will drop
straight down into this blank line. If the cursor is
in the middle of the window, the cursor Jjust drops
down one line.

CARRIAGE RETURN: CONTROL M
The cursor will move to the first position of the
current line.

BACKSPACE: CONTROL H

The cursor moves back one position,. If the cursor-is
in the top-left position of the window, nothing
happens.

——————— o — - — —— o ——
e — o o Ty P S S . — T et S S Gt S S o S S S S W e S —— — ——— v —

Spec. 50-90020490 Page 2 - 49 June 8, 1984

DOS CALLS - VIDEO SCREEN DEVICE DRIVER

DELETE: 7FH
The cursor backspaces one character and places a SPACE
over the character.

FORM FEED: CONTROL L
The cursor is reset to the top-left position of the
window and the window is filled with SPACES.

BELL: CONTROL G
A short tone will sound.

VERTICAL TAB: CONTROL K
The cursor moves up one line. If the cursor is on the
top~most line, nothing will happen.

~

HOME: CONTROL
The cursor is reset to the top-left position of the
window.

OTHER CONTROL CHARACTERS:
Nothing will happen.

O S W i e e T — ——— = o S W T T S —— ——— o e T e i S o T W T B ———— - — ——"

Spec., 50-90020490 Page 2 - 50 June 8, 1984

DOS CALLS - PRINTER OUTPUT

4.2.6 Printer Output

The printer output devices allow for data to be sent to a printer
connected to the personal computer. There are two calls
available.

DOS call 0A4H determines whether the printer is ready to receive
data. A non zero value will be returned if the printer is not
ready.

DOS call OA5H will perform wait until the printer is ready and
then send the data to the printer. The appropriate register
values for the DOS calls A4 and A5 are:

PRINTER_OUTPUT: DEVICE_READY (call number A4H)

~returns a printer ready indication
—entry parameters:

C Register: A4 Hex

E Register: device location to be checked
~returned value:

A Register: 00 if device not ready

non~zero value if device is ready

PRINTER_OUTPUT: SEND_DATA {(call number A5H)
-writes a character to the printer
—entry parameters:
C Register: A5 Hex
E Register: Device location where data is to be
sent
D Register: Data to be output

EXAMPLE

The following 280 assembler example demonstrates how to print a
form feed on a printer.

FF EQU 0cC

START: LD C,0A4H :PRINTER OUTPUT
LD D,FF :LOAD THE DATA TO BE DISPLAYED
LD E,02H ;THE PRINTER IS DEVICE NUMBER 2
CALL 0008 +PRINT THE CHARACTER. IOS ENTRY
RET

—_____-_._.—....-.-.-----_____.___——_—__—_..—.-..q_.-.__——__——_—--—-mﬂ-q—--------.-.

Spec. 50-90020490 Page 2 ~ 51 June 8, 1984

4.2.7
4.2.7

—— -

Spec.

—— . ———
-—-.-.—.-_—---.-._——q..---..-..—-—_...._——_——--_

DOS CALLS - IO ROUTING

I/0 ROUTER
.1 Physical Device Identification

The physical devices are referred to by their physical
location rather than their function. The follow@ng
diagram indicates how a single byte is used to identify
a physical device in the NPC:

—— . — o oy T e S o —— ———————— o iy W WO Yo
————— — i ——p— T ——— T ————— ——— T —

l
e e DEVICE_NUMBER

I indicates the particular device
! number at a device location.

[Device number 0 is reserved.

| Numbering should start at 1

| and increase sequentially.

| A particular device number

! can indicate either an input

| or an output device, but NOT

! both.

I

---------------------------- DEVICE_LOCATION

For x=0

000 -at keyboard I/F

001 -at TMS9918A

010 -~at Printer

011 -at Sound Generator
106 -at NNI I/F

For x=1

000 -at expansion slot 0
001 -at expansion slot 1
010 -at expansion slot 2
01l -at expansion slot 3

--------------------------------- BOARD LOCATIONS

IF x=
0 -on processor board
-on expansion bus

Ehysicil devices are deemed by the NPC IOS to be one of two
sexes". These are serial-oriented and packet-oriented,
Serial-oriented devices are dealt with one character at g

time. These are devices such as th -
and the PRINTER. e TMS-9918A, the KEYBOARD

T o o e e e e e e e T~ g

50-80020490 Page 2 ~ 52 June 8, 1984

DOS CALLS - IO ROUTING

Packet oriented devices are dealt with a block cof data at a
time. Packets have a particular protocol associated with
them and are generally associated with mass storage devices
such as the NNI and floppy disks.

4.2.7.2 Logical Device Identification

The following logical devices are defined:

KEYBOARD: (input portion of CONSOLE) 0
SCREEN: (output portion of CONSOLE) 1
LIST: (output) 2
READER: (input device) 3
PUNCH: (output device) 4

4.2.7.3 1/0 Routing Entry Point

Assignments of physical devices to 1logical devices are
performed by using the I/O Router Entry Point. This call
only allows serial-oriented physical devices to be attached
to Logical devices. Mass-storage devices are handled
through the Segment Loader Interface. The ATTACH entry point
has the following format:

I/0_ROUTER: ATTACH (call number 8AH)

—— ey

Spec.

-attaches a particular physical device or mass storage
file to a logical device
-entry parameters:
C Register: 8A Hex
E Register: PHYSICAL DEVICE
D Register: LOGICAL_DEVICE

Where LOGICAL DEVICE is the byte value of a logical device
as identjfied in the section above and PHYSICAL-DEVICE is
the byte value of a physical device, as identified above,
This call will cause all subsequent I/0 to the logical

device to be performed by the physical device attached. This
call is available in the DOS.

—-—-—-—--——-—-—_-_—_—-—. ~—
—— i — —

5090020490 o T el

DOS CALLS - IO ROUTING

THIS PAGE LEFT INTENTIONALLY BLANK

-u—q—-.—.—_——-—...-..—_—--...-...-_....—«.-—-———_——q.----.-.—_——.—u.--—-..——_—-—-——————.—-——-——_—-———-—

Spec. 50-90020490 Page 2 - 54 June 8, 1984

BOS CALLS

4.3 Basic Operating Software (BOS)

This 1level of the operating system provides the key operating
control software for the NABU P.C.. It interfaces to the 1I/0
handlers, the Downloadable Operating Software and application
programs.

BOS Routines may be linked to the applications program at run
time by using the I0S DOS call number 90H (LINK_BOS_ROUTINES).

The application program is written with a jump table, with one
entry in the table for each low level BOS routine accessed. Each
entry is 3 bytes long. The exact structure is:

TYPE
ANENTRY: TYPE ARRAY[1..3] OF BYTE:;
VAR
BOS_LINK_TABLE: RECORD OF
LENGTH: BYTE;
ENTRYI[l. .LENGTH]I ANENTRY;
END;

The exact format of the I0OS DOS call is:

LINK_BOS_ROUTINES {call number 90H)
~used to link BOS Routines to an
application program
~entry parameters:
C Register: 90 Hex
DE Register: Pointer tc a BOS_LINK_TABLE
-is not re-entrant

The £first byte of each entry contains the number o¢f the BOS
routine to be linked to. When the LINK_BOS_ROUTINES call is made,
the 1IOS will go through the link table, placing the appropriate
absolute jump instruction 1into each entry to link it to the
desired routine. The application program can then jump directly
through the link table to the desired routine.

Example:
Before DOS Call 90H | After DOS Call 90H
LNKTAR: DB 2 :2 entries | DB 2

DB 02H :BOS Call - CRBEG i JP

DW g | <CRBEG>

DB 03H :BOS Call - CREND] JP

DW 0 | <CREND>

——— ———— T G Tt o o T e g e o T T —— " — T — — Tt S ——— — ——— T — T ot S f— — T — T ——— - -

Spec. 50-90020490 Page 3 - 1 June 8, 1984

BOS CALLS

The BOS routine numbers (HEX) are assigned as follows:

00 VREGRD 01 VTABRD
02 CRBEG 03 CREND
04 VREGWR 05 VSTATR
gé6 VNAMET 07 VCOLRT
08 VPTRNT 09 VSATRT
QA VSPRST OB VBLKON
oC VBLKOF oD VRAMRD
0E VRAMWR OF FASTLS
10 FASTLD 11 FASTDS
12 FASTDU 13 VRAMLS
14 VRAMLD 15 VRAMDS
16 VRAMDU 17 SPMARK
18 SPMOVE 19 SPCOLR
ia SPNAME 1B RPATRN
1C LPATRN 1D CHADR
1E VEFILL 1F XYLOC
20 PUTPAT 21 GETPAT
22 SETMSG 23 PUTMSG
24 GETMSG 25 VSETTX
26 VSETG1 27 VSETG2
28 VSETSP 29 MULS8S
2A - 34 Reserved

35 AUDRD
36 AUDWR 37 CLKPR
38 HOINT 39 CREGW
3A VMOVI 3B VMOVD
3C FASTRD 3D FASTWR

3E SETMEK

""" I95a ®

Spec. 50-90020490 Page 3 - 2 June 8,

BOS CALLS

The BOS calls use several dedicated data structures. They are
defined as follows and are referred to in the specific BOS

routines.

The MESSAGE_CONTROL_BLOCK consists of :

X LOCATION on screen (byte)
Y LOCATION on screeen (byte)
LENGTH OF MESSAGE (byte)
DATA TC BE WRITTEN (byte(s))

The PATTERN- DEFINITION_TABLE consists of:

$# OF ENTRIES IN TABLE ;1 BYTE
BLOCK 1 :character 1
BLOCK 2 :character 2
BLOCK N scharacter N
EACH BLOCK CONTAINS:
OF PATTERN :1 BYTE
PATTERN DEF. +8 BYTES WICH REPRESENT THE DEFINITION.

Ay e Ry o S i S A A e S e S e Y S S A T S s —— A e SA M S S S — " T T o e o St Sk S —— S ——

Spec. 50-90020450 Page 3 - 3 June 8, 1984

BOS CALLS

ROUTINE NAME: AUDRD

FUNCTION:
Read the audio chip

DESCRIPTION:
This routine reads from the GI complex sound dgenerator.
The register to be read is passed in C and the data is
returned in A

PARAMETERS PASSED:
C Reg: Number of sound register to be read

PARAMETERS RETURNED:
A Reg: Value of sound register read

REGISTERS USED:
Flags, A, C
2 Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 35 - Re-entrant

COMMENTS AND WARNINGS:
This call can be used by the application program to read
the current status of the audio chip's registers. There
are fourteen audioc registers uses by the application. For
more information on the audio chip, see Section 3.3.

RELATED ROUTINES:
AUDWR - write to the audio chip

. T — e i e B Sk e kg o AR U s ey bl e o M U o M T e AL S S A A L S B S A M S S S L o - - T —

Spec. 50~90020490 Page 3 - 4 June 8, 1984

BOS CALLS

ROUTINE NAME: AUDWR

FUNCTION:
Write to the audio chip

DESCRIPTICN:
This routine writes to the GI complex sound generator used
by the NABU PC. The register to be written to is passed in
C and the data to be written is passed in E. The routine
prevents writes to registers OE or OF.

PARAMETERS PASSED:
C Reg: Number of sound register to be written to
E Reg: Data to be written

PARAMETERS RETURNED:
NONE

REGISTERS CLOBBERED:
A, C, E, Flags
2 Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 36 - Re~entrant

COMMENTS AND WARNINGS:
This routine writes to a specified register within the
audio chip. Fourteen registers are used for sound
generator. For more information on programming sound see
section 3.3,

RELATED ROUTINES:
AUDRD - read from the audio chip

———— — A ey e ey = Ty e NER oA W WY M S S T S S S T S R e M o e ey = W W W = e P T T W WS T W W W W Y S —— W ———————

Spec. 50-9%0020490 Page 3 = 5 June 8, 1984

BOS CALLS

ROUTINE NAME: CHADR

v D e e R e S T o o Mt S o S

FUNCTION:
Return VRAM address for a particular pattern

DESCRIPTION: .
This routine will return the VRAM address for a particular
pattern in a pattern table. The pattern number is passed
in the C register, the address returned in the HL pair.
The base address of the pattern table is passed in DE.

PARAMETERS PASSED:
C pattern number
DE base address of PATTERN_DEF_TAB

it n

PARAMETERS RETURNED:
HL = address of pattern

REGISTERS USED:
BC,HL
Stack use = 2 bytes

ROUTINE TYPE GLOBAL - BOS No. 1D - Re-entrant

CCMMENTS AND WARNINGS:
This routine allows the application toc obtain the exact
address in Video RAM (VRAM), where a given character
resides. It is assumed that the pattern table has
already been defined and the base address is known by the

application.
RELATED ROUTINES:
VPTRNT - set pattern table base address
VRAMLD - load Video RAM

S S S T Tt it Ty W Wt S A T W v W S S —— T T - o o T el o B o o ey e . T S S S —— A —— T S S i T S T T v S

Spec. 50-90020490 Page 3 - 6 June 8, 1984

BOS CALLS

ROUTINE NAME: CLKPR

FUNCTION:
Change processing of real time clock functions

DESCRIPTION:

This routine 1is used to control processing of real time
functions. Three functions may be controlled - clock user

task handling, screen driver cursor flashing and real time
clock updating.

These functions may be turned on or off at will by the
applications program. This might be done to get more
processor resources, or to get special control of these

functions, Each function 1is controlled by a bit in a
control word as shown below:

A L o i S T — T — T W W T T T S ——— T — T — -

——-— Real Time Clock
_______ Cursor Flashing

----------- Clock Task Dispatching

----------------------- Not Used

PARAMETERS PASSED:
E Reg: Data to indicate state to set
1 = process 0 = turn off
C Reg: Mask Data. Bits in E which are to actually
be considered are set in the mask.

PARAMETERS RETURNED:
A Reg: New value of control word

REGISTERS USED:
A, C, Flags
4 Bytes of stack used

ROUTINE TYPE GLOBAL - B0OS No. 37 ~ Re-entrant

COMMENTS AND WARNINGS:

Of course altering real time processing can cause problems.
Use with caution!

T e e e . Tt ————————— —— —————————————— —— —— ———— o e o s o i o B Ay L s S —— ———

Spec. 50~90020490 Page 3 - 7 June 8, 1984

BOS CALLS

ROUTINE NAME: CRBEG

FUNCTION:
Critical region begins (disable interrupts)

DESCRIPTION:

This routine is used to delineate the beginning of a
"critical region"™. A critical region is any section of code
which, because it uses software timing, accesses data used
by another task, or is not reentrant and can be called by
more than one task, must run with interrupts disabled. Note
that critical regions must be made as short as possible, or
keyboard strokes and clock ticks may be lost.

PARAMETERS PASSED:
None

PARAMETERS RETURNED:
None

REGISTERS USED:
None
2 Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 2 - Re-entrant
COMMENTS AND WARNINGS:

All interrupts are disabled by this call. Long critical
regions may result in loss of clock ticks or keyboard

data.
NOTE: 1. critical regions may be nested safely about 100
deep.
2. the number of CRENDs must match the number of
CRBEG's

RELATED ROUTINES:
CREND - critical region ends

T e (e T U S S S, e i WS ks A S W) G e e S b T — o T . Wn S ey fom iy e S rm " " e ey 47 Wiy e

Spec. 50-90020490 Page 3 - 8 June 8, 1984

BOS CALLS

ROUTINE NAME: CREGW

FUNCTION:
Write to the hardware control register

DESCRIPTICN: ,
This routine is used to write the control register port in
the NABU P.C. The control register port is a write-only
register with the following format:

e e |y Ny p——

. —— S — ————————————— Ty s . o s W W

| --— ROM Select

! | { |

! [| |

! | | i

| f | S I B Video Switch

I [| |

J ! I I et Lt Data Strobe (printer)

i | I !

| | | [emm———eeeee Green Front Panel LED (Check)
i | | e Red Front Panel LED (Alert)

! I ek Yellow Front Panel LED (Pause)
! !

| mremmmmeem e e NOT USED

|

------------------------------- NOT USED

PARAMETERS PASSED:
E Reg: Data to be Written to Port
C Reg: Mask Data. Bits in E which are to actually
be written are set in the mask.

PARAMETERS RETURNED:
A Reg: New value of control register

REGISTERS USED:
A, C, Flags
4 Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 39 - Re-entrant

COMMENTS AND WARNINGS:
Altering anything other than the Video Switch and the yellow
and green alerting LED may cause a small disaster. Use with

care,
Toggling the Video switch allows the application to switch
the signal to the T.V. from the television broadcast to the

video chip output and back again.

T ——— — T T Tt it B by e B S W e S — T T —— = U —— T Sl o e S —— " —— -

Spec., 50-90020490 Page 3 - § June 8, 1984

BCS CALLS

ROUTINE NAME: CREND

FUNCTION:
Critical region ends

DESCRIPTION:

This routine is used to delineate the end of a "critical
region". A critical region is any section of c¢ode which,
because it uses software timing, accesses data used by
another task, or is not reentrant and can be called by more
than one task, must run with interrupts disabled. Note that
critical regions must be made as short as possible, or
keyboard strokes and clock ticks etc. may be lost. A CREND
must be used to end a critical region started by a CRBEG.

PARAMETERS PASSED:
None

PARAMETERS RETURNED:
None

REGISTERS USED:
None
2 Bytes of stack used

ROUTINE TYPE GLCOBAL -~ B0OS No. 3 - Re-entrant
COMMENTS AND WARNINGS:

See "Critical Regions™ in the section "DOS Calls -
Interrupts and Tasking."

NOTE 1., «critical regions may safely be nested 100
deep.
2. the number of CREND's must match the number of
CRBEG's.

RELATED RCUTINES:
CRBEG - critical region begins

. —— . e - Ty A e e i ey e e Sy ——— —————— T T — T —— f—— o Tt o o o o T Mt S M o . W g g i . M g g ey ey ot M S

Spec. 50-980020490 Page 3 - 10 June 8, 1984

BOS CALLS

ROUTINE NAME: FASTDS

FUNCTION:
Read a string of bytes from the VRAM,

DESCRIPTION:

This routine is used to read a string of bytes from the
VRAM. The length of the data to be read is passed in reg
BC and the memory address where the data is to be placed
is passed in reg DE. The start address in VRAM is passed
in HL. Since 16 bit pointers are used, anywhere from 0 to
16K of data may be transfered with this routine. The
entry point FASTD8 may be used if the length of data is
less than 256 bytes and the length is passed in the C reg
only. This routine keeps interrupts (except keyboard
interrupts) disabled for the duration of the VRAM dump.
This makes the dump very fast, but susceptable to loss of
clock ticks or other interrupts.

PARAMETERS PASSED:
C Reg: Length of data block to be read
DE Reg: Start of area to dump to in RAM
HL Reg: Start of source area in VRAM

PARAMETERS RETURNED:
NCNE

REGISTERS USED:
A, BC, DE, HL, Flags
6 Bytes of Stack Used

ROUTINE TYPE GLOBAL - BOS No. 11 - Re-entrant
COMMENTS AND WARNINGS:

This routine keeps interrupts (except keyboard interrupts)
disabled for a long period of time. Interrupts may be

lost!
RELATED ROUTINES:
FASTDU - fast dump
VRAMDS - dump Video RAM (up to 256 bytes)
VRAMDU - dump Video RAM

——— et i v — T —— ————— T ——— ——————] — - — . ——— —— Sy i S U T o o W Wt S s T T i

Spec. 50-90020490 Page 3 - 11 June 8, 1984

BOS CALLS

ROUTINE NAME: FASTDU

A T S} S i e WA W i S Sy S S

FUNCTION:
Read a string of bytes from the VRAM.

DESCRIPTION:

This routine is used to read a string of bytes from the
VRAM. The length of the data to be read is passed in reg
BC and the memory address where the data is to be placed
is passed in reg DE. The start address in VRAM is passed
in HL. Since 16 bit pointers are used, anywhere from 0 to
16K of data may be transfered with this routine. This
routine keeps interrupts (except keyboard interrupts)
disabled for the duration of the VRAM dump. This makes the
dump very fast, but susceptable to loss of clock ticks or
other interrupts. ‘

PARAMETERS PASSED:
BC Reg: Length of data block to be read
DE Reg: Start of area to dump to in RAM
HL Reg: Start of source area in VRAM

PARAMETERS RETURNED:
NONE

REGISTERS USED:
A, BC, DE, HL, Flags
6 Bytes of Stack Used

ROUTINE TYPE GLOBAL - BOS No. 12 - Re-entrant

COMMENTS AND WARNINGS:
This routine keeps interrupts (except keyboard interrupts)
disabled for a long period of time. Interrupts may be
lost!

