MEMORY AND INPUT/OUTPUT
ACCESSORY
for the ET-3400 Trainer
Model ETA-3400
595-2271-01

HEATH COMPANY < BENTON HARBOR, MICHIGAN

R

HEATH COMPANY PHONE DIRECTORY

The following telephone numbers are direct lines to the departments listed:

Kit orders and delivery information (616) 982-3411
Cradit ... (616) 982-3561
Replacement Pansovvvvennnnnn... (616) 982-3571

Technical Assistance Phone Numbers
8:00 AM. to 12 P.M. and 1:00 P.M. to 4:30 P.M., EST, Weekdays Only

R/ C, Audio, and ElectronicOrgans (616) 982-3310
Amateur Radio i (616) 982-3296
Test Equipment, Weather Instruments and

Home ClockS (616) 982-3315

... (616) 982-3307

Appliances and General Products . . (616) 982-3496
Computer Hardwarecoovieont, (616) 982-3309
Computer Softwareccoiiiiiiiinnrnnns (616) 982-3860
Heath Craft Wood Works (616) 982-3423

AR RRRRUARAA R R A2
YOUR HEATHKIT 90-DAY LIMITED WARRANTY

==
Consumer Protection Plan for Heathkit Consumer Products §

Weicome to the Heath family. We believe you will enjoy assembling your kit and will be pleased with its

performance. Please read this Consumer Protection Plan carefully. It is a "LIMITED WARRANTY" as

defined in the U.S. Consumer Product Warranty and Federal Trade Commission Improvement Act. This £
-
=

U

warranty gives you specific legal rights, and you may also have other rights which vary from state to state.

Heath’s Responsibility

PARTS — Replacements for factory defective parts will be supplied free for 90 days from date of purchase. Replacement parts are
warranted for the remaining portion of the original warranty pericd. You can obtain warranty parts direct from Heath Company by writing
or telephoning us at (616) 982-3571. And we will pay shipping charges to get those parts to you . . . anywhere in the world.

SERVICE LABOR — For aperiod of 90 days from the date of purchase, any malfunction caused by defective parts or error in design will
be corrected at no charge to you. You must deiiver the unit at your expense to the Heath factory, any Heathkit Electronic Center {units of
Veritechnology Electronics Corporation), or any of our authorized overseas distributors.

TECHNICAL CONSULTATION — You will receive free consultation on any problem you might encounter inthe assembly or use of your
Heathkit product. Just drop us a line or give us a call. Sorry, we cannot accept collect calls.

NOT COVERED — The correction of assembly errors, adjustments, calibration, and damage due to misuse, abuse. or negligence are
not covered by the warranty. Use of corrosive solder and/or the unauthorized modification of the product or of any furnished component
will void this warranty in its entirety. This warranty does not include reimbursement for inconvenience, loss of use, customer assembly,
set-up time. or unauthorized service.

This warranty covers only Heath products and is not extended to other equipment or components that a customer uses in conjunction with
our producls.

SUCH REPAIR AND REPLACEMENT SHALL BE THE SOLE REMEDY OF THE CUSTOMER AND THERE SHALL BE NO LIABILITY
ON THE PART OF HEATH FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES, iNCLUDING BUTNOT
LIMITED TO ANY LOSS OF BUSINESS OR PROFITS, WHETHER OR NOT FORSEEABLE.

Some states do not allow the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion may not
apply to you.

Owner’s Responsibility

EFFECTIVE WARRANTY DATE — Warranty begins on the date of first consumer purchase. You must supply a copy of your proof of
purchase when you request warranty service or parts.

ASSEMBLY — Before seeking warranty service, you should complete the assembly by carefully following the manual instructions.

Heathkit service agencies cannot complete assembiy and adjustments that are customer's responsibility.