This will affect tasks attached to the clock, and software
timing if a very large number of bytes are being read.

RELATED RCUTINES:

FASTDS - fast dump (less than 256 bytes)
VRAMDS - Video RAM dump (less than 256 bytes)
VRAMDU - Video RAM dump

I ————————————— AP S P P gD R KR ed e ndeadee i

Spec. 50~50020490 Page 3 - 12 June 8, 1984

BOS CALLS

ROUTINE NAME: FASTLS

FUNCTION:

write a string of bytes to the VRAM.

DESCRIPTION:

This routine is used to write a string of bytes to the
VRAM, The length of the data to be written is passed in
reg BC and the memory address of the start of the data is
passed in reg DE. The start address in VRAM is passed in
HL. Since 16 bit pointers are used, anywhere from 0 to 16K
of data may be transfered with this routine. The entry
point FASTL8 may be used if the length of data is less
than 256 bytes and the length is passed in the C req only.
This routine keeps interrupts (except keyboard interrupts)
disabled for the duration of the VRAM load. This makes
the 1load very fast, but susceptable to the loss of clock
ticks or other interrupts.

PARAMETERS PASSED:

C Reg: Length of data block to be written

DE Reg: Start address of data block in RAM
HL Reg: Destination of data in VRAM

PARAMETERS RETURNED:

NONE

REGISTERS USED:

A, BC, DE, HL, Flags
6 Bytes of Stack Used

ROUTINE TYPE GLOBAL - BOS No. OF - Re-entrant

COMMENTS AND WARNINGS:

This routine keeps interrupts (except Kkeyboard inter
rupts) disabled for a long period of time. Interrupts may
be lost!

RELATED ROUTINES:

Spec.

FASTLD - fast load

VRAMLS ~ load Video RAM (up to 256 bytes)

VRAMLD - load Video RAM

50-90020490 Page 3 - 13 June 8, 1984

BOS CALLS

ROUTINE NAME: FASTLD

FUNCTION:
Write a string of bytes to the VRAM.

DESCRIPTION:

This routine is used to write a string of bytes to the
VRAM, The length of the data to be written is passed in
reg BC and the memory address of the start of the data is
passed in reg DE. The start address in VRAM is passed in
HL.. Since 16 bit pointers are used, anywhere from 0 to 16K
of data may be transfered with this routine. This routine
keeps interrupts (except keyboard interrupts) disabled for
the duration of the VRAM load. This makes the locad very
fast, but susceptable to the loss of clock ticks or other
interrupts.

PARAMETERS PASSED:
BC Reg: Length of data block to be written
DE Reg: Start address of data block in RAM
HL. Reg: Destination of data in VRAM

PARAMETERS RETURNED:
NONE

REGISTERS USED:
A, BC, DE, HL, Flags
6 Bytes of Stack Used

ROUTINE TYPE GLOBAL - BCS No. 10 - Re-entrant

COMMENTS AND WARNINGS:
This routine keeps interrupts ({(except keyboard inter
rupts) disabled for a long period of time. Interrupts may
be lost!

This will affect tasks attached to the ¢lock, and software
timing if a large number of bytes are being read.

RELATED ROUTINES:

FASTLS - fast load (less than 256 bytes)
VRAMLS - load video RAM (less than 256 bytes)
VRAMLD - load Video RAM

o ————— T T ———— T T — o ot oy M S S Wy Sy G e A S T ey S) e A s R Bt S My S S S M St St S S W S o —— —

Spec. 50-90020490 Page 3 - 14 June 8, 1984

BOS CALLS

ROUTINE NAME: ASTRD

T o b o e o ————————— T ———

PUNCTION:
Read a single byte of data from TMS9%18A VRAM -~ unprotected

DESCRIPTION:
This routine is used to read a single byte of data from
TMS9918A VRAM, The address to be read is passed in reg BC,
the value of the VRAM at that lcocation is returned in reg A.
This routine 1is not protected using the CRBEG and CREND

routines.

PARAMETERS PASSED:
BC Reg: Location of VRAM to be read from

PARAMETERS RETURNED:
A Reg: Contents of VRAM at Location

REGISTERS USED:
A,F
4 bytes of stack used
ROUTINE TYPE GLOBAL -~ BOS No. 3C - Re-entrant

COMMENTS AND WARNINGS:
USE AT YOUR OWN RISK!!

RELATED ROUTINES:

FASTWR - fast write of one byte to Video RAM
VRAMRD -~ read one byte from Video RAM
VRAMWR - write one byte to Video RAM

———— —— oy ok i T T Ty T T S . T T — —— T - DA S T G G S Gt G S S S Tt G G Wme W e s Ay — S

Spec. 50-30020490 Page 3 - 15 June 8, 1984

BOS CALLS

ROUTINE NAME: FASTWR

FUNCTION:
Write a single byte of data to TMS9918A VRAM - unprotected

DESCRIPTION:
) This routine is used to write a single byte of data from
TMS9918A VRAM The address to be written is passed in reg BC.
The data to be written is passed in Register E. This
routine is not protected using the usual CRBEG and CREND.

PARAMETERS PASSED:
BC Reg: Location of VRAM to be written to
E Reg: Data to be written

PARAMETERS RETURNED:
NONE

REGISTERS USED:
A, BC, flags
4 bytes of stack used
ROUTINE TYPE GLOBAL - BOS No. 3D - Re~entrant

COMMENTS AND WARNINGS:
USE AT YOUR OWN RISK!!

RELATED ROUTINES:

FASTRD - fast read of one byte of Video RAM
VRAMRD - read one byte from Video RAM
VRAMWR - write one byte to Video RAM

————— Y — A o _— T o ey S T Sy = e S i L " St T SA Vot Wit St ST W W WYY W S e S i e S S s W S s S Tt S B S 2

Spec. 50-90020490 Page 3 - 16 June 8, 1984

BOS CALLS

ROUTINE NAME: GETMSG

FUNCTION:
Get message from screen

DESCRIPTION:
GETMSG gets a string of patterns from the screen. A
pointer to a MESSAGE_CONTROL_BLOCK is passed in reg BC.

PARAMETERS PASSED:
BC = pointer to message control block

PARAMETERS RETURNED:
None

REGISTERS USED:
A,B,C,D,E,F,H,L
2+ Bytes of stack used

RCUTINE TYPE GLOBAL - BOS No. 24 - Re-entrant

COMMENTS AND WARNINGS:
The message control block is set up in RAM by the
application program.

RELATED RQUTINES:
PUTMSG - put message on the screen

T ——— T S S~ ot S T S S ol S e e T Sy W e e S T W WS T BT B T B S S S B S S S S S S G T Bt e S S S S A i

Spec. 50-90020490 Page 3 - 17 June 8, 1984

BOS CALLS

ROUTINE NAME: GETPAT

S Sk R S s e o A Sy e T vy — . —

FUNCTION:
Get pattern number for any X-Y location on screen

DESCRIPTION:
GETPAT gets a pattern number from a specific X-Y 1location
on the screen. The pattern number is returned in the A
register, the X location passed in the C register, and the
Y location passed in the E register.

PARAMETERS PASSED:
C X location
E Y location

I A

PARAMETERS RETURNED:
A = pattern number

REGISTERS USED:
A,BC,DE,HL
Stack use = 6 bytes

ROUTINE TYPE GLOBAL - BOS No. 21 - Re-entrant

COMMENTS AND WARNINGS:
NOTE: The screen nmust be set up already. i.e. pattern
table, sprite tables, colour table, and attribute table.

RELATED ROUTINES:
PUTPAT - put a pattern on the screen.

T i Ay G —————— T e T . —— "t S ——— i W] T i) ot o S Gt T T o

Spec. 50-~90020490 Page 3 - 18 June 8, 1984

BOS CALLS

ROUTINE NAME: HOQINT

S . e e e s e o — o

DESCRIPTION:

Initializes systems on the NARU PC, Calls all initializa-
tion routines for all devices and drivers, sets the control
register of the NABU PC, and initializes the interrupt
mask.

PARAMETERS PASSED: None.

PARAMETERS RETURNED: None.

REGISTERS CLOBBERED: ALL

ROUTINE TYPE GLOBAL - BOS No. 38 -~ Re-entrant

COMMENTS AND WARNINGS:

This routine 1is not usually needed by an application
program.

A s T Wi i S e W T S T W S T T . —— T — — T ————r — -y —— -~ o P -y Wot S ———

Spec, 50-90020490 Page 3 - 19 June 8, 1984

BOS CALLS

ROUTINE NAME: LPATRN

v ——— g S S " St Y o ————

FUNCTION:
Load pattern definitions into VRAM memory

DESCRIPTION:
LPATRN loads pattern definitions into a VRAM pattern table.
The patterns to be loaded are put into a

PATTERN _DEFINITION_TABLE, which is described below. A
pointer to the PATTERN _DEFINITION_TABLE is passed in the BC
register. The base address of the pattern table is passed
in DE.

PARAMETERS PASSED:
BC = pointer to PATTERN_DEF_TAB
DE = Base address of table

REGISTERS USED:
AIBICpoEpF:H;L
2 Bytes of stack used

ROUTINE TYPE GLOBAL ~ BOS No. 1C - Re-entrant
COMMENTS AND WARNINGS:

This routine can be used to load pattern definitions from
RAM into Video RAM (VRAM). The base address of the table
in VRAM to which the pattern definitions are going must
already be established i.e. base address set. The

pattern table, sprite definjtion table, and the colour
table can be loaded with this routine.

RELATED ROUTINES:
RPATRN - load pattern definitions for pattern table

S ——— —— o — ————— T ——r— o A Y — i Sy A S ———— - s s o P A i L —— T oy e S o T T —_

Spec. 50-90020490 Page 3 - 20 June 8, 1984

BOS CALLS

ROUTINE NAME: MULS8S

S S D S W Y T YR W L -

FUNCTION:
Multiply two eight bit numbers

DESCRIPTION:
MUL88 multiplies two 8 bit numbers together to yield a 16
bit result. The numbers to be multiplied are passed in the
C and E registers, the answer is returned in both HL and BC

PARAMETERS PASSED:
C = multiplicand
E = multiplier

PARAMETERS RETURNED:
BC result
HL result

REGISTERS USED:
BC,DE,HL
Stack use = 0

ROUTINE TYPE GLOBAL =~ BQOS No. 29 - Re-entrant

COMMENTS AND WARNINGS:
None

——— — T oy T —— ————————— - — T — o ——— T — . SV — - Yty S S S — W

Spec. 50-90020490 Page 3 - 21 June 8, 1984

BOS CALLS

ROUTINE NAME: PUTMSG

— W s o S fare S T s P —— — i -

FUNCTION:
Put message on screen

DESCRIPTION:
PUTMSG places text on the screen. A pointer to a
MESSAGE_CCNTROL_BLOCK is passed in the BC registers.

PARAMETERS PASSED:
BC = pointer to message control block

PARAMETERS RETURNED:
None

REGISTERS USED:
A,B,C,D,E,F,H,L
2+ Bytes of stack used

ROUTINE TYPE GLOBAL - BQOS No. 23 - Re-entrant
COMMENTS AND WARNINGS:

This routine assumes that a graphics or text mode, and
pattern tables are defined. It also assumes that the
pattern table loaded in Video RAM has an ASCII character
set loaded into the appropriate locations within the
pattern table.

RELATED ROUTINES:
GETMSG ~ get a message from the screen

A -y e .
T —— et e e e

Page 3 - 22

June 8, 1984

BOS CALLS

ROUTINE NAME: PUTPAT

FUNCTION: _
Put pattern at any X-Y location on screen

DESCRIPTION: .
PUTPAT places any pattern definition at a specific X-¥
location on the screen. The pattern number is passed in L
register, the X 1location in the C register, and the ¥
location in the E register.

PARAMETERS PASSED:

C = X location on screen
E = Y location
L = pattern number

PARAMETERS RETURNED:
None

REGISTERS USED:
BC,DE,HL
Stack use = 6 bytes
ROUTINE TYPE GLOBAL - BOS No. 20 - Re-entrant

COMMENTS AND WARNINGS:

The graphics or text mode must already be defined before
this routine is called. The pattern tables must also be
set up (base addresses set, and pattern definitions

loaded).
RELATED ROUTINES:
GETPAT - get pattern number for an X-Y screen
location
SpeC. 50-905.2- ------------------------------- e e ——————
0490 Page 3 - 23 o ooTTTmmseeeel

BOS CALLS

ROUTINE NAME: RPATRN

e ey S T W —— o S = S} — g o e s

FPUNCTION:
Load pattern definitions into screen pattern table

DESCRIPTION:
RPATRN loads pattern definitions into the screen's pattern
table. A pointer to a PATTERN_DEFINITION_TABLE is passed
in reqgister BC. The PATTERN_TABLE address is assumed to be
at VPTRNAD.

PARAMETERS PASSED:
BC reg = pointer to PATTERN_DEF_TAB

EARAMETERS RETURNED:
None

REGISTERS USED:
A,B,C,D,E,F,H,L
2+ Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 1B -~ Re~entrant

COMMENTS AND WARNINGS:
It is assumed the base address of the pattern table
(VPTRNAD) has already been set.
VPTRNAD is defined and set using BOS routine VPTRNST.

RELATED ROUTINES:
LPATRN - load pattern definitions into Video RAM

S — —— B B oy Pt P e e B . e i P DAL e W S . e S e e B S T T B e S e e 0 o T B W S S o T — T ———— i o W T o W s W

Spec. 50-900204590C Page 3 - 24 June 8, 1984

BOS CALLS

ROUTINE NAME: SETMSG

T — o o — o —— W Y W ———

FUNCTION:
Set up screen message

DESCRIPTION:
SETMSG sets up the VDP and all parameters according to
MESSAGE_CONTROL_BLOCK. The user may then load or dump to
VRAM, and the patterns will be placed appropriately. The
pointer to the message control block is passed in the BC
register pair. The user should use VRAMLS or VRAMDS
immediatley after this.

THE A REGISTER CONTAINS THE TYPE OF SETMSG. O
1

FOR READ
FOR WRITE

o

PARAMETERS PASSED:
BC = pointer to MESSAGE_CONTROL_BLOCK

PARAMETERS RETURNED:

C = Length of message
DE = Pointer to data to be read/displayed.
HL = VRAM address to read/write.

REGISTERS USED:

A,BC,DE,HL

Stack use = 6 bytes
ROUTINE TYPE GLOBAL - BOS No. 22 ~ Re-entrant
COMMENTS AND WARNINGS:

The routine PUTMSG is made up of SETMSG and VRAMLS. SETMSG
should be used by the application program for dumping VRAM
contents into RAM.

RELATED ROUTINES:

PUTMSG - put message on the screen
VRAML 8 - load up to 256 bytes into Video RAM
VRAMDS - dump up to 256 bytes into RAM

s e S T ———— i - —— T 7Y T —— T 7 . ——— ——— A —] ——_— g) S A ————— -

Spec. 50-90020490 Page 3 ~ 25 June 8, 1984

BOS CALLS

ROUTINE NAME: SETMSK

—— e S S S e e S W A P S s S — T iy ———

FUNCTION:
Write hardware interrupt control register and mask.

DESCRIPTION:
This routine is used to write or set the interrupt control

register port in the NABU PC. The control register is a
write-only register with the following bit format:

——— ——— —— — — ——— i T S S —— ——— " —— A Vi S O ot

D e Wy S S —— T S T — — i ——— — —— o — Y oy Sy S

--=~ Slot 4 Interrupt

——————— Slot 3 Interrupt
----------- 8lot 2 Interrupt
--------------- Slot 1 Interrupt
___________________ Clock Interrupt

----------------------- Keyboard Interrupt

--------------------------- Adaptor Tx Interrupt

——————————————————————————————— Adaptor Rx Interrupt

PARAMETERS PASSED:
E Reg: Data to be written to the port.
C Reg: Mask Data. Bits in E that are to actually
be written are set in the mask.

PARAMETERS RETURNED:
A Reg: Previous value of the control register.

REGISTERS USED:
A, C, Flags
4+ Bytes of stack used

ROUTINE TYPE GLOBAL - B0OS No. 3EH - Non Re-entrant
COMMENTS AND WARNINGS:

The implications of playing with the interrupt control
register are considerable. Use with caution.

-—.._.__-..-.—-—.__...—__._._-———-—_.—.-.-——-—————.....--._-.———---—.—-—._-.—-._-4—..--—_——_._-..--———

Spec. 50-90020490 Page 3 - 26 June 8, 1984

BOS CALLS

ROUTINE NAME: SPCOLR

————— T T W S W B S S S e -

FUNCTION:
Set the colour of a sprite.

DESCRIPTION:
This routine is used to set the colour of a sprite. The
sprite number is passed in register C and the new sprite
colour is passed in register E.

PARAMETERS PASSED:
C Reg: Number of sprite to change colour of
E Reg: Number of new colour

PARAMETERS RETURNED:
NONE

REGISTERS USED:

A, BC, DE, HL, Flags

6 bytes of stack used
ROUTINE TYPE GLOBAL - BOS No. 19 - Re-entrant
COMMENTS AND WARNINGS:

NOTE that the colour, the sprite location (SPMOVE) and
the sprite pattern (SPNAME) must all be called before a
sprite appears on the screen.

RELATED ROUTINES:

SPMOVE - move sprite
SPNAME - assign pattern definition to sprite
SPMARK - mark last sprite

i e ———— " —— —
— i S S S Ty ——— ——— W o S —— Ty A B Sk e e Sl T Wt Sy W S S Y — A4S ————

Spec. 50-900204650 Page 3 - 27 June 8, 1984

BOS CALLS

ROUTINE NAME: SPMARK

L . —— i — — . ———— — — T ——

FUNCTION:
Mark the end of a sprite attribute table

DESCRIPTION:
This routine is used to mark the end of a sprite attribute
table. The number of the sprite to be marked (ie. the
sprite AFTER the last sprite) is passed in the C register.

PARAMETERS PASSED:
C Reg: Number of sprite to be marked

PARAMETERS RETURNED:
NONE

REGISTERS USED:

A, BC, DE, HL, Flags

6 Bytes of stack used
ROUTINE TYPE GLOBAL -~ BOS No. 17 - Re~entrant
COMMENTS AND WARNINGS:

NOTE: If a sprite pattern is defined on the sprite number
that was marked by this routine, the sprite mark is
effectively removed.

RELATED ROUTINES:

SPMOVE - move sprite
SPCOLR - set sprite colour
SPNAME - assign pattern definition to sprite

— - —— T —— T G Ty - S i S S Tk T S e S T A e A Sy SES Sy S S S W S S S ey M fa Sy S A S S MR wm M ——

Spec. 50-80020490 Page 3 —~ 28 June 8, 1984

BOS CALLS

ROUTINE NAME: SPMOVE

FUNCTION:
Move a sprite on the display.

DESCRIPTION:
This routine is used to move a sprite on the display. The
new X location is passed in L, the new Y location is passed
in E and the number of the sprite to be moved is passed in
register C.

PARAMETERS PASSED:
C Reg: Number of sprite to be moved
E Reg: New Y location
L Reg: New X location

PARAMETERS RETURNED:
NONE

REGISTERS USED:
A, BC, DE, HL, Flags
6 Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 18 - Re-—-entrant

COMMENTS AND WARNINGS:
This routine is also used to define the first location of
a sprite.
NOTE: The c¢olour, and pattern must also be defined to
have the sprite appear on the screen.

RELATED ROUTINES:

SPMARK - mark the last sprite being used
SPCOLR - set sprite colour ‘
SPNAME - set sprite pattern definition

————— ——— ———— ——— . — A T A —— S (it o S S S T it T ——— — —— Y T t—— . i Wi Sy gy S o S A

Spec. 50-90020490 Page 3 - 29 June 8, 1984

BOS CALLS

ROUTINE NAME: SPNAME

FUNCTION:
Set the pattern name associated with a sprite.

DESCRIPTION:
This routine is used to set the pattern name associated
with a sprite. The sprite number is passed in register C
and the new sprite pattern name is passed in register E,.

PARAMETERS PASSED:
C Reg: Number of sprite to change pattern of
E Reg: Number of new pattern

PARAMETERS RETURNED:
NONE

REGISTERS USED:
A, BC, DE, HL, Flags
6 bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 1A - Re-entrant

COMMENTS AND WARNINGS:
NOTE: 1. The pattern name is the pattern which resides in
the sprite pattern table in Video RAM.
2. The colour and the location of the sprite must
be defined before the sprite will appear on the
screen.

RELATED ROUTINES:

SPMARK - mark the last sprite being used
SPCOLR - set the colour of the sprite
SPMOVE - set the location of the sprite

——— ——— i o S —— T — —— —— - T T Ay dlll o dy Sy SEA AP WY S S S W S G W o O M GRS T W e e WEr A e e Sy S S ERL S s —

Spec. 50-900204950 Page 3 - 30 June 8, 1984

BOS CALLS

ROUTINE NAME: VBLEKOF

FUNCTION:
Unblanks (turns on) the TMS9918A video display.

DESCRIPTION:

This routine unblanks (turns on) the TMS9918A video
display. It requires no parameters.

PARAMETERS PASSED:
None

PARAMETERS RETURNED:
None

REGISTERS USED:
A, BC, E, HL, Flags
4 bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 0C - Re—entrant

COMMENTS AND WARNINGS:
The definition of the screen, 1i.e. mode, patterns etc,
should be done before unblanking the screen. When a mode
is selected be it TEXT, GRAPHICS 1, or GRAPHICS 2, the

screen 1is "blanked"™ and remains blank until the VBLKCOF
routine "unblanks" it.

RELATED RCOUTINES:

VBLEKON - blank the video display
VSETTX - set to TEXT mode

VSETGl - set to GRAPHICS 1 mode
VSETG?2 - set to GRAPHICS 2 mode

—— o — e S e E e 5 b S S St EAL W S v - ey (i G S S et . T S T — S o S A S W S o St Sy Gy St T —

Spec. 50-90020490 Page 3 - 31 June 8, 1984

BOS CALLS

ROUTINE NAME: VBLEKON

FUNCTION:
Blanks the TMS99218A video display.

DESCRIPTION:
This routine blanks the TMS9918A video display. It requires
no parameters. Blanking means all foreground colours and
sprites disappear from the screen. The background colour
remains.

PARAMETERS PASSED:
None

PARAMETERS RETURNED:
None

REGISTERS USED:
A, BC, E, HL, Flags
4 bytes of stack used

ROUTINE TYPE GLOBAL - B(0OS No. 0B - Re-entrant

COMMENTS AND WARNINGS:
NOTE: The TV screen goes blank on calling this routine,
but the definitions that have been set up in Video RAM
remain. To regain the image on the screen, use VBLKOF.

RELATED ROUTINES:
VBLKOF - unblanks the video display

o e ———— —- T T Y o o G e S Sy S Ay e Sk Bk Sl e Sy B iy oy S WS ot WA A Mk S S W S G S U S A G P S —

Spec. 50-90020490 Page 3 - 32 June 8, 1984

BOS CALLS

ROUTINE NAME: VCOLRT

—————

FUNCTION:

Set the colour table address in the TMS9918A.

DESCRIPTION:

This routine is used to set the colour table address in the
TMS9918A. The full colour table address is passed in reg
BC. This routine correctly writes the address into the 9918
reg 3 and stores the full colour table address in VCOLRAD
for use by other routines. This routine works in Graphics
II Mode by setting all the most significant bits as
required by the VDP

PARAMETERS PASSED:

BC Reg: Base Address of COLOUR Table

PARAMETERS RETURNED:

NONE

REGISTERS USED:

BC, E, HL, Flags

4 Bytes of Stack

ROUTINE TYPE GLOBAL -~ BOS No. 7 - Re-entrant

COMMENTS AND WARNINGS:

. e sy e

Spec.

The colour table must be set up for programs using
GRAPHICS 1 or GRAPHICS 2.

T M S S v T My oy W e T W e T it e (et S G e o W W S T i Bk S o e oy S T W S - S S i S S W W R M WL W S A i B A

50-9002049¢ Page 3 - 33 June 8, 1984

BOS CALLS

RCUTINE NAME: VFILL

FUNCTION:
Fill a block of Vvideo RAM with one character

DESCRIPTION:
This routine will £ill any contiguous portion of VRAM with
a particular value. The value to £ill with is passed in
the E register, the length to £fill is passed in the BC
pair. The Address in VRAM is passed in HL

PARAMETERS PASSED:
BC = length to £fill
E = value to £fill with
HL = address in VRAM to start

PARAMETERS PASSED:
None

PARAMETERS RETURNED:
None

REGISTERS USED:
A'B]C'DrEIFIHIL
4+ Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. lE - Re-entrant

COMMENTS AND WARNINGS:
This allows the application program, which resides in RAM,
to keep from having to define large tables 1in RAM
containing the same entry over and over again, and then
copying the table into Video RAM.
This routine can be used to pad out pattern tables with
the number for blanks or f£ill colour tables with one
combination of colours.

B T — A S - ——— ——— Ty — 0 Sy S S W P —
A Sy — e ———— i e S S S T T o o S S S S -—

Spec., 50-90020490 Page 3 - 34 June 8, 1984

BOS CALLS

ROUTINE NAME: VMOVD

———— i — ————— — ———— ———— ——

FUNCTION:
Quickly move data from one location in VRAM to another.

DESCRIPTION:
This routine will quickly move data from one location in
VRAM to another. The data area must be less than 255 bytes
long. The move 1is made by starting at the locations
specified and moving DOWN in VRAM

PARAMETERS PASSED:
C Reg: Amount of data to be moved in bytes
DE Reg: End Address where data is located
HL Reg: End Address where data is to be moved to

PARAMETERS RETURNED:
DE Reg: One before the beginning of the source data area
HL Reg: One before the beginning of the destination data area

REGISTERS USED:
A, BC, DE, HL, Flags
4 bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 3B - Re-entrant

COMMENTS AND WARNINGS:
Calling this routine with C reg equal to zero will cause
256 bytes of data to be transferred. This routine disables
interrupts for the full data transfer. This may cause
interrupts to be lost.

NOTE: If the value in HL is greater than the value in

DE minus the value of C, then the difference will be the
number of bytes "clobbered"™ at the start of the block of
data being moved.

RELATED ROUTINES:
VMOVI - move data in Video RAM (incrementing from
given address)

———— . T T —— T — ———— — — —— T Ty Y S WS W Tt W WS W — — " - ———— ———— iy S Y S iy . S T ———

Spec. 50-950020490 Page 3 - 35 June 8, 1984

BOS CALLS

ROUTINE NAME: VMOVI

FUNCTION:
Quickly move data from one location in VRAM to another.

DESCRIPTION:
This routine will gquickly move data from one location in
VRAM to another. The data area must be less than 255 bytes
long. The move 1is made by starting at the 1lccations
specified and moving UP in VRAM

PARAMETERS PASSED:
C Reg: Amount of data to be moved in bytes
DE Reg: Start Address where data is located
HL Reg: Start Address where data is to be moved to

PARAMETERS RETURNED:
DE Reg: Cne past the end of the source data area
HI. Reg: COne past the end of the destination data area

REGISTERS USED:
A, BC, DE, HL, Flags
4 bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 3A ~ Re-entrant

COMMENTS AND WARNINGS:
Calling this routine with C reg equal to zero will cause
256 bytes of data to be transferred. This routine disables
interrupts for the full data transfer. This may cause
interrupts to be lost.

NOTE: If the value in HL is less than the value in DE
plus the value of C, then the difference will be the
number of bytes "clobbered" at the end of the block of
data being moved.

RELATED ROUTINES:
VMOVD - move data in VRAM (decrementing from given
address)

A S it Sy T S s S S S Y i S T T S T e e S S M S S S M S e S o S S S S ot S S W TP W e s o S S W S WL S i e

Spec. 50-90020490 Page 3 - 36 June 8, 1984

BOS CALLS

ROUTINE NAME: VNAMET

FUNCTION:
Set the pattern name address of the TMS9918A.

DESCRIPTION:
This routine is used to set the pattern name address of the
TMS9918A. The full pattern name address is passed in reg
BC. This routine correctly writes the address into the
9918 reg 2 and stores the full pattern name address 1in
VNAMEAD for use by other routines.

PARAMETERS PASSED:
BC Reg: 16 bit base address of NAME Table

PARAMETERS RETURNED:
NONE

REGISTERS USED:
A! BC; E’ HL' FlagS
4 Bytes of Stack Used

ROUTINE TYPE GLOBAL - BQOS No. 6 - Re—-entrant

COMMENTS AND WARNINGS:
The mode that the application is working in should
already be set, 1i.e. TEXT or GRAPHICS 1 or GRAPHICS 2.
The address should be set in accordance to the mode chosen.

RELATED ROUTINES:

VCOLRT - set colour table base address

VPTRNT - set pattern table base address

VSATRT - set sprite attribute table base address
VSPRST - set sprite pattern table base address

o —— T Tt S W B it e Ao B by g o i e S e ey S A e L e e e —————— —— —————— A ——] — O T -, S, o T e e T w—

Spec. 50-90020490 Page 3 - 37 June 8, 1984

BOS CALLS

ROUTINE NAME: VPTRNT

FUNCTION:
Set the pattern table address in the TMS9918A.

DESCRIPTION:

This routine is used to set the pattern table address in
the TMS9918A. The full pattern table address is passed in
reg BC. This routine correctly writes the address into the
9918 reg 4 and stores the full pattern table address in
VPTRNAD for use by cother routines. This routine works
correctly in GRAPHICS Mode II by setting all the most
significant bits to 1.

PARAMETERS PASSED:
BC Reg: Base Address of PATTERN Table

PARAMETERS RETURNED:
NONE

REGISTERS USED:
A, BC, E, HL, Flags
4 Bytes of Stack

ROUTINE TYPE GLOBAL - B0OS N¢. 8 - Re~entrant

COMMENTS AND WARNINGS:
The mode that the application is working in should
already be set, 1i.e. TEXT or GRAPHICS 1 or GRAPHICS 2.
The address should be set in accordance to the mode chosen.

RELATED ROUTINES:

VCOLRT - set colour table base address

VNAMET - set name table base address

VSATRT - set sprite attribute table base address
VSPRST - set sprite pattern table base address

—— . A S - T S T T B S T S S S . Sy A e e A o Sk Sy Sy o ey o e Bl o M S S Bk W S S S ek S S S W — T S0y S e ————

Spec. 50-90020490 Page 3 - 38 June 8, 1984

BOS CALLS

ROUTINE NAME: VRAMDS

. ——— iy S S S ———————— o d———

FUNCTION:
Dump a string of bytes from the VRAM.

DESCRIPTION:

This routine is functionally the same as FASTD8 but are
safe in an interrupt environment (and also take longer).
This routine is used to dump a string of bytes from the
VRAM. The length of the data to be dumped is passed in
reg C and the memory address, in RAM, of the destination
of the data is passed in reg DE. The start address in
VRAM is passed in HL. This routine can be used on strings
up to 256 bytes in length.

PARAMETERS PASSED:
C Reg: Length of data block to be dumped
DE Reg: Start of destination area in RAM
HL Reg: Start of source area in VRAM

PARAMETERS RETURNED:
HL Reqg: Points one byte past end of source area
in VRAM
(Useful for "Chaining™ Calls)

REGISTERS USED:
A, BC, DE, HL, Flags
6 Bytes of Stack Used

ROUTINE TYPE GLOBAL - BOS No. 15 - Re-entrant

COMMENTS AND WARNINGS:
This routine is safe for use in an interrupt environment.
If more than 256 bytes are to be moved use the routine
VRAMDU.

RELATED ROUTINES:
VRAMDU - Video RAM dump
FASTD8 - Fast Video RAM dump (less than 256 bytes)
FASTDU - Fast Video RAM dump

TS I Mt G M S Gl e e T T T T e e S Sy . Sy PopR e ————————— it Sl T . o Mt T ey W B B S s b S ot et o s s T S T — ———— —

Spec. 50-90020490 Page 3 - 39 June 8, 1984

BOS CALLS

ROUTINE NAME: VRAMDU

s St o, T S S W e e A S Sl S ———

FUNCTION:
Dump a string of bytes from the VRAM.

DESCRIPTICN: V
This routine is functionally the same as FASTDU, but are
safe in an interrupt environment (and also take longer).
This routine is used to dump a string of bytes from the
VRAM, The 1length of the data to be dumped is passed in
reg BC and the memory address of the destination of the
data is passed in reg DE. The start address in VRAM is
passed in HL. Since 16 bit pointers are used, anywhere
from 0 to 16K of data may be transfered with this routine.

PARAMETERS PASSED:
BC Reg: Length of data block to be dumped
DE Reg: Start of destination area in RAM
HL Reg: Start of source area in VRAM

PARAMETERS RETURNED:
HIL. Reg: Points one byte past end of source area in VRAM.
(Useful for "Chaining" Calls)

REGISTERS USED:
A, BC, DE, HL, Flags
6 Bytes of Stack Used

RQUTINE TYPE GLOBAL - BQOS No. 16 - Re-entrant

COMMENTS AND WARNINGS:
This routine is safe for use in an interrupt environment.
If a small string (less than 256 bytes) is to be dumped,
use the routine VRAMDS

RELATED ROUTINES:
VRAMDS — Video RAM dump (less than 256 bytes)
FASTDS - Fast Video RAM dump (less than 256 bytes)
FASTDU - FPast Video RAM dump

o ——— - o Ty S o Ty Fiyy S S T S T T — " —— " f—— T T ——— A oy T — S —— — —————— o $1dd

Spec., 50-90020490 Page 3 - 40 June 8, 1984

BOS CALLS

ROUTINE NAME: VRAMLS

———— ——————————— " o ———

FUNCTION:
Write a string of bytes to the VRAM.

DESCRIPTION:
This routine is functionally the same as FASTL8 but are
safe in an interrupt enviromment (and also take 1longer).
This routine is used to write a string of bytes to the
VRAM. The length of the data to be written is passed in
reg C and the memory address of the source of the data is
DE. The start address in VRAM is passed in reg HL.

PARAMETERS PASSED:
C Reg: Length of data block to be read
DE Reg: Start of source area in RAM
HL Reg: Start of destination area in VRAM

PARAMETERS RETURNED:
HL Reg: Points one byte past end of destination area
in VRAM
(Useful for "Chaining" Calls)

REGISTERS USED:
A, BC, DE, HL, Flags
6 Bytes of Stack Used

ROUTINE TYPE GLOBAL -~ BOS No. 13 - Re-entrant

COMMENTS AND WARNINGS:
This routine is safe for use in an interrupt environment.
If more than 256 bytes of data must be loaded into Video
RAM, use the routine VRAMLD.

RELATED ROUTINES:

VRAMLD - load Video RAM
FASTLS - quick load of Video RAM (less than 256 bytes)
FASTLD ~ guick load of Video RAM

——— —— —— - — S ———
e o S o e B Sl T Sy o s Ty e e W o S B S e St Srw W S S B Sl WS S W S v Mt A Ry b MU WL A s o e e S — A

Spec. 50-90020490 Page 3 - 41 June 8, 1984

BOS CALLS

ROUTINE NAME: VRAMLD

PUNCTION:
Write a string of bytes to the VRAM.

DESCRIPTION:

This routine is functionally the same as FASTLD, but are
safe in an interrupt environment (and also take 1longer).
This routine 1is used to write a string of bytes to the
VRAM. The length of the data to be written is passed in
reg BC and the memory address of the source of the data is
passed in reg DE. The start address in VRAM is passed in
HL. Since 16 bit pointers are used, anywhere from 0 to 16K
of data may be transfered with this routine.

PARAMETERS PASSED:
BC Reg: Length of data block to be read
DE Reg: Start of scurce area in RAM
HL Reg: Start of destination area in VRAM

PARAMETERS RETURNED:
HL Reg: Points one byte past end of destination area
in VRAM
(Useful for "Chaining" Calls)

REGISTERS USED:
A, BC, DE, HL, Flags
6 Bytes of Stack Used

ROUTINE "TYPE GLOBAL - BQOS No, 14 - Re-entrant

COMMENTS AND WARNINGS:
This routine is safe for use in an interrupt environment.
If a small string (less than 256 bytes) is to be loaded
use VRAMIB.

RELATED ROUTINES:
VRAMDS — Video RAM dump {less than 256 bytes)
FASTDS -~ Fast Video RAM dump (less than 256 bytes)
FASTDU - Fast Video RAM dump

Y St ke W T T e e T U v T G S e P " T A S — — — i ore S e i S ST B W T W S oy i e S ey o S ML S St S S

Spec. 50-90020490 Page 3 - 42 June 8, 1984

BOS CALLS

ROUTINE NAME: VRAMRD

——————— i ———— - — o P T o S e o

FUNCTION:
Read a single byte of data from TMS9918A VRAM

DESCRIPTION:
This routine is used to read a single byte of data from
TMS9918A VRAM. The address to be read is passed in reg BC,
the value of the VRAM at that location is returned in reg
A'

PARAMETERS PASSED:
BC Reg: Location of VRAM to be read from

PARAMETERS RETURNED:
A Reg: Contents of VRAM at Location

REGISTERS USED:
A,F
4 bytes of stack used
ROUTINE TYPE GLOBAL - BOS No. 0D - Re-entrant

COMMENTS AND WARNINGS:

None
RELATED ROUTINES:
VRAMWR ~ Wwrite one byte to Video RAM
FASTRD = quick read of one byte to Video RAM
FASTWR - quick write of one byte to Video RAM

—u.—_-._——q..—.--.-..m——-.,_—-.--..—_—-—.....——-——._——-————-.--.-———-—_—-.__—-..q__——-—_-—-__-—-—

Spec. 50-90020490 Page 3 - 43 June 8, 1984

BOS CALLS

ROUTINE NAME: VRAMWR

— A ———— — —————— e Yo f ———

FUNCTION:
Write a single byte of data to TMS9918A VRAM

DESCRIPTION:
This routine is used to write a single byte of data
TMS9918A VRAM The address to be written is passed in
BC. The data to be written is passed in Register E.

PARAMETERS PASSED:
BC Reg: Location of VRAM to be written to
E Reg: Data to be written

PARAMETERS RETURNED:
NONE

REGISTERS USED:
A, BC, flags
4 bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 0E ~ Re—entrant

COMMENTS AND WARNINGS:
None

RELATED ROUTINES:

VRAMRD - read one byte of Video RAM
FASTRD - read one byte of Video RAM ... fast
FASTWR ~ write one byte of Video RAM ,.. fast

S S e e B R R B o B s b o e S o e S W Wl S Tl B o o e e o St e e g S Y W Y _—— T e i Ak e Sy S T o

from

reg

Spec. 50-90020490 Page 3 - 44 June 8, 1984

BOS CALLS

ROUTINE NAME: VREGRD

e S s s e S S e B o S T S o S T ——

FUNCTION:
Reads the TMS9918A video display register

DESCRIPTION:
This routine reads the TMS9%18A video display register
values, which are stored in RAM images. The register

number to be written (0 to 7) is passed in reg C.

The following data may also be read:

8: VDP Status Register RAM Image (Updated Each Clock Interrupt
9: Current VDP Mode: 0 ~text, 1 ~Graphics I, 2 -Graphics II

A: Current Screen Width in Characters

The data is returned in register A

PARAMETERS PASSED:
C Reg: Register Number to be read

PARAMETERS RETURNED:
A Reg: Value of Register

REGISTERS USED:
A, BC, HL, Flags
0 Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 0 - Re-entrant

COMMENTS AND WARNINGS:

The actual control registers of the video chip are
write only. The IOS maintains an image of these registers
allowing the application to "read" the values that are
currently in the registers.

RELATED ROUTINES:
VREGWR - write to a register in the video chip

Al e S e S e e A et o T B M e S e S S Bk e e S B S v W i S S — T T S S P S o — - — —— T —— s s o S S S

Spec. 50-90020450 Page 3 - 45 June 8, 1984

BOS CALLS

ROUTINE NAME: VREGWR

e Al . ks e s e A e o S S W e e R B St B

FUNCTION:
Writes the TMS9918A video display registers.

DESCRIPTION:

This routine writes the TMS9918A video display registers.
The register number to be written (0 to 7) is passed in reg
C and the data to be written is passed in reg E. Note that
since the TMS9918A registers are write-only, images of the

registers are kept in global memory where they may be read
if required.