ACCESSORY EQUIPMENT — Performance malfunctions involving other non-Heath accessory equipment, (antennas, audio compo-

nents, computer peripherats and software, etc.) are not covered by this warranty and are the owner’s responsibility. :§§

SHIPPING UNITS — Follow the packing instructions published in the assembly manuals. Damage due toinadequate packing cannot be
repaired under warranty.

It you are not satisfied with our service (warranty or otherwise) or our products, write directly to our Diractor of
Customer Service. Heath Company, Benton Harbor MI 49022. He will make certain your problems receive
immediate, personal attention.

A SRS

SOFTWARE REFERENCE MANUAL

for the
MEMORY AND INPUT/OUTPUT
ACCESSORY
for the ET-3400 Trainer
Model ETA-3400
595-2271-01

Copyright © 1979

HEATH COMPANY Heath Company

All Rights Reserved
BENTON HAHBOR, MlCHlGAN 49022 Printed in the United States of America

TABLE OF CONTENTS

IntrodUction e 3
Heath/Wintek Fantom II Monitor o i i, 4
SymbOlS . ..o e e 5
Using the Monitor i i i 6
Display/Alter Register Contentscoiiiiiii... 7
Display/Alter Memory Contentsc.oeuirereniiininanennn.. 9
Display Program Instructions, 11
Block Memory Transfer i, 12
Program Execution Controlo i .. 13
Program Storage and Retrievall 18
Using a Teletypewriter ..., AR 20
Sample Program it e e 22
Monitor Command SUMMATYouueeterirunnreeennnreeeenns 23
Heath/Pittman Tiny BASIC 0 i 26
Editing Commands 27
Using Tiny BASIC e e 28
Modes of Operationo i i 29
Instructions 30
Mathematical Expressions 0., 32
Tiny BASIC Re-Initialization (Warm Start) 33
Functions ... e 34
Sample USR Programscooiiiiiiiiieneiiiiaiannnn, 36
APPENAIXES .ot 40
Appendix A — Memory Map i 40
Appendix B — Tiny BASIC Error Message Summary 41
Appendix C — Heath/Wintek Monitor Listing 43
Appendix D — Excerpts from “Kilobaud” 75
IND X o e 95

INTRODUCTION

This Manual describes the operation of your ET-3400/ETA-3400 microcomputer
system. The major operational features of the system are explained in the sec-
tions titled ‘“Heath/Wintek FANTOM II Monitor” and ‘‘Heath/Pittman Tiny
BASIC.” The keyboard commands, ‘“Monitor Listing,” sample programs, and
memory maps are also included, as well as several article reprints from
“Kilobaud” magazine that will help you more fully enjoy your ET-3400/ETA-
3400 Microcomputer System.

The Microcomputer system easily interfaces to a video terminal and a cassette
recorder. The increase in memory size and software support gives you a more
flexible, general-purpose computer system, while the trainer itself still remains
functional and useful. The following list summarizes the main features.

® The ETA-3400 uses an independent power supply.

® The system supports 1024 (1K) bytes of read/write random-access
memory. This is expandable to 4K.

¢ A 2K ROM MONITOR.
¢ A 2K ROM Tiny BASIC interpreter.
® Expanded I/O support:

— Audio cassette mass storage;

— Video terminal.

HEATH/WINTEK FANTOM I1I
MONITOR

This Monitor consists of a group of individual computer programs linked to-
gether that operate as a single supervisory systems controller. These programs
are permanently located in a 2K ROM (2048 bytes of Read-Only-Memory) on the
ETA-3400 circuit board. FANTOM II schedules and verifies the operation of
peripheral computer components. You use the Monitor to build, test, execute,
store, and retrieve computer programs written in machine code.

The Monitor provides you with a means of communicating between the microp-
rocessor, the terminal, and a cassette. You select a Monitor command by pressing
a key on the console terminal associated with the particular command. This
information is processed by the Monitor, which then directs the computer to the
routine that performs the operation. Control is returned to the Monitor after the
operation is completed.