PARAMETERS PASSED:
C Reg: Register Number to be written
E Reg: Data to be written into register

PARAMETERS RETURNED:
NONE

REGISTERS USED:
A, BC, E, HL, Flags
4 Bytes of Stack Used
ROUTINE TYPE GLOBAL - BOS No. 4 - Re-entrant

COMMENTS AND WARNINGS:
None

RELATED ROUTINES:
VREGRD - read a register in the Video chip

e e W e L B o i T — T ———— —— O T T — T —— T — oy S P ———] —— —————— o S — ———— . T——— —

Spec. 50-90020490 Page 3 - 46 June 8, 1984

BOS CALLS

ROUTINE NAME: VSATRT

FUNCTION:
Set the sprite attributes table address in the TMS9918A.

DESCRIPTION:
This routine 1is used to set the sprite attributes table
address in the TMS9918A. The full sprite attributes table
address is passed in reg BC. This routine correctly writes
the address into the TMS9918A reg 5 and stores the full
sprite attributes table address in VATRIAD for use by other
routines,

PARAMETERS PASSED:
BC Reg: Base Address of Sprite ATTRIBUTES table

PARAMETERS RETURNED:
NONE

REGISTERS USED:
A, BC, E, HL, Flags
4 Bytes of Stack

ROUTINE TYPE GLOBAL -~ BOS No. 9 - Re-entrant

COMMENTS AND WARNINGS:
This routine must be called when setting up the video for
GRAPHICS 1 or GRAPHICS 2 mode.

———————— T — T e M S T _—— T T Y — o G Y 7 ST SR W e e o s ot e K o i T S . o S O .

Spec. 50-90020490 Page 3 - 47 June 8, 1984

BOS CALLS

ROUTINE NAME: VSETG1

- e e i . S — — ————— S T —

PUNCTION:
Set video for graphics 1 mode

DESCRIPTION:
VSETG1l sets the VDP for graphics 1 mode, blanked display,
16*16 sprites, 1X magnification. The user must use the
VBELKOFF routine to enable the display.

PARAMETERS PASSED:
None

PARAMETERS RETURNED:
None

REGISTERS USED:
A,B,C,D,E,F
2 Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 26 - Re-entrant

COMMENTS AND WARNINGS:
This routine does not set base addresses of tables nor
does it load pattern sets into Video RAM,

RELATED ROUTINES:
VSETG2 - set to GRAPHICS 2 mode
VSETTX - set to TEXT mode

S A Ao Vi e bt e e e T . T S W S B e T S T e S B¢ S S ETE e W T e S A Y S W T T W W o A v vy o Sy W

Spec. 50-8C0020490 Page 3 - 48 June 8, 1984

BOS CALLS

ROUTINE NAME: VSETG2

FUNCTION:
Set video for graphics 2 mode

DESCRIPTION:
VSETG2 sets the VDP for graphics 2 mode, blanked display,
16*16 sprites, 1X magnification. The user must use the
VBLKOFF routine to enable the display.

PARAMETERS PASSED:
None

PARAMETERS RETURNED:
None

REGISTERS USED:
A'B'CpD'E'F
2 Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 27 - Re-entrant

COMMENTS AND WARNINGS:
This routine does not set base addresses of tables nor
does it load pattern sets into Video RAM.

RELATED ROUTINES:
VSETG1 - set to GRAPHICS 1 mode
VSETTX - set to TEXT mode

e T e A e T . e ke Wk S e S ERS S WS EE SRS W T M TR T P A e e £ e . —— ——————— e T o oy e o e S B, S S — T

Spec. 50-90020490 : Page 3 - 49 June 8, 1984

BOS CALLS

ROUTINE NAME: VSETSP

e et Ak Sy gy ———————

FUNCTION:

Set sprite size and magnification

DESCRIPTION:

VSETSPA sets the sprite size and magnification. The sprite
size is passed in the C register (0=8*%*8, 1=16%*16). The
sprite magnification 1is passed in the E register (0=1X,
1=2%). The user must first set the mode using one of the
above three routines.

PARAMETERS PASSED:

C = sprite size (0 = 8*8,]1 = 16*16)
E sprite magnification (0 =1x,1 =2x)

ni

PARAMETERS RETURNED:

None

REGISTERS USED:

A,B,C,D,E,F,H,L
2+ Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 28 - Re-entrant

COMMENTS AND WARNINGS:

Spec.

Defaults for sprite size and magnification are set when
the mode (TEXT, GRAPHICS 1, or GRAPHICS 2) is set

—— A — — —— —— —— o —— i e A AL e e e R — —— Sy it S - T A s A e S — ————

50-90020490 Page 3 - 50 June 8, 1984

BOS CALLS

ROUTINE NAME: VSETTX

o ——— —— . —— T Y Y — i

FUNCTION:
Set video for text mode

DESCRIPTION:
VSETTXT sets the VDP for text mode, blanked display, 16*16
sprites, 1X magnification. Please NOTE that sprites will
NOT appear 1in text mode even though the video chips'
registers are set up for sprites. The user must use the
VBLKOFF routine to enable the display.

PARAMETERS PASSED:
None

PARAMETERS RETURNED:
None

REGISTERS USED:
A,B,C,D,E,F
2 Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 25 - Re-entrant

COMMENTS AND WARNINGS:
Sprites can not be used in text mode, however when setting
the VDP register, sprite information must be provided.
This routine does not set base addresses of tables nor
does it load pattern sets into Video RAM.

RELATED ROUTINES:
VSETG1 - set to GRAPHICS 1 mode
VSETG2 - set to GRAPHICS 2 mode

—— — O T Tt S S S o T T T T — " " Yo . b U b gk e S A e e Bt g g) Sk By, e A Mg S W T .

Spec. 50-90020490 Page 3 - 51 June 8, 1984

BOS CALLS

ROUTINE NAME: VSPRST

FUNCTION:
Set the sprite table address in the TMS9918A.

DESCRIPTION:
This routine is used to set the sprite table address in the
TMS9918A. The full sprite table address is passed in reg
BC. This routine correctly writes the adddress into the
TMS9918A reg 6 and stores the full sprite table address
into VSPRIAD for use by other routines.

PARAMETERS PASSED:
BC Reg: Base Address of Sprite PATTERN table

PARAMETERS RETURNED:
NCNE

REGISTERS USED:
A, BC, E, HL, Flags
4 Bytes of Stack
ROUTINE TYPE GLOBAL - BOS No. 0OA - Re-entrant

COMMENTS AND WARNINGS:
The mode in which the video chip is to work should
already be set.

RELATED ROUTINES:

VNAMET - set the name table base address

VCOLRT -~ set the colour table base address

VPTRNT - set the pattern table base address

VSATRT - set the sprite attribute table base address

VSPRST - set the sprite definition table base
address

- —— - S " S T T T W S Sy T et S S T T W ot W T i e T o s e S S S o o o o M e A e AL S S W —— —— . o —

Spec. 50-90020490 Page 3 ~ 52 June 8, 1984

BOS CALLS

ROUTINE NAME: VSTATR

A Tl AR S oy e S Sy W L S S T Sk gl W i iy

FUNCTION:
Reads the status register of the TMS9918A

DESCRIPTION:
This routine reads the status register of the TMS9918A and
returns the register contents in reg A. The status register
image VSTATUS is also updated. This routine may cause
clock interrupts to be lost as it executes, since it will
reset any pending interrupt.

PARAMETERS PASSED:
NONE

PARAMETERS RETURNED:
A Reg: VDP Status Byte

REGISTERS USED:
A,B,HL,C,F
2+ Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 5 - Re-entrant

COMMENTS AND WARNINGS:
This is a dangerous call! It may cause Clock Interrupts to
be lost. Unless absolutly necessary, it is best to get the
VDP Status by reading VSTATUS using VREGRD. VSTATUS will
be updated every 16 msec. by the clock ISR.

———q.._—_-——-.—....——_-—-..-—_——-..—.-.-.__.—....-——_.-—-..-_q..-__————-.._-—_—--_-—--_-——-—--...._q-

Spec. 50~90020490 Page 3 - 53 June 8, 1984

BOS CALLS

. ROUTINE NAME: VTABRD

FUNCTION:
Reads the current table base address pointers

DESCRIPTION:
This routine reads the current table base address pointers
in the VDP from a RAM image area. The number of the
peinter to be read is passed in register C. These numbers
are as follows:

0: VNAMEAD -Name Table Base Address

l: VCOLRAD -~Colour Table Base Address

2: VPTRNAD -Pattern Table Base Address

3: VATRIAD -Sprite Attribute Table Base Address
4: VSPRIAD ~Sprite Pattern Table Base Address

PARAMETERS PASSED:
C Reg: Register Number to be read

PARAMETERS RETURNED:
HL Reg: Register value

REGISTERS USED:
. A, BC, DE, HL, Flags
0 Bytes of stack used

ROUTINE TYPE GLOBAL - BOS No. 1 - Re-entrant

COMMENTS AND WARNINGS:
None

RELATED ROUTINES:

VNAMET - set the name table base address

VCOLRT - set the colour table base address

VPTRNT ~ set the pattern table base address

VSATRT - set the sprite attribute table base address

VSPRST ~ set the sprite definition table base
address

Spec. 50-%0020480 Page 3 ~ 54 June 8, 1984

BOS CALLS

ROUTINE NAME: XYLOC

—— i —— — — —— — - b WAL Bk it Uk

FUNCTION:
Return name table address for any X-Y location on screen

DESCRIPTION:
XYLOC returns the name table address in VRAM for any X-Y
locaticon on the screen. The X location is passed in the C
register, the Y location in the E register. The VRAI
address is returned in both HL and BC.

PARAMETERS PASSED:
C = X location (column}) on screen
B Y location {row)

n

PARAMETERS RETURNED:
BC = address in VRAM
HL = address in VRAM

REGISTERS USED:
BC, DE,HL
Stack use = 4 bytes

ROUTINE TYPE GLCBAL - BOS No. 1lF - Re-entrant

COMMENTS AND WARNINGS:
NOTE: The screen is 32x24 patterns in the GRAPHICS modes
and 40x24 patterns in TEXT mode. If a standard T.V. set
is being used, the first and last column of patterns may
fall just outside the screen.

T e S S i Ay o S Tt Tt et ot S] e ke e e T T T W S S S S Wb W e e et T T S o . . W e e o i o ot S e B e e

Spec. 50-9002049¢0 Page 3 - 55 June 8, 1984

BOS CALLS

THIS PAGE LEFT INTENTIONALLY BLANK

T ————— . — . T bl (2o g gy Sk Bl . g e e ikl S . T AT T M TEE T S Y M T T S - S S e M —————— — T~ ————

Spec. 50-500204920 Page 3 - 56 June £, 1984

EXTENDED IOS

5.0 EXTENDED IOS
5.1 Introduction

The I0S is divided into 2 sections. The Kernel
contains the minimum set of I0S functions, while the
Extended JI0S5 (XI0S) contains the wvaried extensions,
This structuring of the I0S is done to leave as much
programming space as possible for applications, while
not reducing or limiting the functionality of the IO0S.
As new features, such as I/0 drivers for the varied
option boards, are added to the I0S, they will be
placed into the XIOS section thereby keeping the Kernel
size to a minimum.

The XIOS system is located in 16 different segments on
the wheel. These segments represent 16 tiering levels
for billing purposes - ie. the user of the application
must be authorized for the particular segment required
by the application program. Each segment is divided
into a number of modules (0 through 15). Each module
contains a related set of functions. XIOS modules are
loaded by the application by specifying which segment
the module is found in (0 -> 15) and then within that
segment which XIOS module is desired (again a number
between 0 and 15). As they are loaded, these modules
will be relocated immediately below the I0OS Kernel.
When an application no longer needs a module, it may
delete or unload that module. The Kernel software 1is
responsible for tracking which modules are currently
operative and which ones are not.

Locations 6 and 7 will always point to the base of the
total I0S, Kernel plus Extended. This will enable
applications to know how much space is available.
Applications normally place the stack based on the
value of locations 6 and 7.

Care must be taken that the stack is not overwritten
when loading XIOS modules. Ensure that your stack is
not at the top of user memory when requesting an XIOS
module - that is where the XIO0S module will load to.

5.2 Extended I0S5 Module Handler

The XI0OS module handler is responsible for loading,
unlcading, 1linking and keeping track of XIOS modules.
This handler 1is included in the ICS Kernel.

G S o e S S TRE TR R WY T T EER S S i S —————— T — . _—] T o iy oy e e e e ey S G Y TR it T) Tt W T o o o .

Spec. 50-50020490 Page 4 - 1 June 8, 1984

EXTENDED IOQS

. 5.2.1 Memory Structure for Loaded XI0OS Modules

The structure for memory allocation of XIOS modules is
depicted in the following diagram:

FFFF —--—----—---—-~--““**‘““‘““”“"”“'“T
|

I 108 !

I KERNEL :
|

I BOTTOM OF KERMEL i

D800 ——————-----***-*‘---'“**““““"“'T
|

I XIOS MODULE 1 |

j)

| [

[|

| |

I |

[X10S MODULE 2 l
!

| I

I BOTTOM OF LOWEST XIOS |

® ' '

| |

| I

| i

| |

I [

[|

| APPLICATION |

| [

[}

0100 o

[[

i I

I I

0008 | JUMP TO BOTTOM OF KERNEL [

0005 | JUMP TO BOTTOM OF LOWEST XIOS [

I I

———-———-—-l-——n-—---n-—-.—_—-—-———..-—-——.--———-

——-——.-——-_——.-———--—-——-.__-......__._-._—-—-—-—-.-—-g..__—._.._——_.——-._-———--——-..__—-.._—-.-.._

Spec. 50-90020490 Page 4 - 2 June 8, 1984

EXTENDED IOS

5.2.2 Loading XI0S Modules

X105 modules will be loaded in one module at a time.
The module will be loaded in and relocated next to the
very bottom of the current I0S. Locations 6 and 7 will
be amended to reflect a bottom for IOS. Should
difficulties occur in loading and initializing the XIOS
module, the returned error code will indicate why
failure occurred.

The command to load an XIOS module is a DOS command with the
following format:

LOAD_XIOS_MODULE (call number 96H)
Function: Load one XI0S module
Entry Parameters: Register C = 96H

Register E = XI0OS Module ID
Where XIOS Module ID is one of:
00 - Basic BDOS and BIOS
01 - Basic BDOS, Extended BDOS and BIOS
13 Multi-Window Screen Driver
14 -~ 80 Column Screen Driver

Exit Parameters: Register A = Status
where Status is one of:
00 - Load was successful
Segment handler error codes:
=1 - XI0S Module was not loaded because
tier is not authorized
-2 - XI0S Module was not loaded because
segment buffer overflowed
-3 - XIOS Module was not loaded because
adaptor did not respond
-4 - XIOS Module was not loaded because
an incorrectly formated packet
was received
=5 - XIOS Module was not loaded because
an undetermined communications
protocol error occurred
-6 - XIOS module was not loaded because
it was not located in the segment
XI0S Module error codes:
Codes -10H to -70H are reserved for XIOS
Module to return after initializing.
These codes will be described in detail
in each respective XIOS Section.

-a-.-——————q-..—--—_————_q......-_____————--_-.--———_———-——--—._-——_————-_u--.———-———-.--_

Spec. 50-90020490 Page 4 - 3 June 8, 1984

EXTENDED IOS

. Each module is described in detail as te function and the type of
support it needs with regard to hardware and other XI0S modules,
in later sections of the APG.

T e e e e e e e e o o et e ey e e s i e e T i o . —ry i o s — tirp — -
- ———— " — i - ———— e ———

June 8, 1984

EXTENDED IO0OS

5.2.3 Unloading XIOS Mcdules

XI0OS modules will be unloaded or deleted one module at a
time. Only the module at the very bottom of the IOS can
be unloaded. When this happens, locations 6 & 7 will be
amended to reflect the new bottom for the 1I0S8, and
indicate that memory has been freed up. In order to
unload all XIOS modules, the application must unload
them one at a time, until the return code indicates that
no module was unloaded.

Note that when the application is terminated normally by
a jump to location 0 or via the EXIT key on the keyboard
(an IOS function), all resident XIOS modules are
unloaded by the I0S re-boot code. This ensures that any
hardware that may be "attached" to an XIOS module (eg.
disk drives) is properly de-initialized (eg. drive motor
is turned off).

The command to unlcad an XIOS module is a DOS command with the
following format:

UNLOAD _XIOS_MODULE (call number 97H)
Function: Unload one XI0S module
Entry Parameters: Register C = 97H

Exit Parameters: Register A = Status
where Status is one of:
060 - Unload was successful and
unlocaded module number is found
in register L
-1 - There was no XIOS module to unload
XI0OS Module error codes:
Codes -10H to -70H are reserved for
XI0S Module to return after
de~initializing. These codes will be
described in detail in each respective
XI05 Section.

Register L = XIOS Module ID
where XIOS Module ID is one of:
00 -~ Basic BDOS and BIOS
01 - Basic BDOS, Extended BDOS and BIOS
13 - Multi-Window Screen Driver
14 - B0 Column Screen Driver

BEach module is described in detail as to function and the type of
support it needs with regard to hardware and other XIOS modules,
in later sections of the APG.

S e M ——— S iy R Y S T i W o iy VO S Tk e g e ol S ———— —— —— T T . M Ryt o T I e A Ty . Gy W D W ke ey = . —

Spec. 50-90020490 Page 4 - 5 June 8, 1984

EXTENDED IOS

5.2.4 Resolving References in XI0OS Modules

Different XIOS modules will require access to data

structures and subroutines contained within other XIOS
modules or within the Kernel.

DOS call number 99H provides -the mechanism for resolving
references. This call returns the address of the global
variable requested. All XIOS modules containing global
variables or subroutines must trap and execute this DOS
call. Each global variable must be given a unigque
reference number. These reference numbers will be
included 1in the respective section for the XIOS module,
further on in this specification.

The call has the following format:

RESOLVE_REFERENCE (call number 99H)

Function: To return the address of the requested global reference

Entry Parameters: Register C

99H

Register E = XIOS Module ID
where XIOS Module ID is one of:
00 - Basic BDOS and BIOS
01l - Basic BDOS, Extended BDOS, and BIOS
13 - Multi-Window Screen Driver
14 - 80 Column Screen Driver
fF - I0S5 Kernel

Register D = Reference Number as defined for
each respective XIOS Module. This num-
ber has the range from 00 to FFH.

Exit Parameters: Register A = Status

50-50020490 Page 4 - 6 June 8, 1984

Spec.

where Status is one of:

00 - Search was successful with the
address being returned in Register
HL,

-1 - XIOS Module was not found and no
address is being returned

-2 - Reference number was not found and
no address is being returned

Register HL = Address of the global reference

T e o e e o e e o o o o ot o o v L e e T i T 7 P e A o~ o " " _— i S T T e

XIOS -~ DISK HANDLING

5.3 DISK SYSTEM
5.3.1 Introduction

The floppy disk units are attached to the Nabu PC via an
interface card. The interface card is capable of supporting up to
two disk drives. Each drive can be single or double density,
single or double sided, full height or half height, 48 or 96 tpi.
The disk drive currently provided is a single sided double dens-
ity half height unit with 48 tpi.

New diskettes must be formatted to a recognizable format.
The Nabu standard format is 40 tracks per side, scft sectored
with 5 sectors per track and 1024 bytes per sector. The software
is able to read single or double density disks produced by CP/M
systems on Xerox 820, Cromemco, Osborne, {Kaypro} or IBM PC's.

PROGRAM RESPONSIBILTY

Storage of retrieval of data files are the responsibility of
the individual application programs. Creation or modification of
files must be handled, as well as intercepting and interpreting
error codes from the file subsystem.

The only independant responsibility the end user has is in
disk maintenance, i.e. format, backup, copy etc etc.. This res-
ponsibility is handled by the disk utility application programs
as described in the disk utility manuals.

FILES AND DIRECTORY

The files stored on disk are CP/M version 3.0 files, stored
in a CP/M directory and all calls to the directory and file
handling routines are standard CP/M. The routines to do file
management are supplied by Digital Research Inc. and are normally
referred to as the BDBOS. The BDOS interfaces to low level <disk
access routines called the BIOS. Application routines should do
all disk access via the proper BDOS calls.

The Console Command Processor usually a part of the CB/M
operating system, does not exist in the cable environment and the
equivalent functions are handled via other routines.

DISK ERROR HANDLING

Errors detected by the BIOS or BDOS will be returned to the
calling program, rather than resulting in an error on the users
console. Application programs need to test the appropriate status
on return from a BDOS call.

e i S - A} e ol Al . e et o . S e g g . S ok Sy T At T At TR oy e o M e o . . B g v G e} " S .t A -

Spec. 50-90020490 Page 5 - 1 June 8, 18984

XI0S - DISK HANDLING

WARNING

The disk routines use the same buffer area in I0S as the
segment handler. Therefore, before accessing the segment
handling routines in IOS while you have open disk files, it is
strongly recommended that you close all files, perform the
segment leocad(s) then reset the disk system.

Programmers should reference the CP/M documentation directly
about the CP/M disk features and programming requirements. In
particular, the CP/M Plus User's gquide - gives an overview of the
organization and access of CP/M files. The CP/M plus programmer’'s
guide gives detailed descriptions, especially sections:

2.1 Calling Conventions
2.3 BDOS File System
3. BDOS calls (refer only to file access calls)

Programmers should be aware that the disk files are handled by
the DRI supplied routines, and that any other CP/M features have
been implemented by Nabu in a compatible form. Section 4.2 of
this guide deals with CP/M compatible calls, and contains a list
of all calls.

CP/M Version 3.0

Version 3.0 of CP/M has several enhancements that will be of
value to programmers. The extensions included in the disk support
are the following:

Time and date stamping on files - refer to section 2.7.2 of
the CP/M user's guide and section 2.3.8 of the CP/M
programmer's guide.

Automatic diskette 1login - refer to section 2.3.11 of the
CP/M programmer's guide.

End of file marking - refer to section 2.3.12 of the
CP/M programmer's guide.

Error trapping and return to program - see section 2.3.13 of
the CP/M programmer's guide.

Maximum file size is now 32Mb per file.

The application programmer needs to set up only a single
control block (File Control Block - FCB) to access a file. Refer
to section 2.3.3 of the CP/M programmer's guide.

o ik i M s i e e o e e e e e s Ay ———_ = — o o o o o i e bdlm B e S Aokt e W S T e Mt ——— —— . —————— . ——— —

Spec. 50-50020490 Page 5 - 2 June 8, 1%g4

XI0S - MULTI-WINDOW SCREEN DRIVER

5.4 MULTI-WINDOW SCREEN DRIVER
5.4.1 INTRODUCTION

This XIOS module will contain a complete set of routines
which form the multi-window screen driver. These
routines were formerly BOS routines contained within the
IOS Kernel.

5.4.2 OPERATIONAL REQUYREMENTS

This XIOS module will not require any other XI0S module
in order for it to function. It does however use BOS
calls from within the 105 Kernel to interface with the
video hardware,

5.4.3 MODULE SPECIFIC ERROR CODES

This XIOS module will not return any error codes
specific to itself, when it has been loaded; and when
the module has finished initjalization or de-
initialization.

5.4.4 MODULE INITIALIZATION

When this XIOS module is loaded, its initialization .
procedure is executed. This procedure will do the
following:

1. Link into the 1I0OS Eernel BOS routines as
required.

2. Disable the previous screen driver.

3. Set the video screen to text mode.

4. Fill the video screen with a blue background
and a blue foreground.

5. Create window #1 with size 38 columns by 24
rows; the cursor will be a flashing underline
character.

6. Enable the video hardware to output to screen.

7. Enable the cursor to flash.

Windows 2, 3, 4, and 5 will be undefined after
initialization.

Spec. 50-90020490 Page 6 - 1 June 8, 1984

XI0S8 - MULTI-WINDOW SCREEN DRIVER

5.4.4 MODULE DE-INITIALIZATION

Prior to the module being physically removed from
memory, a "shut-down" or de-initialization procedure is
executed. This procedure will do the following:

l. Clear the screen by filling with blanks.

2, Restore the Kernel routines such as the «c¢lock
interrupt handler, to their "prior to XIOS
module™ state.

This procedure can not and will not restore the total
context of the screen prior to the XICS module being
loaded.

5.4.5 DOS CALL INTERFACE

This module will be capable of decoding and executing
four DOS calls. The call numbers decoded are:

8F -- DEFINE WINDOW

99 -~ RETURN GLOBAL ADDRESS OF BOS ROUTINE
A2 -- INPUT STATUS FROM VIDEQO SCREEN WINDOW
A3 -- OUTPUT DATA TC VIDEO SCREEN WINDOW

DEFINING VIDEO SCREEN WINDOWS

Up to five windows may be defined. Upon initialization
window 1 is set up to be the full text screen. Windows
may be altered or removed with the following call:

DEFINE_WINDOW {call number B8FH)

Function: Used to define a screen window for use by
the VIDEO_SCREEN calls below

Entry Parameters: Register C = 8F Hex
Register DE = Pointer to
WINDOW_DEFINITION_BLOCK

Exit Parameters: Register HL = Pointer to old
WINDOW_CONTROL_BLOCK
or
zero if no old WCB
exists

Cautions: This routine is not re-entrant.

S —————— T — T Ty S Sy T S T T T — - — T y f—— T ——— 7 —— " ——— i Ty - —r e ———— —————

Spec. 50-90020490 Page 6 - 2 June B8, 1984

XI0S - MULTI-WINDOW SCREEN DRIVER

The window is defined via the following two data
structures:

WINDOW_DEFINITION_BLOCK:
DEVICE_LOCATION: BYTE;
WCB_PCINTER: ADDRESS;
Where:

DEVICE_LOCATION contains the single byte
number ¢of the window being defined. It has a
range of 1 to 5.
WCB_POINTER contains a two byte pointer to a
valid window contrel block. 1If this value is
zero, the window becomes undefined, and thus
the window is closed.

WINDOW_CONTROL_BLOCK:
TOP_LEFT_ADDRESS: WORD;

COLUMN_WIDTH: BYTE;
ROW_DEPTH: BYTE;
CURSOR_TYPE: BYTE;
CURSOR_PATTERN: BYTE;
CURSOR_X POS: BYTE;
CURSOR_Y_POS: BYTE;
TAB_MAP: ARRAY[1..39] OF

BOOLEAN;
Where:
TOP_LEFT_ADDRESS c¢ontains a two byte wvalue.
This value is computed as follows:
TOP_LEFT_ADDRESS row number * 40
+ column number
Where: the row number and column
number represent the top
left corner of the window
This wvalue has a range of 0 to 958
decimal
COLUMN_WIDTH contains a one byte value. It
is the number of columns the window is
wide. It has a range of 1 to 40,
ROW_DEPTH contains a one byte value. It is
the number ¢f rows the window is deep.
It has a range of 1 to 24.

G S S e i de A ek e s e s S S St S S S W i A S A S T — o T Y T . — Y - — " — - ——— . —— - — i T~ - T -

Spec. 50-90020490 Page 6 ~ 3 June 8, 1984

XIOS - MULTI-WINDOW SCREEN DRIVER

CURSOR_TYPE contains a one byte value. Two
bits are defined as follows:
bit 0 set indicates a vwvisible cursor

exists

bit 0 clear indicates no visible cursor
exists

bit 7 set indicates the cursor -is to
flash

bit 7 clear indicates the cursor is to
be steady

PATTERN_NAME contains a one byte value. It
is the ASCII character which is to be
the cursor shape. The default window
uses the underline character.

CURSCR_X POS contains a one byte wvalue. It
is the relative cursor column position
within the window. It has a range of 0
to COLUMN_WIDTH-1l. It is usually set to
0.

CURSOR_Y_POS contains a one byte wvalue. It
is the relative cursor row position
within the window. It has & range of 0
to ROW_DEPTH-1. It is usually set to 0.

TAB_MAP contains an array of 40 bits (5
bytes). These bits identify tab stops.
If a bit is set, then a tab stop exists
at that relative column number in the
window.

DEFINE_WINDOW initializes one of the five windows (1

to 5)

which are associated with the Video Display

Physical Devices 1 to 5. If a window is already
associated with the device location being set up, then
the existing window is closed and a pointer to the
closed WINDOW_CONTROL_BLOCK is returned in the HL

Register.
Register.

Otherwise 0000 is returned in the HL
It should be noted that windows must not be

re-defined in both foreground and background tasks at
the same time because the routine is not re-entrant.

——— i Sy ——— oy s Wy o M. S S At Sy T e L e T T —— —— " T T W o Sy e Sy fyre S W W A S A W e Gy e W e A

Spec.

50-90020490

Page 6 ~ 4 June 8, 1984

- ot

XIOS -~ MULTI-WINDOW SCREEN DRIVER

RETURN GLOBAL ADDRESS OF BOS ROUTINE

The following BOS routines have globally known entry
points:

Name Description Reference No.
WINDO Open window 1
CLOSEW Close window 2
SETCU Set cursor parameters 3
GOTOX Move cursor in window 4
PUTCH Put character into window 5
UPSCR Scroll window up one row 6
DOWNS Scroll window down one row 7
LEFTS Scroll window left one column 8
RIGHT Scroll window right one column 9
FILLA Fill area of window 10
DUMBT Use window as dumb terminal 11

See section 5.2.4 for complete details on using DOS
call 99H.

INPUT STATUS FROM VIDEO SCREEN WINDOW

In keeping with the standard for physical device
drivers, two entry points are provided for the Video
Screen Device Drivers. The first of these is as
follows:

VIDEQO_SCREEN: DEVICE_READY (call number A2H)

Function: Returns a data ready indication for a
specified window

Entry Parameters: Register C = A2 Hex
Register E = Window Number
Where:

Window Number has a range

of 1 to 5.
Exit Parameters: Register A = Return Code
Where:

Return Code = 0 indicates
that the window is
undefined.

Return Code = non-zero
indicates that the
window 1is defined
and ready to accept
data.

——-—._-—-nu-—-———..———__n-___-———-—-uu._-—_-..q___--.._-.._—-—-—"-—-._—_.—_——-....

50-90020490 Page 6 ~ 5 June 8, 1984

XIOS - MULTI-WINDOW SCREEN DRIVER

OUTPUT DATA TO VIDEO SCREEN WINDOW

The second of the screen drivers has the following
format:

VIDEQ_SCREEN: SEND_DATA (call number A3H)

Function: Writes a character to the specified window

A3 Hex
Window Number

Entry Parameters: Register C
Register E
Where:
Window Number has a range
of 1 to 5.
Register D = ASCII Character to be
sent to video screen

ron

Exit Parameters: Register A = Return Code
Where:

Return Code = 0 indicates
that the window is
undefined and data
was not sent.

Return Code = non-zero
indicates that the
window is defined
and data was sent.

For a 1ist of the control characters which are

accepted by this driver, see the section on BOS call
DUMBT.

———-—_————.-._a—_———_—..-....-——_—--————-—.-....o-————-——.-—.-—.-——————-.—.-—q_—-_———-u..-._—_—-—

Spec. 50-90020490 Page 6 - 6 June 8, 1984

XI0S - MULTI-WINDOW SCREEN DRIVER

5.4.7 BOS CALL INTERFACE

This XIOS module contains eleven low-level BOS routines

for using windows. Linkage to these routines is direct
with their addresses being resolved with DOS call 99H as
described in section 3.5.5.6.2

OPEN A WINDOW
ROUTINE NAME: WINDO
GLOBAL REFERENCE NUMBER: 1
FUNCTION: Open a window
ENTRY PARAMETERS: REGISTER BC = Pointer to a valid
WINDOW _CONTROL_BLOCK
Where:

WINDOW__CONTROL_BLOCK contains:
TOP_LEFT_ADDRESS: WORD;

COLUMN_WIDTH: BYTE;
ROW_DEPTH: BYTE;
CURSOR_TYPE: BYTE;
CURSOR_PATTERN: BYTE;
CURSOR_X_POS: BYTE;
CURSOR_Y_POS: BYTE;
TAB_MAP: ARRAY[1..39] OF

BOOLEAN;
Where:
TOP_LEFT_ADDRESS contains a two byte value.
This value is computed as follows:
TOP_LEFT_ADDRESS = row number * 40
+ column number
Where: the row number and column
number represent the top
left corner of the window
This wvalue has a range of 0 to 959
decimal
COLUMN_WIDTH contains a one byte value. It
is the number of columns the window is
wide. It has a range of 1 to 40.
ROW_DEPTH contains a one byte value. It is
the number of rows the window is deep.
It has a range of 1 to 24.

— S o e e M W ey i i ;e o S} T — T— T ———— 7 ——_—— tpy _— T oy W " T i W e W Wi e s e AP S S - W S = -

Spec. 50-90020490 Page 6 - 7 June 8, 1984

XI10S - MULTI-WINDOW SCREEN DRIVER

CURSOR_TYPE contains a one byte value. Two
bits are defined as follows:
bit 0 set indicates a wvisible cursor

exists

bit 0 c¢lear indicates no visible cursor
exists

bit 7 set indicates the cursor is to
flash

bit 7 c¢lear indicates the cursor is to
be steady

PATTERN_NAME contains a one byte value. It
is the ASCII character which is to be
the cursor shape. The default window
uses the underline character.

CURSOR_X_POS contains a one byte value. It
is the relative cursor column position
within the window. It has a range of 0
to COLUMN_WIDTH-1. It is usually set to
0-

CURSOR_Y_POS contains a one byte value. It
is the relative cursor row position
within the window. It has a range of 0
to ROW_DEPTH-1. It is usually set to 0.

TAB_MAP contains an array of 40 bits (5
bytes). These bits identify tab stops.
If a bit is set, then a tab stop exists
at that relative column number in the
window.

EXIT PARAMETERS: REGISTER A = RETURN CODE
Where:

RETURN CODE = 255 indicates
that the Open was
successful

RETURN CODE = 0 indicates that
the Open failed due to it
being the sixth window or
window control block not
specified correctly

CAUTIONS: This routine is not re-entrant

REGISTERS USED: A,B,C,D,E,F,HL,IX
6+ Bytes of stack used

This routine is used to open a window on the screen
and initialize a cursor in the window. It is passed a
properly set up WINDOW_CONTROL_BLOCK. A maximum of 5
windows may be defined concurrently. If the
WINDOW_CONTROL_BLOCK 1is not set up correctly or the
6th window is to be opened, the return code is zero.

T S i akn . W TR S S B W S P S i e i e S Ry Sy S S . S S S R S ST M T S S S S S S e S fer e e S v i S S S S — - —— T ——

Spec. 50-80020490 Page 6 — 8 June 8, 1984

Spec.

XI0S - MULTI-WINDOW SCREEN DRIVER

CLOSE WINDOW

ROUTINE NAME: CLOSEW

GLOBAL REFERENCE NUMBER: 2
FUNCTION: Close an opened window

ENTRY PARAMETERS: REGISTER BC = Pointer to
WINDOW_CONTROL_BLOCK
to be closed
If BC = 0 then all previously
opened windows are closed

EXIT PARAMETERS: REGISTER A = RETURN CODE
Where:

RETURN CODE = 0 indicates that
WCB was not found in
table of open windows

RETURN CODE = 255 indicates
that the window was
successfully closed

CAUTIONS: This routine is not re-—-entrant

REGISTERS USED: A,B,(C,D,E,F,HL,IX
4+ Bytes of stack used

This routine is used to close a cursor window when it
is no longer needed. A pointer to the
WINDOW_CONTROL_BLOCK is passed in register BC. The WCB
is removed from the list of active windows, and the
window cursor is turned off.

SET CURSOR PARAMETERS

ROUTINE NAME: SETCU

GLOBAL REFERENCE NUMBER: 3

FUNCTION: Set the cursor parameters

ENTRY PARAMETERS: REGISTER BC Pointer to a working

Window Control Block

REGISTER D = CURSOR_TYPE
REGISTER E = PATTERN_NAME
50-50020490 Page 6 - 9 June 8, 1984

XI0S ~ MULTI-WINDOW SCREEN DRIVER

Where:
CURSOR_TYPE contains a one byte value. Two
bits are defined as follows:
bit 0 set indicates a visible cursor

exists

bit 0 clear indicates no visible cursor
exists

bit 7 set indicates the cursor is to
flash

bit 7 clear indicates the cursor is to
be steady

PATTERN_NAME contains a one byte value. It
is the ASCII character which is tc be
the cursor shape. The default window
uses the underline character.

EXIT PARAMETERS: REGISTER A = RETURN CODE
Where:
RETURN CODE = 0 indicates that
WCB was not found in
table of open windows
RETURN CODE = 255 jndicates
that the change occurred.

CAUTIONS: This routine is not re~entrant

REGISTERS USED: AfB)C,D;E,F'HLp IX
6+ Bytes of stack used

This routine is used to alter the parameters of a
cursor in a cursor window which is already open. This
routine MUST be used to turn off and turn on cursor
flashing for windows.

MOVE CURSOR IN WINDOW

ROUTINE NAME: GOTOX

GLOBAL REFERENCE NUMBER: 4

FUNCTION: Move the cursor to new position

ENTRY PARAMETERS: REGISTER BC Pointer to an opened

Window Control Block
CURSOR_X_POS
CURSOR_Y_POS

REGISTER D
REGISTER E

S S e — T o S ——— T S e - T ——— ———————— T _— —n o T — . W Bink S W S Sy ey e S Spre S T Y W — S —— e — . ——

Spec. 50~-90020490 Page 6 - 10 June 8, 1984

XIOS - MULTI-WINDOW SCREEN DRIVER

Where:

CURSOR_X_POS contains a one byte value. It
is the relative cursor column position
within the window. It has a range of 0
to COLUMN_WIDTH-1. It is usually set to
0.

CURSOR_Y_POS contains a one byte value. It
is the relative cursor row position
within the window. It has a range of 0
to ROW_DEPTH-1. It is usually set to O.

EXIT PARAMETERS: REGISTER A = RETURN CODE
Where:

RETURN CODE = D indicates that
the reposition failed due
to an incorrectly
specified window.

RETURN CODE = 255 indicates
that the reposition
occurred,

CAUTIONS: This routine is not re-entrant

REGISTERS USED: A,B,C,D,E,F,HL,IX
4+ Bytes of stack used

This routine 1is used to re-position the cursor in a
window. If the cursor is positioned outside the window
the return code will indicate failure.

PUT CHARACTER IN WINDOW

ROUTINE NAME: PUTCH

GLOBAlI. REFERENCE NUMBER: 5

FUNCTION: Put an ASCII character in the window

ENTRY PARAMETERS: REGISTER BC

0

Pointer to an opened
Window control block
ASCII character with

range 20H to 7EH

L}

REGISTER E

— o — S S e " — o e e B S S S G e T e ey Aty o S S S S T A S S e Sy — . S A S ———

Spec. 50-9002049%0 Page 6 -~ 11 June 8, 1984

XI0OS ~ MULTI-WINDOW SCREEN DRIVER

EXIT PARAMETERS: REGISTER A = RETURN CODE
Where:

RETURN CODE = 0 indicates that
write to the window
failed due to the window
not being opened or the

Window Control Block
being incorrectly
specified.

RETURN CODE = 255 indicates

that the write to the
window was successful.