This section of the Manual describes the function, operation and features of
FANTOM II. Some of the major features are:

® Display/Alter register contents.
® Display/Alter memory contents.
® Display Program Instructions
® Program Execution Control.
® Program Storage and Retrieval.
NOTE: A knowledge of the Motorola 6800 microprocessor and common pro-

gramming techniques is essential for understanding the FANTOM II Monitor.
The HEATH EE-3401 microprocessor course provides this knowledge.

SYMBOLS

This Manual uses symbols to describe some terms. Frequently used symbols and
their meaning are listed below. In examples of keyboard dialogue, monitor and
program output are underlined.

MICROPROCESSOR

A

TERMINAL
ESC

BRK

CTRL

@

Accumulator or register A. The 8-bit arithmetical or logical sec-
tion of the computer that processes data.

Accumulator or register B. An 8-bit register similar to register A.

The condition code register. A 6-bit register that indicates the
nature or result of an instruction.

The program counter. A 16-bit register that sequentially counts
each program instruction.

The stack pointer. A 16-bit register that records the last address of
an entry onto the stack.

The index register. This 16-bit register permits automatic pro-
gram modification of an instruction address without destroying
the address contained in memory. The index register is frequently
used as a memory pointer.

The ESCape key. Press this key to return control to the Monitor.

The BReaK key. Press this key once to return control to the
Monitor. Press it twice to return control to the ET-3400 trainer.

The control key. When it is used in conjunction with another key,
it creates a special function. For instance, if you hold CTRL and

press P, the contents of the program counter will be displayed.

The carriage return, or return key, on your video terminal.

PROMPT CHARACTERS

MON>

The FANTOM II Monitor prompt character. It indicates that your
system is functioning and ready to accept a Command.

Tiny BASIC prompt character.

USING THE MONITOR

POWER UP and MASTER RESET

When power is first applied to the ET-3400/ETA-3400 Microcomputer System,
you should press the RESET key on the ET-3400 keypad. The display will then
show CPU UP, and the next keypad entry will be interpreted as a command. Use
the RESET key to initialize the system or escape from a malfunctioning program.

When you wish to use FANTOM I, after pressing the RESET key, press the DO
(D) key on your trainer and enter the hexadecimal starting address 1400. This
command causes FANTOM II to print the prompt characters (MON>)« on the
video terminal. This tells you that the system Monitor is functioning and is
waiting for a command. For instance, the following sequence will initialize the
Monitor, examine the contents of several memory locations, and return control
to the ET-3400 microcomputer.

Apply power to the microcomputer system.

Press RESET on the ET-3400 keypad.

Press DO on the keypad and enter hexadecimal address 1400.
Look for the prompt character (MON>) on your terminal.

Type M { Memory) on the terminal keyboard and enter the address
1400 followed by a carriage return.

The video display responds by printing the address and the memory
contents. (1400 OF)

Enter several carriage returns and observe the display. You will notice
that, for each carriage return, a sequential memory location and its
corresponding data is shown.

Press the ESCape or BReaK key on your terminal. The prompt character
reappears and control is returned to the monitor.

Press the BReaK key a second time and control is returned to the
Trainer.

«Throughout this Manual, the computer output has been underlined to set it off from the user response.

DISPLAY/ALTER REGISTER CONTENTS

DISPLAY REGISTERS

The ET-3400/ETA-3400 Microcomputer System manipulates all data through its
registers. You can examine the contents of a single register or all the registers by
selecting the appropriate command. When you use the correct format, display-
ing the contents of a selected register is simple. For instance, pressing R after the
prompt character displays the contents of all microprocessor registers. In this
and subsequent examples, unless specified, the data shown is only given as an
example. You should expect to get different displays.