CAUTIONS: This routine is not re-entrant

REGISTERS USED: A,B,C,D,E,F,HL,IX
6+ Bytes of stack used

This routine will output a single character at the
current cursor position and advance the cursor. No
control characters are interpreted, any data passed to
the routine is assumed to be a character. The cursor
is advanced according to the WRAP Algorithm as
follows:

CURSOR.XPOS:=CURSOR.XPOS+1;
IF CURSOR.XPOS > (WINDOW.WIDTH - 1) THEN
BEGIN
CURSOR.XP0OS:=0;
CURSOR. YPOS:=CURSOR.YPOS+1;
END
ELSE IF CURSOR.XPOS < { THEN
BEGIN
CURSOR. XPOS:=WINDOW.WIDTH-1;
CURSOR.YPOS:=CURSOR. YPOS-1:
END
IF CURSOR.YPOS > (WINDOW.ROWDEPTH-1l) THEN
BEGIN
CURSOR.YPOS:=0;
EXIT(WRAP_ALGORITHM) ;
END;
IF CURSOR.YP0S < 0 THEN
BEGIN
CURSOR. YPOS:=WINDOW.ROWDEPTH-1;
EXIT(WRAP_ALGORITHM;
END;
EXIT (WRAP_ALGORITHM) ;

S TP S S S S A S S R T . S S e W T S e T W - - ——— ———— i e iy e S LS el My S A e S ML ————— ——— " —— - A —

Spec. 50-90020490 Page 6 - 12 June 8, 1984

XI0S - MULTI-WINDOW SCREEN DRIVER

SCROLL WINDOW UP ONE ROW

ROUTINE NAME: UPSCR

GLOBAL REFERENCE NUMBER: 6

FUNCTION: Scroll the window up one line or row

ENTRY PARAMETERS: REGISTER BC = Pointer to a complete
or partial WINDOW_CONTROL_BLOCK
Where:
WINDOW__CONTROL_BLOCK must contain valid
values for the following:
TOP_LEFT_ADDRESS: WORD:
COLUMN_WIDTH: BYTE;
ROW_DEPTH: BYTE;
Where:
TOP_LEFT_ADDRESS contains a two byte value.
This value is computed as follows:
TOP_LEFT_ADDRESS = row number * 40
+ column number
Where: the row number and column
number represent the top
left corner of the window
This value has a range of 0 to 959
decimal
COLUMN_WIDTH contains a one byte value. It
is the number of columns the window is
wide. It has a range of 1 to 40.
ROW_DEPTH contains a one byte value. It is
the number of rows the window is deep.
It has a range of 1 to 24.

EXIT PARAMETERS: REGISTER A = RETURN CODE
Where:

RETURN CODE = 255 indicates
that the scroll was
successful

RETURN CODE = 0 indicates that
the scroll failed due to
window control block not
specified correctly

CAUTIONS: This routine is not re-entrant

A e S T Ty S) W By Wire Wy . oy ey o T T S o By Tt — T S L iy oy e iy . = ! T T — —— . Svs. A S W B

Spec., 50-90020490 Page 6 - 13 June 8, 1984

XI0S - MULTI-WINDOW SCREEN DRIVER

REGISTERS USED: A,B,C,D,E,F,HL,IX
8+ Bytes of stack used

This routine will scroll a window up one row and
replace the bottom row with blanks. Note that the area
being scrolled need not be an open window. A partial
WINDOW_CONTROL_BLOCK may be used to define the area to
be scrolled.

SCROLL WINDOW DOWN ONE ROW

ROUTINE NAME: DOWNS

GLOBAL REFERENCE NUMBER: 7

FUNCTION: Scroll the window down one line or row

ENTRY PARAMETERS: REGISTER BC = Pointer to a complete
or partial WINDOW_CONTROL_BLOCK
Where:
WINDOW_CONTROL_BLOCK must contain valid
values for the following:
TOP_LEFT _ADDRESS: WORD;
COLUMN_WIDTE: BYTE;
ROW_DEPTH: BYTE;
Where:
TOP_LEFT_ADDRESS contains a two byte value.
This value is computed as follows:
TOP_LEFT_ADDRESS = row number * 40
+ column number
Where: the row number and column
number represent the top
left corner of the window
This value has a range of 0 to 959
decimal
COLUMN_WIDTH contains a one byte wvalue. It
is the number of columns the window is
wide. It has a range of 1 to 40.
ROW_DEPTH contains a one byte value. It is
the number of rows the window is deep.
It has a range of 1 to 24.

e —— i . i b e Tt e T e T S Ny ———————— T T o S P Sl B o e S S S S A A S T S T " W ————

Spec. 50-90020490 Page 6 - 14 June 8, 1984

50-50020490 Page 6 - 15 June 8, 1984

Spec.

XIOS - MULTI-WINDOW SCREEN DRIVER

EXIT PARAMETERS: REGISTER A = RETURN CODE
Where: '

RETURN CODE = 255 indicates
that the scroll was
successful

RETURN CODE = 0 indicates that
the scroll failed due to
window control block not
specified correctly

CAUTICNS: This reoutine is not re-entrant

REGISTERS USED: A,B,C,D,E,F,HL,IX
8+ Bytes of stack used

This routine will scroll a window down one row and
replace the top row with blanks. Note that the area
being scrolled need not be an open window. A partial
WINDOW_CONTROL_BLOCK may be used to define the area to
be scrolled.

SCROLL WINDOW LEFT ONE COLUMN

ROUTINE NAME: LEFTS

GLOBAL REFERENCE NUMBER: 8

FUNCTION: Scroll the window left one column

ENTRY PARAMETERS: REGISTER BC = Pointer to a complete
or partial WINDOW_CONTROL_BLOCK
Where:
WINDOW_CONTROL_BLOCK must contain valid
values for the following:
TOP_LEFT_ ADDRESS: WORD;
COLUMN_WIDTH: BYTE;
ROW_DEPTH: BYTE;
Where:
TOP_LEFT_ADDRESS contains a two byte value.
This value is computed as follows:
TOP_LEFT_ADDRESS = row number * 40
+ ¢column number
Where: the row number and column
number represent the top
left corner of the window
This wvalue has a range of 0 to 959
decimal

e e e S S T S S et T —— " ——— T —— ——— T —— " Ty S s e o Wi B e U iy e ke e b e S S

Spec.

XI0S - MULTI-WINDOW SCREEN DRIVER

COLUMN_WIDTH contains a one byte value. It
is the number of columns the window |is
wide. It has a range of 1 to 40.

ROW_DEPTH contains a one byte value. It is
the number of rows the window is deep.
It has a range of 1 to 24.

EXIT PARAMETERS: REGISTER A = RETURN CODE

Where:
RETURN CODE = 255 indicates
that the scroll was
successful

RETURN CODE = 0 indicates that
the scroll failed due to
window control block not
specified correctly

CAUTIONS: This routine is not re-entrant

REGISTERS USED: A,B,C,D,E,F,HL,IX
8+ Bytes of stack used

This routine will scroll a window left one column and
replace the last column with blanks. Note that the
area being scrolled need not be an open window. A
partial WINDOW_CONTROL_BLOCK may be used to define the
area to be scrolled.

SCROLL WINDOW RIGHT ONE COLUMN

ROUTINE NAME: RIGHT

GLOBAL REFERENCE NUMBER: 9

FUNCTION: Scroll the window right one column

ENTRY PARAMETERS: REGISTER BC = Pointer to a complete
or partial WINDOW_CONTROI_BLOCK
Where:
WINDOW_CONTROL_BLOCK must contain valid
values for the following:
TOP_LEFT_ADDRESS: WORD;

COLUMN_WIDTH: BYTE;
ROW_DEPTH: BYTE;
50-90020490 Page 6 -~ 16 June 8, 19584

XIOS - MULTI-WINDOW SCREEN DRIVER

Where:
TOP_LEFT_ADDRESS contains a two byte value.
This value is computed as follows:
TOP_LEFT_ADDRESS row number * 40
+ column number
Where: the row number and column
number represent the top
left corner of the window
This wvalue has a range of 0 to 959
decimal
COLUMN_WIDTH contains a one byte value. It
is the number of columns the window is
wide. It has a range of 1 to 40.
ROW_DEPTH contains a one byte value. It 1is
the number of rows the window is deep.
It has a range of 1 to 24,

EXIT PARAMETERS: REGISTER A = RETURN CODE
Where: '

RETURN CODE = 255 indicates
that the scroll was
successful

RETURN CODE = 0 indicates that
the scroll failed due to
window contreol block not
specified correctly

CAUTIONS: This routine is not re—entrant

REGISTERS USED: A,B,C,D,E,F,HL,IX
8+ Bytes of stack used

This routine will scroll a window right one column and
replace the first column with blanks. Note that the
area being scrolled need not be an open window. A
partial WINDOW_CONTRCL_BLOCK may be used to define the
area to be scrolled.

FILL AREA OF WINDOW

ROUTINE NAME: FILLA

GLOBAL REFERENCE NUMBER: 10

FUNCTION: Fill the entire area of a window

ASCII character

with range 20H to 7EH

REGISTER BC = Pointer to a complete
or partial WINDOW_CONTROL_BLOCK

ENTRY PARAMETERS: REGISTER E

———— v ey i P Sy e N S A S e S S S — — ———r d— A S Sy S S T Sk S o T Mt (g (S T S, W S

Spec. 50-90020490 Page 6 - 17 June 8, 1584

Spec -

XI0OS - MULTI-WINDOW SCREEN DRIVER

Where: . .
WINDOW_CONTROL_BLOCK must contain valid

B "values for the following:

TOP_LEFT_ADDRESS: WORD;

COLUMN_WIDTH: BYTE;

ROW_DEPTH: BYTE;

Where: _
TOP_LEFT_ADDRESS contains a two byte value.

This value is computed ag followa:
TOP_LEFT_ADDRESS = row number * 40
+ column number
Where: the row number and column
number represent the top
left corner of the window
This value has a range of 0 to 859
decimal .
COLUMN_WIDTH contains a one byte value. It
is the number of columns the window is
wide. It has a range of 1 to 40.
ROW_DEPTH contains a one byte value. It 1is
the number of rows the window is deep.
It has a range of 1 to 24.

EXIT PARAMETERS: REGISTER A = RETURN CODE

Where:
RETURN CODE = 255 indicates
that the £fi1ll was
successful

RETURN CODE = 0 indicates that
the fill failed due to
window control block not
specified correctly

CAUTIONS: This routine is not re-entrant

REGISTERS USED: A,B,C,D,E,F,HL,TX
8+ Bytes of stack used

This routine will fill a rectangular area on the
screen with a particular character. The area being
filled need not be an open window. A partial
WINDOW_CONTROL_BLOCK may be used to specify the area
to be filled.

—-——_—-——_—--—.-—-——-——_—_—.p_——_—-—————-.-——————._——-——--——-——..——

50-90020490 Page 6 - 18 June 8, 1984

XI0S - MULTI-WINDOW SCREEN DRIVER

USE WINDOW AS DUMB TERMINAL

ROUTINE NAME: DUMBT
GLOBAL REFERENCE NUMBER: 11

FUNCTION: Use a window as a dumb terminal or glass
teletype

ENTRY PARAMETERS: REGISTER E = ASCII character
with range 0 to 7FH
REGISTER BC = Pointer to a complete
WINDOW_CONTROL_BLOCK

EXIT PARAMETERS: REGISTER A = RETURN CODE

Where:
RETURN CODE = 255 indicates
that the write was
successful

RETURN CODE = 0 indicates that
the window is not open.

CAUTIONS: This routine is not re-entrant

REGISTERS USED: A,B,C,D,E,F,HL, IX
6+ Bytes of stack used

This routine allows an opened window to be used as if
it were an ASCII terminal. It will handle control
characters: carriage return, line feed, delete,
backspace, form feed, and horizontal tabs. The
routine puts the character at the current cursor
position of an opened window. It will interpret the
control characters as follows:

LINE FEED: CONTROL J

If the cursor is on the bottom line of the window, the
window will scroll up one line and leave the bottom
line filled with SPACES and the cursor will drop
Straight down into this blank line. If the cursor is
in the middle of the window, the cursor just drops
down one line.

CARRIAGE RETURN: CONTROL M
The cursor will move to the first position of the
current line.

Spec.

XI0OS - MULTI-WINDOW SCREEN DRIVER

BACKSPACE: CONTROL H

The cursor moves back one position. If the cursor is
in the top-left position of the window, nothing
happens.

DELETE: 7FH
The cursor backspaces one character and places a SPACE
over the character.

FORM FEED: CONTROL L
The cursor is reset to the top-left position of the
window and the window is filled with SPACES.

HORIZONTAL TAB: CONTROL I

The cursor is moved over to the next tab position of
the current line. If no tab position is found, the
cursor is placed at the start of the next line.

BELL: CONTROL G
A short tone will sound.

VERTICAL TAB: CONTROL K
The cursor moves up one line. 1If the cursor is on the
top-most line, nothing will happen.

-~

HOME: CONTROL
The cursor is reset to the top-left position of the
window.

OTHER CONTROL CHARACTERS:
Nothing will happen.

L A L S ey T T G T T AN S Srur o T S T — S f——— — — _— - — _" S il e e o oy S e S

50-90020490 Page 6 - 20 June 8, 1984

XIOS - 80 COLUMN SCREEN DRIVER

5.5 80 COLUMN SCREEN DRIVER
5.5.1 INTRODUCTION

This XI0S module will contain a complete set of routlnes
which form the 80 column screen driver. This screen
driver will emulate a Lear Seigler ADM-3A type terminal
on a 36 column visual video screen. A 1list of the
control character implemented is specified in a later
section.

5.5.2 OPERATIONAL REQUIREMENTS

This XI0S module will not require any other XIOS module
in order for it to function. It does however use BOS
calls from within the IOS Kernel to interface with the
video hardware.

5.5.3 MODULE SPECIFIC ERROR CODES

This XIOS module will not return any error codes
specific to itself, when it has been loaded, and when
the module has finished initialization or de-
initialization.

5.5.4 MODULE INITIALIZATION

When this XIOS module is loaded, its initialization
procedure is executed. This procedure will do the
following:

l. Link intc the IOS FKernel BOS routines as
required.

2. Disable the previous screen driver.

3. Set the video screen to text mode.

4. Fill the video screen with a blue background
and a blue foreground.

5. Create a virtual screen with size 80 columns by
24 rows; the cursor will be a flashing
underline character.

6. Create a visual "window" with size 36 columns
by 24 rows.

7. Enable the video hardware to output to screen.

8. Enable the cursor to flash.

———— ———— — T T S S T S T T G S Ty GAS W S T S e S S Sy S —————— T o e i M i P i e K L T Sy (. T S o T — ———

Spec. 50-950020490 Page 7 ~ 1 June 8, 1984

XI0S - 80 COLUMN SCREEN DRIVER

5.5.5 MODULE DE-INITIALIZATION

Prior to the module being physically removed from
memory, a "shut-down" or de—-initialization procedure is
executed. This procedure will do the following:

1. Clear the screen by filling with blanks.

2. Restore the Kernel routines such as the clock
interrupt handlier, to their "prior to XICS
module" state.

This procedure can not and will not restore the total
context of the screen prior to the XIOS module being
loaded.

5.5.6 DOS CALL INTERFACE

This module will be capable of decoding and executing
two DOS calls. The call numbers decoded are:

A2 -- INPUT STATUS FROM VIDEO SCREEN
A3 —— QUTPUT DATA TO VIDEO SCREEN

5.5.6.1 INPUT STATUS FROM VIDEO SCREEN WINDOW
In keeping with the standard for physical device
drivers, two entry points are provided for the Video
Screen Device Drivers. The first of these is as
follows:
VIDEQ_SCREEN: DEVICE_READY {call number A2H)

Function: Returns a data ready indication for the
screen driver

Entry Parameters: Register C = A2 Hex

Exit Parameters: Register A = Return Code

Where:

Return Code = 0 indicates
that the video
device is busy

Return Code = non-zero
indicates that the
video device is
ready to -accept
data.

——— e — o — T — — i B S Y E M A S S e i T e M - G SH B M Wy S Sl S S S G S S S e e e S i S S ——"——

Spec. 50-90020490 Page 7 - 2 June 8, 1584

XIOS - 80 COLUMN SCREEN DRIVER

5.5.6.2 OUTPUT DATA TO VIDEO SCREEN WINDOW

The second of the screen drivers has the £following
format:

VIDEO_SCREEN: SEND_DATA (call number A3H)
Function: Writes a character to the screen driver.

Entry Parameters: Register C = A3 Hex
Register D = ASCII Character to be
sent to video screen

Exit Parameters: None

The following is a list of the control characters
interpreted:

BELIL: CONTROL G
A short tone will sound.

BACKSPACE: CONTROL H

The cursor moves back one position. If the cursor is
in the top-left position of the screen, nothing
happens.

LINE FEED: CONTROL J

If the cursor is on the bottom line of the screen, the
screen will scroll up one line and leave the bottom
line filled with SPACES and the cursor will drop
straight down into this blank line. If the cursor is
in the middle of the screen, the cursor just drops
down one line.

CURSOR UP: CONTROL K
The cursor moves up one line. If the cursor is on the
top-most line, nothing will happen.

CURSOR RIGHT: CONTROL L

The cursor moves right one column. If the cursor is
at the right most position on a line, a 1line feed
action will occur

CARRIAGE RETURN: CONTROL M
The cursor will move to the first position of the
current line.

——— e —— o i S Sp U e e D e e e S T ————— " —— —— — T ——— T ————————— T —— i o S S

Spec. 50~90020490 Page 7 - 3 June 8, 1984

X108 - 80

CLEAR SCREEN:

The cursor is
screen and the

HOME: CONTROL
The cursor is
screen.

DELETE: 7FH

COLUMN SCREEN DRIVER

CONTROL Z

reset to the top-laft positian af +ha
screen is filled with SPACES.

~

reset to the top~left position of the

The cursor backspaces one character and places a SPACE
over the character.

OTHER CONTROL CHARACTERS:
Nothing will happen.

—————t " S ——— ———— —" . . T o S i S e e i e e b S —— T T T s T Y T o T — - ———— T — A 0 S Par i s

Spec.

50-90020490

Page 7 - 4 June 8, 1984

XI0OS - CP/M COMPATIBLE LOGICAL DEVICE DRIVERS

5.6 CP/M COMPATIBLE LOGICAL DEVICE DRIVERS

5.6.1 INTRODUCTION

This XIOS module will contain a set of routines which
are compatible with the logical device drivers found in
Cp/M 2.2, This is a subset of the CP/M 2.2 BDOS and
does not include the disk oriented functions. These
routines were formerly contained within the IOS Rernel.

5.6.2 OPERATIONAL REQUIREMENTS

This XI0S module may require other XIOS modules in order
for it to function. It does use DOS calls 0AOH through
O0A5H inclusively for interfacing to the screen, the
keyboard, and the printer. These DOS calls will be
found within the I0OS KERNEL or XIOS modules. The user
must ensure that the functions for DOS calls O0AO0OH to
OASH exist in memory, prior to using the logical
drivers.

5.6.3 MODULE SPECIFIC ERROR CODES

This XIOS module will not return any error codes
specific to itself, when it has been loaded, and when
the module has finished initialization or de-
initialization.

5.6.4 MODULE INITIALIZATION

When this XIOS module is loaded, its initialization
procedure 1is executed. This procedure will do the
following:

1. Resolve the required global references in the
I0S KERNEL.

2, Modify the jump address at location 1,2 in RAM
such that it points to the second entry in the
BIOS jump table (as per CP/M convention).

5.6.5 MODULE DE-INITIALIZATION

Prior to the module being physically removed from
memory, a "shut-down" or de-initialization procedure is
executed. This procedure will do the following:

1. Replace the modified jump location at 1,2 in
RAM with that which was originally there.

T M it s e, e s Bk e S S Wt A o U it W S Sy S B e T T T T i i} Sy i T S T S S S A o A~ ey i e i S

Spec. 50-90020490 Page 8 - 1 June 8, 1984

XI0S - CP/M COMPATIBLE LOGICAL DEVICE DRIVERS

5.6.6 DOS CALL INTERFACE

This module will be capable of decoding and executing
ten DOS calls. The call numbers decoded are:

. 00 -- SYSTEM RESET
01 ~- CONSOLE INPUT
02 -~ CONSOLE OUTPUT
03 -- READER INPUT
04 -~ TAPE OUTPUT
05 -- LIST QUTBUT
06 -- DIRECT CONSOLE I/0
09 -- PRINT STRING
10 -- READ CONSOLE BUFFER
11 -- GET CONSOLE STATUS

SYSTEM_RESET (call number QO0H)
-performs same function as a jump to location 0000 Hex
-entry parameters:
C Register: 00 Hex
~is not re-entrant

CONSOLE_INPUT (call number 01H)

-reads the next character from the logical console with
echo. The call does not return until a character is ready.
This call will only accept CP/M compatible ASCII
characters. If the "YES" key is hit, a "Y" is returned. If
the "NO" key is hit, a "N" is returned. All other key
codes above 7FH are returned but not echoed to the screen.

-entry parameters:

C Register: 01 Hex

-Returned Values:

A Register: Character Input
~is not re-entrant

CONSOLE_OUTPUT (call number 02H)

-outputs a character to the logical console. Since the
default physical console driver is DOS calls 0A2H and 0A3H,
consult the specification for DOS call 0A3H for control
character interpretation.

-entry parameters:

C Register: 02 Hex
E Register: Character to be output

u-——--.—..——-————.——.-—-———-—-————.—..—-—_—-__——_—————.---—————-—-—u—_——-——-.-.-—_

Spec. 50-90020490 Page 8 - 2 June 8, 1984

XI0S - CP/M COMPATIBLE LOGICAL DEVICE DRIVERS

READER_INPUT (call number 03H)

-get a byte from the logical TAPE reader. Control will not
return to the calling program until the character has been
read. This call will only accept CP/M compatible ASCII
characters. If the "YES"™ Key is hit, a "Y" is returned. If
the "NO" key is hit, a "N" is returned. All other key
codes above 7FH are returned but not echoed to the screen.

-entry parameters:

C Register: 03 Hex

—-returned value:

A Register: character read

-is not re—-entrant

PUNCH_OUTPUT (call number 04H)

-output a byte to the logical TAPE punch. Since the default
physical console driver is DOS calls 0A2H and 0A3H, consult
the specification for DOS call 0A3H for control character
interpretation.

-entry parameters:
C Register: 04 Hex
E Register: character to be output

LIST_OUTPUT (call number 05H)
-output a character to the logical list device
-entry parameters:
C Register: 05 Hex
E Register: character to be output

DIRECT_CONSOLE_IO (call number 06H)

-provides unadorned I/0 from/to the logical console. Upon
entry, the E register either contains an OFF Hex, denoting
a console input request, or a character to be output. If
the input value if OFF Hex, then the functions returns with
the A register set to 00 if no character is ready at the
lecgical console otherwise the A register is set to the
character value input from the logical console. This call
will only accept CP/M compatible ASCII characters. If the
"YES" key is hit, a "Y" is returned. If the "NO" key is
hit, a "N" is returned. Since the default physical console
driver is DOS <calls 0AZ2H and 0A3H, consult the
specification for DOS call 0A3H for control character
interpretation.

. Al S e S e e Sl Y e A e Y ke S R S ey A S — ————— o Sot o o T o v S W Bt W Y S —— s o —— e S et W1 e Srr e e Ve

Spec. 50-90020490 Page 8 - 3 June 8, 1984

X105 - CP/M COMPATIBLE LOGICAL DEVICE DRIVERS

—-entry parameters:
C Register: 06 Hex
E Register: FF Hex (input) or
character to be output
~returned value:
A Register: character of 00 Hex (input)
nothing if output
~is not re-entrant

PRINT STRING (call number Q9H)

-print a string to the logical console from a buffer. The
character string stored in memory at the location pointed
to by the DE register is sent to the logical console. A 'S$'
is used as a delimiter to end the print string. Since the
default physical console driver is DOS calls 0A2H and 0A3H,
consult the specification for DOS call 0A3H for control
character interpretation,

-entry parameters:
C Register: 09 Hex
DE Register: pointer to string

READ_CONSOLE_BUFFER (call number CAH)
-read a line of edited logical console input to a buffer.
The input is stored in the memory buffer pointer to by the
DE register. If the buffer overflows console input 1is
terminated. The format of the buffer is:

MAX_BUF_SIZE: BYTE;
NUMBER_OF_CHARACTERS_READ: BYTE;
CHARACTER_BUFFER: ARRAY[1..MAX_BUF_SIZE] BYTE;

The "GO" key (0D Hex) or CNTRL J (0A Hex) will terminate
the input line. This call will only accept CPB/M compatible
ASCII characters. If the "YES" key is hit, a "Y' is
returned. If the "NO" key is hit, a "N" is returned. All
other key codes above 7FH are returned but not echoed to
the screen.
-entry parameters:
C Register: 0A Hex
DE Register: Pointer to MAX BUF_SIZE
(MAX_BUF_SIZE must be set as well)
~returned values:
Console Characters in Buffer
NUMBER_OF_CHARACTERS_READ sget
-is not re-entrant

——u—_-———.-———.—-——.—--—.q..-.——————-—-—-...-—————.-..—--_._——.—-———qh—-———--——m—_————-q——

Spec. 50~-90020490 Page 8 - 4 June 8, 1984

XI0S -~ CP/M COMPATIBLE LOGICAL DEVICE DRIVERS

GET-CONSOLE_STATUS (call number OBH)

-check to see if character has been typed at logical console
—-entry parameters: '

C Register: OB Hex
-returned value:

A Register: 00 Hex —-No character ready

FF Hex ~Character is ready and waiting

=-is not re-entrant

For more information on CP/M please refer to reference
[10]. Also note some important information in section 1
concerning CP/M implementation and upgrading in the IOS.

—— — e Sy T S e S v e e ol S ————r —————— ——————————— ————— " Y — Y - — ——— ——] i S S S ——

Spec. 50-90020490 Page 8 - 5 June 8, 1984

XI0s - CP/M COMPATIBLE LOGICAL DEVICE DRIVERS

THIS PAGE LEFT INTENTIONALLY BLANK

——— . Sy S ———— T W P A T ok B ——— T —— T Y Sk Sl . Sy Sy T T o e iy i Bt i B Ml S T T — T 7 S P T B G i Sy —

Spec. 50-90020490 Page B - 6 June 8, 1984

APPENDICES

APPENDICES

APPENDIX A

Definiti and Al iatio

ASCII

BASIC
BDOS

BIOS

Boot ROM

BOS

CATV

CpP/M

CsSA

HEAD-END

1/F
1/0

IOBYTE

I0s

ISR

LED

An American standard for assigning code numbers to
keyboard characters

A commonly used computer language on personal computers

Digital Research's Basic Diskette Operating System
This forms part of CP/M

Basic Input and Output Handlers

Read Only Memory which is immediately executed after a
NPC is powered up

Basic Operating System ~ Low level routines

Community Antenna Television System - It is now used to
denote any cable television system

Digital Research's Diskette Operating System - It is
the abreviation for control processor and monitor

Canadian Standards Asscciation

General abreviation for diskette operating system -~
however for the NPC it means Downloadable Operating
System

Refers to the central minicomputer system that broad-
casts the software.

General abreviation for interface
General Abreviation for input and output

A memory location used by CP/M to indicate what physical
I/0 is connected to which logical 1/0

Internal Operating Software for the NABU Personal
Computer

General abreviation for Interrupt Service Routine

Light Emitting Diode used on front panel of NPC for
indicating partial status of the NPC

S S T T T i et B W i P P T T o o e o e e S e B el e s iy o W R e S, ey ope o S —— Y _——

Spec. 50-90020490 Page ¢ - 1 June 8, 19584

NA

NNI
NPC

PIXEL
RAM

APPENDICES

NABU Adaptor - It is the unit which interfaces the NPC
to a CATV cable system which broadcasts software and
data for use in a NPC. It was formerly called NNI

NABU Network Interface ~ It is the 0l1d name for NA.
NABU Personal Computer
The smallest addressable graphics unit on a TV screen.

Read and Write type Memory for computers

RF Modulator

ROM

SPRITE

SYM

TMS-9918A

VDP

i o e g ey .

That piece of electronic equipment which converts the
digital signals of the head-end minicomputer into ana-
log signals for broadcasting.

Read Only type Memory for computers

A single-coloured, moveable, positionable graphics
entity with variable pixel definition and resolution.

It is a special key on the NPC keyboard which can be
used to redefine the keyboard

The name for the video chip in the NPC

Video display processor - for the NPC it is the TMS-
9918A

Tt B ok i S Shek et e g S Sy e g Wy P S ———— ————— — T ——— T . T _. S W58 ek it e T T v S —————

Spec. 50-90020490 Page 9 - 2 June 8, 1984

APPENDICES

APPENDIX B

This is a summary of the complete set of current IOS functions.
For the CP/M calls and DOS calls, the number directly preceeding
each function is the value register C must contain prior to the
call. For the BOS calls the number is the value that the link
table must be initialized to in order to gain access to the
proper routine,

CP/M (Calls to location 0005H)

00 System Reset Resets NPC

01 Conscle Input Read data from console
02 Console Output Type data to console

03 Reader Input Read data from paper tape
04 Punch Output Punch data on paper tape
05 List Output List data to printer

06 Direct Console I/0 Unadorned console I/0

09 Print String Print message in buffer
ca Read Console Buffer Read message in buffer
0B Get Console Status Return status of console
ocC Get Version Number Not Implemented

Downloadable Operating Software (DOS) (Calls to location GO0S8H)

Segment Routines

80 Reset Device Reset logical device

82 Get Status Get adaptor status

83 Set Status Set adaptor status

84 Load Segment Load segment from cable

87 SEG$CST Base Address Return control status block

88 Directory Search

96 Load XIOS Module

97 Unload XIOS Module

99 Resolve Global Reference

I/0 Service Routines

8a I/0 Router: Attach Set phys dev to log dev
A0 Human Input: Device Ready Keyboard ready

Al Human Input: Get Data Get keyboard data

A2 Video Screen: Device Ready Screen ready

A3 Video Screen: Send Data Send data to screen

A4 Printer: Device Ready Printer ready

A5 Printer: Send Data Send printer data

o T e e o o s o i T | e W S S St S .t o) . Sy oy i Y . S e 2t s S W4 e Syme ey . S S . o S o e S e

Spec. 50-90020490 Page 9 - 3 June 8, 1984

APPENDICES

Multitasking Routines

8B Clock User: Task Attach

8C Clock User: Task Remove

8D Device User: Task Attach

8E Device User: Task Remove
Miscellaneous

90 Link BOS Routines

91 Set SYM key Table

92 Read Real Time Clock

93 Set Real Time Clock

94 Confiquration

Attach task to system clk

Remove task
Attach device to clk
Remove device from clk

Set up linktable for BAS
Redefinition table for SYM

Return system confiquration

Basic Operating Software (BOS) (Called via link table)

Video Routines

00
01
04
05
06
07
08
09
0A
OB
e
0D
OE
OF
10
11
12
13
14
15
16
17
18
19
1a
1B
1cC
1D
1E
1F

VREGRD Reads TMS~9918A video display register
VTABRD Reads current table base address ptrs
VREGWR Writes video display register

VSTATRD Reads video status register

VNAMEST Sets the pattern name address

VCOLRST Sets the colour table address

VPTRNST Sets the pattern table address

VATRIST Sets the sprite attributes table addr
VSPRIST Sets the sprite table address

VBLKON Blanks the video display

VBLEKOFF Turns on the video display

VRAMRD Reads a single byte of VRAM

VRAMWR Writes a single byte of VRAM

FASTLS Write a string (256 max) of bytes to VRAM
FASTLD Write a string (16 K max) of bytes to VRAM
FASTDS Read string of bytes (256 max) from VRAM
FASTDU Read string of bytes (16 K max) from VRAM
VRAMLS Same as FASTL8 but interrupt protected
VRAMLD Same as FASTLD but interrupt protected
VRAMDS Same as FASTD8 but interrupt protected
VRAMDU Same as FASTDU but interrupt protected
SPMARK Mark end of a sprite attributes table
SPMOVE Move a sprite on the video screen

SPCOLR Set the colour of a sprite

SPNAME Set pattern name assoc. with a sprite
RPATRN Load pattern def'ns into Screen table
LPATRN Load pattern def'ns into VRAM

CHADR Return VRAM addr for a certain pattern
VFILL Fill block of VRAM with a character

XYLOC Return name tab addr for any XY loc

——m—-—-_—....-—_.—-_——-—-—————-»_h————--.o-———_u..——--—-.q-_-———_—--_—_—-n.——.—_—

Spec. 50-90020490

Page 9 - 4 June 8, 1984

PUTPAT
GETPAT
SETMSG
PUTMSG
GETMSG
VSETTXT
VSETG1
VSETG2
VSETSPA
VMOVI
VMOVD
FASTRD
FASTWR

Audio Routines

35
36

AUDRD
AUDWR

APPENDICES

Put
Get
Set
Put
Get
Set
Set
Set
Set

pattern at any XY loc

pattern from any XY loc

up screen message

a message on screen

a message from screen

video for text mode

video for Graphics 1 mode
video for Graphics 2 mode
sprite size and magnification

Move data in VRAM up quickly

Move data in VRAM down quickly
Unprotected single byte VRAM read
Unprotected single byte VRAM write

Read audio chip register
Write the audio chip register

Miscellaneous BOS Routines

02
03
29
37
38
39
3E

CRBEG
CREND
MUL88
CLKPRM
HOINIT
CREGWR
SETMSK

Start of a critical region

End

of a critical region

Multiply two eight bit values

Control real time processing

Initialize IOS

Write to the control port

Write hardware interrupt control register

e S B G e S ke Bl ey e S e T S M T P vy S ———————— ——— T R AT o St Sy i S Y o W Sy e M S e W S A S v M ——————— "

Spec. 50-90020490

Page 9 - 5 June 8, 1984

APPENDICES

APPENDIX C

The following is a sample program to demonstrate the use of the
video display processsor and the audio generator. This program
assumes that the M80 assembler (copyright Microsoft) is used.

The program will place messages on the screen, move a red
circular or a blue square sprite around on the screen under the
control of a joystick and a clock attach routine.

khkkhkhkhkhkhhhkhhkhkhkhkhkkhhRkhkhh A hdhhkhhhhrhhhhhhhhhhhkhhhhkhkithkhkhktrkhkkhhhkthkkhhhhkk

PROGRAM NAME: DEMO.MAC

~p WA WE N e

et e R el L T iy ————

DESCRIPTION: DEMONSTRATION PROGRAM TO INTRODUCE
THE 9918A VIDEO DISPLAY PROCESSOQOR, AUDIO
GENERATOR and the IOS.

e A WME NS WE WE NS N W

LA SRS A AR A SRR ARSI AT I I Y P S X L E]

. 480
.RADIX 10 ;USE BASE 10

; EXTERNAL FUNCTIONS
;THESE LABELS REFERENCE CODE OUTSIDE OF THE MAIN PROGRAM.

EXTRN TCHAR + PATTERN DEFINITIONS
EXTRN SPRPAT ;SPRITE PATTERN DEFINITIONS
7 EQUATES
BLACK EQU 0l
MGREEN EQU 02
WHITE EQU OFH
DBELUE EQU 04

:***

T G S W ————— T ——— T —) Ty o T S iy S S S Sl M i M il S Sy o Sy T —————— T ——— i Y S Y - e S

Spec. 50-90020490 Page 9 - 6 June 8, 1984

APPENDICES

sMACRO DEFINITIONS

PCALL MACRO SUBR, PARMl, PARM2, PARM3
IFNB <PARM1>
LD BC, PARMI
ENDIF
IFNB <PARM2>
LD DE, PARMZ2
ENDIF
IFNB <PARM3>
LD HL, PARM3
ENDIF
CALL SUBR
ENDM
£
DEFMSG MACRO XP0OS, YPOS, MSG
LOCAL END, START
DB XPOS
DB YPOS
DB END-START
START: DB MSG
END:
ENDM
I
SETCOLR MACRO BACK, TEXT
IFB {TEXT>
PCALL VREGWR, 07, 10H+BACK
ELSE
BCALL VREGWR, 07, TEXT*10H+BACK
ENDIF
ENDM
!
N.CLEAT MACRO TASKADR
LD DE, TASKADR
LD C,08BH
CALL NABUSYS
ENDM
’
N.CLERV MACRO TASKADR
LD DE, TASKADR
LD C,08CH
CALL NABUSYS
ENDM
’
N.LINKIO MACRO IOSPTR
LD DE, IOSPTR
LD C,080H
CALL NABUSYS
ENDM

e ek Al s N T — T —— - e Ty oy W e) S T ——— 7 ———— - — — - —— 0 f—— T {— — T ——— — T~y ——— ——

Spec. 50-90020490 Page 9 - 7 June 8, 1984

12 .

« DEVRDY

-
L4

MACRO
LD

LD
CALL
ENDM

MACRO
IFNB
LD
LD
ENDIF
LD
LD
CALL
ENDM

APPENDICES

DEVICE,LOCATN
E,LOCATN
C,DEVICE*2+0A0H
NABUSYS

DEVICE, DATA
<DATA>
A,DATA

D,A

LOCATN,

E,LOCATN
C,DEVICE*2+0AlH
NABUSYS

;***

+ %
L)

DATA AREA *

;***

TSKEND: :
NEXT:
ENDINT:
ENDINIT:
ENDADR:

TSEMSP::
NEXT1:
SPINT:

SPINTIT:

SPRADR:

X:

¥:
COLRR:
OLDIR:
XFLAG:
YFLAG:
CFLAG:

Spec. 50-90020490

: TASK CONTROL BLOCK FOR END OF PROGRAM

DW O ;LINKED LIST POINTER

DB 15 ;EXECUTE TASK EVERY 1/4 SEC

DB 5H :WAIT 5/60 SEC BEFORE EXECUTION

DW 1H ;TASK ADDRESS

;TASK CONTROL BLOCK FOR SPRITE MOVEMENT

DW 1 s NEXT TASK IN LINKED LIST

DB 1 ;EXECUTE TASK EVERY 1/60 OF A SECOND

DB 1 ;WAIT 1/60 OF A SEC BEFORE EXECUTION

DWw 1 ; TASK ADDRESS

;DEFINE BYTES FOR VARIABLES

DB 1 +X POSITION OF SPRITE

DB 1 ;Y POSITION OF SPRITE

DB 1 : CURRENT COLOUR OF SPRITE 7=RED 8=CYAN
DB 1 ;OLD DIRECTION OF SPRITE

DB 1 ;SOUND ENABLE FOR VERT. MOTION 1=ENABLED
DB 1 :SOUND ENABLE FOR HORIZ. MOTION

DB 1 ; COLOUR FLAG. PREVENTS RAPID COLOUR CHANGES

e e T — S A A AR . s BLS iks eg Bplg D ke My e By e R o . St T A i Y ———— ——————— ——— "

June 8, 1984

APPENDICES

;DEFINE ALL THE MESSAGES TO BE PRINTED

MSGl: DEFMSG 9H,3,'WELCOME TO NABU '

MSG2: DEFMSG 3H,11l,'SAMPLE PROGRAM '

MSG3: DEFMSG 3H,13,'PRESS C KEY TO CONTINUE '
MSG4: DEFMSG 3H 14,'TO JOYSTICK PORTION OF TEST '
MSG5: DEFMSG 6H 18,'PRESS ESC KEY TO STOP !

;**

1 * START OF EXECUTION *
;**

START: : LD SP, (0006) ;SET STACK POINTER AT TOP OF MEMORY

N.LINKIO LNRTB## ;SET UP I0S JUMP TABLE
;**
3* THIS BLOCK OF CODE INITIALIZES THE VIDEO *
ik CHIP REGISTERS, LOADS THE ASCII CHARACTER *
3 * SET AND SETS UP THE COLOUR TABLE FOR *
1 WHITE LETTERS ON A BLUE BACKGROUND. *
;**

CALL VSETGL ;SET GRAPHICl MODE

PCALL VPTRNST,O0 ;SET PATTERN TABLE ADDRESS

PCALL VNAMEST,1CO0O0H ;SET PATTERN NAME TABLE ADDRESS .

PCALL VATRIST,1F00H :SET SPRITE ATTRIBUTE TABLE ADDRESS

PCALL VCOLRST,2000H ;SET COLOUR TABLE ADDRESS

PCALL VSPRIST,3800H ;SET SPRITE GENERATOR TABLE ADDRESS

SETCOLR DBLUE,WHITE ;WHITE LETTERS ON BLUE BACKGRND

;**

i DISABLE THE SOUND ON THE AUDIO REGISTER *
AR AR R R R R L R L Ly S R R I I I TIIIY

PCALL AUDIOWR,7,3FH +SET CONTROL REGISTER TO ZERO
PCALL RPATRN, TCHAR ;LOAD ASCII SET
PCALL VRAMLS8,20H,CLR1,2000H ;LOAD COLOR TABLE WHITE ON BLUE

;**

P * THIS BLOCK OF CODE BLANKS THE SCREEN *

: AND WRITES MESSAGES ON THE SCREEN. *
R AR AR A A Ay L T T Ty F T ey

PCALL VFILL,960,20H,1C00H ;FILL VIDEO SCREEN WITH BLANKS
CALL VBLRCOFF s TURN THE SCREEN ON

—— . S —— ——— — — ———— — i S T b S P Rk S i e O i e e S By B e B . e Y ——— — — — T ——— _—. g iy Yo i} Vot T e e e e S S

Spec. 50~90020490 Page 9 - 9 June 8, 1984

APPENDICES

;PRINT MESSAGES TO SAY HELLO AND PROMPT FOR ESC KEY

PCALL PUTMSG,MSG1
PCALL PUTMSG,MSG2
PCALL PUTMSG,MSG3
PCALL PUTMSG,MSG4

;***

R THIS BLOCK POLLS FOR THE 'C' KEY BEFORE *
P ¥ CONTINUING. ENDD IS THEN ATTACHED TO THE *
Hd CLOCK ISR TO CHECK FOR 'ESC' KEY INDICATING *
P * END OF DEMO. ' *
A T I T R R e i I I T e
LOOPF: LD E,OFFH ;LOOP UNTIL THE 'C' KEY- IS HIT

LD C,6

CALL 0005

cp 'C!