MON> R C=DB B=0B A=0B X=0BUOB P=1401 S=00D2 CE 1000
MON>

In this example, you can see that the condition code register was set to hexadec-
imal integer DB. The A and B registers equal 0B, while the index register X was set
to OBOB. The program counter (P) displays the address of the next instruction to
be executed and S is the current address of the stack pointer. Finally, the next
instruction that would be executed if the program were run is CE 1000. This
information, when displayed on the video screen, is useful for correcting pro-
gram errors.

The two most significant bits of the 8-bit RAM location that hold the condition
code are neglected by the system hardware. In the example, DB (1101 1011)
shows the status of the condition codes. By pressing CTRL/C and entering a
different value, you can change the status of register C.

DISPLAY/ALTER REGISTERS

The Monitor also lets you display or change the contents of individual registers,
except the stack pointer. To display the contents of a register (other than the stack
pointer), press the CTRL key on the terminal, and then select and press the key
that corresponds to the register name. When you wish to change the contents of a
register, enter the new value after displaying the original contents. The follow-
ing examples show you how to display and alter the contents of each micro-
processor register.

For instance, to display the program counter, simultaneously press the CTRL
and the P keys. A return causes the Monitor to complete the command and
display the prompts.

MON> CTRL/P P=1401

In the next example, the contents of register A are first displayed and then
altered. Press CTRL/A to display the current contents of register A. Enter a new
hexadecimal value, for instance 1B, and a carriage return. The return signals the
Monitor to execute the command, and the displayed prompt character indicates
a successful completion of the command. You can then press CTRL/A and verify
that the register contents were changed.

MON> CTRL/A A=NN 1B @&
MON> CTRL/A A=1B &
MON>

The Monitor uses the same format to display or alter the contents of each
microprocessor register. In all subsequent examples, NN or NNNN represents a
random hexadecimal value. The list summarizes the usage of register commands
available to you through the Monitor.

MON> CTRL/A A=1B & (Display A)
MON> CTRL/B B=NN 12 & (Alter B to read 12)
MON> CTRL/C C=NN 00 & (Alter C to read 00)

|
|

MON> CTRL/P P=NNNN 1234 @ (P = 1234)

MON> CTRL/X X=NNNN 5678 @ {(X = 5678)
MON> R C=00 B=12 A=1B X=5678 P=1234 S=NNNN «*

«You can neither alter the stack pointer, nor predict its value, with the FANTOM II Monitor. Also, machine
instructions or data will be output after the stack pointer address is printed.

DISPLAY/ALTER MEMORY CONTENTS

OISPLAY MEMORY

The FANTOM II Monitor can access individual or sequential memory locations.
This feature allows you to rapidly examine and correct program instructions or
data. To display an area of memory on the video terminal, type D {display) and
specify the range of the memory locations. The following example shows you
how to display the contents of 16 sequential memory cells from address 1400
thru 140F. Because the area shown in the example is part of the Monitor, you
should obtain the same results.

MON> D 1400, 140F <
1400 OF CE 10 00 6F 01 6F 03 86 01 A7 00 86 '7TF A7 02
MON>

The Monitor responds to the carriage return by typing the starting address and
listing the memory contents. The address of each line displayed is always the
first four-digit number, followed by the contents of the next sixteen sequential
memory locations.

DISPLAY/ALTER MEMORY

Usethe M (Memory) command when you wish to examine or alter the contents of
an individual or a sequence of memory locations. For instance, as shown below,
type an M after the prompt character and the address 1400. FANTOM Il responds
by printing the address and the memory contents (OF) after you press the carriage
return. To proceed to the next location, press the carriage return again. FANTOM
IIresponds by printing an address and its contents. To exit the display mode and
return to the Monitor, press ESC or BRK.

The following example shows you how to examine the contents of ROM memory
locations. You can compare the data with the ‘“‘Heath/Wintek Monitor Listing,”
{“Appendix C,” Page 37) and/or examine additional locations. This feature
provides a quick method of searching for useful Monitor or Tiny BASIC sub-
routines.

10|

You may use the same procedure to modify memory contents that you use to
change register contents. In the next example, use the M command to alter the
contents of several hexadecimal locations between 100 and 105. The procedure
always gives you an option of changing or not changing the program data. You
will not alter memory contents if you press a carriage return after the data is
displayed.

MON> M 100 &
0100 NN A &
0101 NN OB &
0102 NN C &

0103 NN OD &
0104 NN E &

0105 NN BRK

MON>

The previous example features free-format hexadecimal input. This means you
do not have to enter leading zeros. For example, at location 0104 we entered the
value E rather than OE. Free-format allows you to correct or modify a bad entry
simply by typing extra digits. For instance, assume that, in the previous exam-
ple, you incorrectly entered 109 after the M command. Enter the address 0100
before the carriage return to correct the mistake. For example:

MON> M 1090100 ¢
0100 NN ESC
MON>

Since a maximum of four digits is all that are needed for an address, only the last

four areretained. Similarly, if only two digits are expected, then only two will be
retained.

DISPLAY PROGRAM INSTRUCTIONS

The FANTOM II Monitor offers an important extra feature. You may use the
Instruction (I) command to display program instructions. The format is similar to
the memory display instruction except that the Monitor prints a single micro-
processor instruction per line rather than the contents of each memory cell. An
instruction can be one, two, or three bytes. A carriage return, as with the M
command, causes FANTOM II to display the next sequential instruction. The I
command allows data changes using the same procedure as the M command.
However, only the last byte of an instruction can be altered.

The next example displays the first four Monitor program instructions.

MON> I 1400 ¢
1400 OF €A

1401 CE 1000 &
1404 6F 01 &
1406 6F 03 BRK
MON>

When the data in the first byte of an instruction address memory locationis nota
machine instruction, the Monitor prints a DATA=NN message. The next instruc-
tion following the DATA=NN statement is printed after the carriage return. For
instance, the command sequence:

MON> I 1A0D &
1A0D DATA=45 &
1ADE DATA=15 @
1A0F 39 ESC
MON>

produces the DATA = NN message until the Monitor encounters a valid machine
instruction. In this example, the Monitor recognizes the integer (39y) as a
machine instruction.

1

12|

BLOCK MEMORY TRANSFER

The Monitor features a command that allows you to move the contents of a block
of memory from one location to another. The SLIDE memory command simply
copies one section of memory to another.

To use the SLIDE memory command, you must determine the parameters of the
block of memory to be moved. These parameters include a hexadecimal starting
address of both the source and destination of the memory block to be moved. In
addition, a hexadecimal count of the number of memory cells to be transferred is
also required. Press and hold the CTRL key on the keyboard while pressing the S
key toinitiate the SLIDE command after you determine the program parameters.
FANTOM II prompts you with the keyword SLIDE. You respond to this keyword
by typing the starting address of the origin and destination, followed by the
count and a carriage return.

The SLIDE command in the next example transfers thirty-two (decimal} bytes of
data from ROM into low memory. The starting address of data to be moved is
1400 and the data will be moved to an area of memory starting at location 200.
The display (D) command only verifies the data manipulation before and after
the SLIDE command is executed.

MON> D 200,21F @

0200 NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN
0210 NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN
MON> D 1400,141F &

1400 OF CE 10 00 6F 01 6F 03 86 01 A7 00 86 7F A7 02
1410 C6 04 E7 01 E7 03 A7 00 09 A6 00 63 00 43 01 00
MON> CTRL/S SLIDE 1400,200,20 &

MON> D 200,21F &

0200 OF CE 10 00 6F 01 6F 03 86 01 A7 00 86 7F A7 02
0210 C6 04 E7 01 E7 03 A7 00 09 A6 00 63 00 43 A1 00

PROGRAM EXECUTION CONTROL

FANTOM II gives you two options when you execute a machine language
program. With the first option, you execute the complete program by entering
the GO (G) command and a starting address. The second option allows you to
execute a program segment with the S or E command. It is primarily used for
detecting errors in program logic.