JP Nz, LOOP

PCALL VFILL 960,20H,1C00H

PCALL PUTMSG,MSG5

PCALL VRAMLS,20H,CLR2,2000H +LOAD COLOR TABLE BLACK ON GREEN
SETCOLR MGREEN,BLACK

LD HL, ENDD
LD (ENDADR) ,HL
N.CLEAT TSKEND

;***

P * THIS BLOCK INITIALLY SETS UP SPRITE PATTERN *
i AND INITIALLY PLACES A RED CIRCULAR SPRITE ¥
i* ON THE SCREEN. *

:***

:SET UP SPRITES

PCALL LPATRN,SPRPAT,3800H ;LOAD SPRITE PATTERN
PCALL SPNAME 0,0 :SPRITE 0,PATTERN 0
PCALL SPMARK 1 sEND OF SPRITE ATTRIBUTE
LD A,6 +SET SPRITE TO RED

LD (COLRR),A

PCALL SPCOLR 0, (COLRR)

LD A,Q

LD (OLDIR),A ; INITIALIZE OLDIR TO O

O . S S e i ek S T A 208) Y G S O S . e W S i S B ey B i S R o TR S —— —] W —— - — —— . S Harn e . ——— T o v

Spec. 50-90020430 Page 9 - 10 June 8, 1984

APPENDICES

LD A,30

LD (Y),A

LD A,40 ;SET INITIAL SPRITE

LD (X),A ;POSITION TO 40,30

LD A,1 ;TO PREVENT CONTINUOUS

LD (XFLAG) ,A $SOUND WHILE TRAVELLING ALONG

LD (YFLAG) ,A ;HORIZ AND VERT CENTERS, ENABLE

sFLAGS

shhkkhkhkhhkhkhhhhhhhhhdhhhhhhhhrhhhrdrhhbr kX Rk A h kAo hhh bk hhh ke khk kAR bRk kK
d THIS BLOCK ATTACHES SPRMOV TC THE CLOCK ISR TO HANDLE *
i * SPRITE MOVEMENT AND MAKING 'DING' 'DONG' SOUNDS *

;**

LD HL, SPRMOV

LD (SPRADR) ,HL ;ATTACH SPRITE MOVE
N.CLEAT TSEMSP s TO CLOCK
INL.OOP: JP INLOOP s INFINITE LOOP

khkkkkhkkhhkkhhhkhkhkkhhkhkkkhkhkhkhkhkhbhhhhhhkhkhkhkhkthkhthhhkkhhkhkthkkkhkkhkkhkhhhhhhhkdkhkhkxix

ROUTINE NAME:SPRMOV .

e WE ms ME up e

i e S e M S e e e e e o i s dee S S sy e e e S By, ek G P Sy Sl S b D o e

FILE NAME: DEMO.MAC

DESCRIPTION:USED TO DETERMINE THE NEW SPRITE POSITION, TO PRODUCE
SOUND. THIS ROUTINE IS ATTACHED TO THE CLOCK.

PARAMETERS PASSED: none

PARAMETERS RETURNED:none

REGISTERS CLOBBERED:REGISTER SAVED BY CLOCK

GLOBALS ACCESSED: none

GLOBALS WRITTEN: none

COMMENTS and WARNINGS:

M MR ME ME WP e WO WE WE N WA M WE WE e W WS wp We wr e

M ——— " S T S G W T S Y WEr YES S ST SRS T T TR S S S - ————— —— o — i e o S Sy Sy T W e T T Mo T e S — ———

Spec. 50-90020490 Page 9 - 11 June 8, 1984

APPENDICES

:**

i ¥ THIS BLOCK OF CODE DETERMINES IF THE JOYSTICK *
p ¥ IS READY. IF DATA IS READY, THEN N.DEVIO *
i OBTAINS THE NEW DATA IN THE ACCUMULATOR. *
R L L O e R R R R i R R R L R s I TIIIIT .
SPRMOV: :

LD A,1 :RESET FLAG

LD (CFLAG) ,A

N.DEVRDY 0,02 :CHECK IF JOYSTICK HAS DATA

JP NZ,CONT sIF NEW DATA IS READY THEN GET IT

LD A, (OLDIR) ;ELSE USE OLD DIRECTION

JP MOV

CONT: N.DEVIO 0,02 ;GET NEW DATA

LD (OLDIR} ,A }SAVE THE NEW DIRECTION

;**************************************t********************************

PRl THIS BLOCK OF CODE DETERMINES WHAT THE NEW DIRECTION IS. *
1 BITS ARE SET IN THE RETURN VALUE FROM N.DEVIO ACCORDING *
P ¥ TO WHAT THE JOYSTICK POSITION IS. *
il *
i * IF BIT 0 IS SET THEN MOVE LEFT *
i IF BIT 1 IS SET THEN MOVE DOWN *
Tl IF BIT 3 IS SET THEN MOVE RIGHT %
i* IF BIT 4 IS SET THEN MOVE UP *
Hid IF BIT 5 IS SET THEN CHANGE THE SPRITE CLOUR AND PATTERN *
:***
MOV : SRA A :SHIFT THE BITS TO THE RIGHT

CALL C,LEFT ;AND CALL THE APPROPRIATE

SRA A ;ROUTINE IF THE BIT IS SET

CALL C,DOWN

SRA A

CALL C,RGHT

SRA A

CALL C,UPP

SRA A

CALL C , FIRE

—— T ——— T . — i — P S P T T S o S W i M Mt Ty o S o S S il e S —— . ———— — — —— — -

Spec. 50-90020450 Page 9 - 12 June 8, 1984

APPENDICES

;***

¥ THIS BLOCK OF CODE DETERMINES WHETHER THE SPRITE HAS CROSSED *
3* THE VERTICAL LINE. IF IT HAS MAKE THE DONG SOUND. *
R s R T 2 a2
LD A, (X) ;CHECK IF SPRITE CROSSES VERT LINE
Cp 115 . '

JP NZ ,NOSNDX ;IF NOT THEN SKIP VERT SOUND
LD A, (YFLAG)

CP O ;IS SPRITE STILL ON VERT LINE?

JP Z,NOSNDX 7 YES-SKIP VERT SOUND

LD A,Q

LD (YFLAG),A ;RESET FOR SOUND

+PRODUCE SOUND FOR CROSSING VERICAL LINE

PCALL AUDIOWR 0,120 ;SET TONE

PCALL AUDIOWR 7,62 ;ENABLE CHANNEL A

PCALL AUDIOWR 8,31 s MAXTMUM AMPLITUDE ,ENABLE ENV.
PCALL AUDIOWR 12,56 $SET UP ENVELOPE

PCALL AUDIOWR 13,0

;**

P * THIS BLOCK OF CODE DETERMINES WHETHER THE SPRITE HAS CROSSED *

i * THE HORIZONTAL LINE. IF IT HAS MAKE THE DING SOUND. ®
shkhhhkhhhhhhhhkk ke ke kv ke kR ARk khh kb h kb bh ke k bk kb sk ki ke bk ko kb

NOSNDX: ;CHECK FOR HORIZ. SOUND .
LD A,{Y}
Ce 90 : CROSS HORIZ LINE?
JP NZ,NOSND tNO~ THEN NO SOUND
LD A, (XFLAG)
CP O
JP Z,NOSND
LD A,Q
LD (XFLAG) ,A +SET FLAG

; PRODUCE SOUND FOR CROSSING HORIZ. LINE
PCALL AUDIOWR 0,32 $SELECT TONE

PCALL AUDIOWR 7,62 ;ENABLE CHANNEL A
PCALL AUDIOWR 8,31 ;MAX., AMP. ENABLE ENV.
PCALL AUDIOWR 12,56 ;SET UP ENVELOPE
PCALL AUDIOWR 13,0

NOSND: PCALL SPMOVE 0,(Y),(X) ;MOVE SPRITE ON SCREEN
RET

——— —— —— i o i Y S - i AT So S S S e e A vy SNS M S o Sy e L A S S o e (T —— — T for o T P Sy — ————— 2 — - —

Spec. 50-90020490 Page 9 - 13 June 8, 1984

APPENDICES

LA A A A AR R AL st I R Y Y Y P Y P R Y S A R L

ROUTINE NAME:LEFT
FILE NAME: DEMO.MAC

DESCRIPTION: UPDATES THE SPRITE POSITION 1 PIXEL TO THE LEFT

PARAMETERS PASSED: none
PARAMETERS RETURNED:none
REGISTERS CLOBBERED:none
GLOBALS ACCESSED: none
GLOBALS WRITTEN: none

COMMENTS and WARNINGS:

WME UE M N NG NG mE WD W N NS NP N R B % NS N W wE .y We e W™y W

LEFT: PUSH AF ;SAVE AF REGISTER

LD A,l
LD (YFLAG) ,A ;RESET FLAG FOR SOUND
LD A, (X)
DEC A ;UPDATE X POSTION
LD (X),A
JP NZ,LR
LD A ,250 ;IS SPRITE AT THE EDGE OF SCREEN
LD (X),A

LR: POP AF
RET

TR Pl W e S S e s s e S s S S e S = A S T o o T Tk By T e S S B i S S e e Bl T o ot B . o S e S

Spec. 50-50020490 Page 9 - 14 June 8, 1984

APPENDICES

***t.

ROUTINE NAME:DOWN

FILE NAME: DEMO.MAC

DESCRIPTION:MOVES THE SPRITE'S POSITION 1 PIXEL DOWN
PARAMETERS PASSED: none

PARAMETERS RETURNED:none

REGISTERS CLOBBERED:none

GLOBALS ACCESSED: none

GLOBALS WRITTEN: none

COMMENTS and WARNINGS:

ME ME WS NS WE WP Nl a WM W wa NS M ME NS Ny W %8 wp g we -E ™ wE

DOWN: PUSH AF
LD A,l
LD (XFLAG) ,A
LD A,(Y)
INC A
LD (Y),A
CpP 180
JP NZ ,RD
LD A ,0
LD (Y),A
RD: POP AF
RET

RGHT: PUSH AF
LD A,1
LD (YFLAG) ,A
LD A, (X)
INC A
LD (X),A
CP 245
JP NZ ,RR
LD A ,O
LD (X),A

RR: POP AF

RET

———.-—_-—.—q————-—u—————;————-....-o—_—-._—_-——.-—_q-——_q——_———..——-.—.-.p-——q..-———.——.-._

Spec. 50-90020490 Page 9 - 15 June 8, 1984

N % Wme wE W

)

APPENDICES

khkdhdkhkkhkkhkhkhkhhkhhkkhkhkhkhkkhhkkhkhkhkhkhkkrkhhkkhkkhkhkkhkhkhhkihhkhrkhhkhhkhhikhkhrdhkkhhkhhkhhkhik

ROUTINE NAME:UPP
FILE NAME: DEMO.MAC

DESCRIPTION:MOVES THE SPRITE ONE PIXEL UP

PARAMETERS PASSED: none
PARAMETERS RETURNED:none
REGISTERS CLOBBERED:none
GLOBALS ACCESSED: none
GLOBALS WRITTEN: none

COMMENTS and WARNINGS:

WNE WE We WE wd %P NI NG N NP N NS U e NI W NI WS W Wme

UPP: PUSH AF
LD A,l1
LD (XFLAG),A
LD A, (Y)
DEC A
LD (Y),A
JP NZ,UR
LD A,180
LD (Y),A

UR: POP AF
RET

e e T —— ————— " S T o S d o o i o e S A S o e W e e T P S S S — — — ——— —— —————————

Spec. 50-90020450 Page 9 ~ 16 June 8, 1984

.- W WA wE W

Nl WS WS WE WS WS MY NE NS NG WS g

WE WP ME WS WA %P W WE WD

APPENDICES

***.

ROUTINE NAME:FIRE

FILE NAME: DEMO.MAC

Y — S —— . i P i T St e e T e b s S T o o — " . G T o - —

DESCRIPTION: WHEN FIRE BUTTON IS DEPRESSED, A RED CIRCLULAR
SPRITE IS TOGGLED TO A BLUE SQUARE OR BACK AGAIN.

PARAMETERS PASSED: none
PARAMETERS RETURNED:none
REGISTERS CLOBBERED:none
GLOBALS ACCESSED: none
GLOBALS WRITTEN: none

COMMENTS and WARNINGS:

FIRE: PUSH AF

LD A, (CFLAG)
CP 0

JP Z,FIRER
LD A,Q

LD (CFLAG) ,A
LD A , (COLRR)

cp 7
JP Z ,REDD
INC A

LD (COLRR),A .

PCALL SPCOLR 0, (COLRR)
PCALL SPNAME 0,5

JP FIRER

REDD: PCALL SPCOLR 1, (COLRR)

DEC A

LD (COLRR),A

PCALL SPCOLR 0, (COLRR)
PCALL SPNAME 0,1

FIRER: POP AF

— ———— . . - B G S o T ——— v ———— i o T S Ty Ty P o —— ———— —— " T o G B S e W T . SR B S e W T G RS G S

Spec.

RET

;HAS SPRITE BEEN CHANGED RECENTLY
;YES ~THEN RETURN

+RESET FLAG

;IS IT RED
; YES- CHANGE SPRITE TO A SQUARE

;AND CHANGE THE COLOUR
;MAKE IT A CIRCLE
;GOTO RETURN

; CHANGE COLOUR TC BLUE

s CHANGE IT TO BLUE
¢:MAKE THE SPRITE A SQUARE

50-90020490 Page 9 - 17 June 8, 1984

APPENDICES

hkkhkkkhkhhkhkhhhkhkhkhkhhkthkhkhkhkhkhkhhhhhhhkhkhhhhhhkhhhhhkkhhhhhhhhhhrhkhhhthbhhhkhkdktd

ROUTINE NAME:ENDD

b WE WE Nh . wp

FILE NAME: DEMO.MAC
DESCRIPTION: DETERMINES WHETHER THE ESC HAS BEEN DEPRESSED
AND IF IT HAS REBOOT THE SYSTEM.

PARAMETERS PASSED: none

PFARAMETERS RETURNED:none

REGISTERS CLOBBERED:none

GLOBALS ACCESSED: none

GLOBALS WRITTEN: none

COMMENTS and WARNINGS:

" W WME MNP W NE g N NP N N WA R NP UE Re wp R WP NS Ny

;POLL FOR ESCAPE KEY
ENDD: PUSH AF

N.DEVRDY 0,01 +IS THE KEYBOARD READY
CP O
JP Z,NOEND ; YES-THEN GET DATA ELSE RETURN
N.DEVIO 0,01 ;GET DATA
CP 1BH ;IS IT THE ESC KEY
JP NZ ,NOEND sNO -RETURN
LD C,0 :YES REBOOT CPM
JP O
NOEND: POP AF
RET

e o e S — — —— — —— S A e B i SL B S S T A i S S — — —— —— -y G 1 ey Wiy S S — ———————— —

Spec. 50-90020490 Page 9 - 18 June 8, 1984

;*************-** .

ok
’

APPENDICES

THIS IS THE DATA FOR THE COLOUR TABLE *

;*****************************‘k***

-RADIX 16

CLRl: DB OF4,0F4,0F4,0F4,0r4,0F4,0F4,0F4

DB OF4,0F4,0F4,0F4,0F4,0F4,0F4,0F4
DB 0F4,0F4,0F4,0F4,0F4,0F4,0F4,0F4
DB OF4,0F4,0F4,0F4,0Fr4,0r4,0r4,0F4

CLR2:

Ne R W

1]

ae [N~

Nk WMo

DB
DB
DB
DB
DB
DB
DB
DB

1]

-

bpB 012,012,012,012,012,012,012,012

b 012,012,012,012,012,012,012,012 ;COLOR TABLE ENTRIES
bp 012,012,012,012,012,012,012,012

DB 012,012,012,012,012,012,012,012

END

kkkhkkhhhhdhthhhhkhkhhkhhhhkhhkkdhhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkkdhkhrhkhhhkrthkhhhkik

The SPRPAT.MAC file

khkkhhhkkhkhhkhhkrkhrAhkhhhkhhk kA hh Ak rhkhkhkdkA R AR R Ak hhkhkhhhhdhhhdhkk

.Z80
CSEG
+RADIX 2

PRPAT::

DB 008H

000H,000H,001H,00FH,01FH,03FH,03FH,07FH,07FH
¢ely,07FH,03FH,03FH,01FH,00FH,003H,001H,G00H
002H,000H,080H,0COH,0F0H,0F8H,0FCH,0FCH, OFEH
003H,0FEH,0FCH,0FCH,0F8H,0F0H,0C0OH,C80H,000H
004H,0FFH,080H,080H,080H,080H,080H,080H,080H
005H,080H,080H,080H,080H,080H,080H,080H,0FFH
0oéH,0FFH,001H,001H,0014,001H,001H,001H,001H
007H4,001H,0011H,001K,001H,001H,001H,001H,0FFH

END

e o o o e e e S e o o e o e e St e e 2 P e o e e e A e B P B R T e e e e e .

Spec. 50~90020490 Page 9 - 19 June 8, 1984

APPENDICES

RERREARA KKK RRARRA RN AR ART AT AR AR AR IR AR Rk hkkhkhhkhkhkdhhkhhhhkhhhhhhkhhkd

RCOUTINE NAME: LNKTB
FILE NAME: LINKTAB.MHO
DESCRIPTION:

LNKTB is a driver table used by the application to establish
user access to IOS routines. The table must exist if

any of the IOS routines are to be used. Before the routines
may be accessed, the table must be initialized.

The table consists of all the IOS routines associated with
VDP, windows and cursors, and attaching tasks to the

clock interrupt. To use the table, delete any entries which
are not called by your software. This leaves only the
routines accessed by your code.

After the unused entries are deleted, the table must be
assembled and the assembled version included in the
final link of the application.

AUTHCR: Trevor Pearce

DATE and ISSUE: August 4, 1982 Version 1.0

CATALOGUE 1ID: HCF - AS - 0051

PARAMETERS PASSED: none

PARAMETERS RETURNED: none

REGISTERS CLOBBERED: none

GLOBALS ACCESSED: all VIDEO, SCREEN and CURE entry points

GLOBALS WRITTEN: all accessed globals are written during
initialization

COMMENTS and WARNINGS:

wE M WE WA WE NG WA NS WA WP WA NS WE WS WA W W NP R Ne RE WE NS N WD NS WS WS W W W NE N R N N N NG N N W

o —— . . e e . e e i . i i e T S S S . O S S Ty S S T S T i e S S S S S S 5 o L N S S S S e e e e e

Spec. 50-90020490 Page 9 - 20 June 8, 1984

APPENDICES

.280 .

.RADIX 10
LNKTB: :
DB (TABEND-TABSTRT) /3 ; Do not delete this line

H

TABSTRT: ; Do not delete this line

RéGRD::

VREGRD: : DB 00H,0,0

V&ABR::

VTABRD: : DB 01H,0,0
H

CRBEG: : DB 02H,0,0
H

CREND: : DB 03K,0,0
H

REGWR: :

VREGWR: ¢ DB 04H,0,0

S&ATR::

VSTATRD: : DB 05H,0,0
H

NAMST::

VNAMEST: : DB 06H,0,0
H

COLST: :

VCOLRST: : DB 074,0,0

PTRST: :

VPTRNST: : DB 084,0,0
H

ATRST::

VATRIST:: DB 094,0,0
7

SPRST::

VSPRIST:: DB gap,0,0
i

BLEKON::

VBLKON: : DB 0BH,0,0

essssees LtC., etc. etc.

’
TABEND: ; Do not delete this line

END

. T S ————— - i T T S W o M Al S e Bt W S W S S e i o e b) e e)] S s S T — g T ot = Y Ty . ———

Spec. 50-90020490 Page 9 - 21 June 8, 1984