EXECUTING A PROGRAM

The ETA-3400 Microcomputer Accessory contains a machine language program
(Tiny BASIC). We will use this routine to show program execution with the GO
command, G. The G command and a program starting address causes the system
to fetch the operational code in the memory location specified. Program execu-
tion begins from this location and continues until your program returns control
to the FANTOM II Monitor, or the RESET key is pressed on the ET-3400. To run
Tiny BASIC, enter:

MON> G 1C00 &

HTB1 G 1CO0

:10 REM HTB1 IS PRINTED OVER MON> @&

120 PRINT "HEATH TINY BASIC IS RUNNING" &

:30 END &
~RUN @

HEATH TINY BASIC IS RUNNING

_BYE ®
MON>

NOTE: Tiny BASIC writes over the MON> prompt with the HTB1 letters and then
issues a carriage return. The prompt character () signifies that Tiny BASIC is in
the command mode and waiting for an instruction.

Using the Tiny BASIC firmware is only one example of program execution. For
another example, you should enter the program shown at the top of Page 14
using the M command. This routine prints a message on your video terminal.
The format is similar to the listing printed in “Appendix C,” and it illustrates a
format that you might encounter in some computer magazines. The JSR (Jump to
SubRoutine) mnemonic at hexadecimal location 100 is translated to machine
code instructions BD 1618. BD is the machine equivalent of JSR and 1618 is the
starting address of a Monitor subroutine that prints a character string. Likewise,
FCB is a pseudo-mnemonic that reserves a block of memory for your character
string (i.e. the message).

13

0100 BD 1618 MSG JSR OUTIS ; OUTPUT CHARACTERS

0103 0D0A48 FCB 0D,0DA .48 ; INSERT ASCII MSG.
0106 454C4C FCB 45,4C,4C ;CR,LF,HELLO,O
0109 4F00 FCB 4F ,00

010B BD 1400 JSR MAIN ;RETURN TO MONITOR

Machine language program to print a message on your video terminal.

The following operational sequence uses the Monitor to enter the machine code,
check the accuracy of the instructions, and execute the program.

MON> M 100 @ { ... Enter machine code. . .)
0100 NN BD B {...JSR..)
0101 NN 16 (...High byte address)
0102 NN 18 < (...Low byte address)
0103 NN 0D @A (... Sequentially enter)
. data from the
. machine code
. until complete.
010D NN 00 & (...JSRMAIN............)
010E NN ESC
MON>

The display instruction (I) lets you sequentially verify the accuracy of your work.

MON> I 100
0100 BD 1618 <®

010B BD 1400 ESC
MON>

The program is ready for execution. Use the Go (G) instruction to run your
program from address 100.

MON> G 100 &
MON>

The computer prints a friendly greeting on the display when you execute the
program.

WARNING

Always originate your programs at or above hexadecimal
location 100 because Tiny BASIC and FANTOM II fre-
quently use the low memory as a buffer. “Appendix A”
contains a memory map of the RAM locations that the
firmware uses.

EXECUTING A PROGRAM SEGMENT

Isolating and correcting program errors is another function of program execu-
tion control. This function is commonly referred to as breakpointing. For a more
complete discussion on breakpointing, refer to the operation section of the
ET-3400 Microprocessor Trainer Manual. The Monitor supports breakpointing
techniques by providing you with both single STEP (S) and multiple step
EXECUTE (E) commands. A third technique lets you enter breakpoint addresses
into a table and then use the GO command to execute a program segment.

Assume that, in the previous example, machine instruction BD 1618 was incor-
rectly entered to read BD 160D. The simple method to detect this error is to set
the program counter to address 100 and step through each instruction, compar-
ing the computer activity with the results expected from your algorithm.

The single STEP command requires that you define the initial program para-
meters and preset any registers to their initial status. For this example, only the
program counter is affected and must be preset to the starting address of the
program (i.e. 100). Use the command to display/alter the program counter toread
hexadecimal integer 100. Type S after presetting the initial parameters to exe-
cute a single instruction. The Monitor responds by executing the instruction
located at the program address contained in the program counter, and then
printing the contents of each CPU register on the terminal.

MON> CTRL/P P=NNNN 100 &

MON> R C=NN B=NN A=NN X=NNNN P=0100 S=NNNN
MON> S C=NN B=NN A=NN X-NNNN P=160D S=NNNN
MON>

15

16

Analysis of the program data displayed on your terminal, when compared with
thealgorithm (i.e. see Chart 1), shows an incorrect address for the JSR mnemonic.
Once the initial parameters have been defined, you may continuously single step
through a program by typing S.

A better technique for debugging large programs is to use the EXECUTE (E)
multiple step command. The EXECUTE command is similar to the STEP com-
mand, except control is returned to the Monitor only after a specified number of
steps have been executed. The step count is a hexadecimal integer. For example,
the following sequence would execute 18 program steps, and then display the
registers in the same format as the STEP command.

MON> CTRL/P P=NNNN 100 &

MON> E 12 @

C=NN B=NN A=NN X=NNNN P=NNNN S=NNNN NN NN «
MON>

Breakpointing is another technique for isolating errors in your program. A
breakpoint in your program interrupts the normal program execution and lets
you test or analyze program parameters. Type H to set a breakpoint (Haltpoint),
followed by the address and a carriage return.

For instance,

MON> H 10B &

would set a breakpoint in the table that would halt your program at address 10B.

#»NOTE: Be extremely careful when you are using ROM subroutines and the S, E, and H commands.
In this example, it is not possible to accurately predict the program results because the FANTOM II
Monitor and the ET-3400 Monitor share RAM locations. Occasionally, this sharing causes unpre-
dictable results.

When you wish to examine the status of the breakpoint table, simply type
CTRL/H. This command displays the contents of the breakpoint table. The
Monitor forbids the entering of additional breakpoints into the table until one of
the entries is cleared. A cleared table entry is displayed as FFFF.

MON> CTRL/H 010B FFFF FFFF FFFF
MON>

The only way to delete a breakpoint from the table is to use the CLEAR (C)
command. To remove a breakpoint, type C and the address. For instance:

MON> C 10B @
MON>

would remove the breakpoint 10B from the table.

A maximum of four breakpoints (Haltpoints) is permissible in the table. An
attempt to set more than four breakpoints would return the following message:

ERROR!

Always place a haltpoint at a RAM location containing an operation code. Use
the G command to execute the program until the haltpoint is reached. After it
encounters a haltpoint address, the Monitor prints the current status of the
microprocessor registers. You may examine or alter the contents of memory or
registers before proceeding with program execution.

17

18|

PROGRAM STORAGE AND RETRIEVAL

The ETA-3400 Microcomputer Accessory lets you choose either of two different
methods for controlling a cassette magnetic tape recorder. The simpler method
allows you to use a recorder and the ET-3400 keypad. The other method lets you
use a recorder and console terminal to store data. The advantage to the second
method is the optional increase in speed with which you can LOAD or DUMP
your routine. Either method lets you create and use an inexpensive library of
computer routines. The information you store on cassette tape uses the Kansas
City Standard (KCS) format with a five second leader and trailer.

The method you choose to LOAD or DUMP a magnetic tape is optional. However,
using a console lets you select different baud rates to transfer data between
cassette tape and computer memory. A baud rate is the measure (bits per second)
of the speed of transmission of data pulses. We recommend that you use 300
baud. The important thing about baud rates is that they be the same for each
device when you are reading or writing information between devices. For your
convenience, always write the baud rate on the cassette label next to the program
name.

CASSETTE USAGE WITH A CONSOLE TERMINAL

To use the Tape (T) command, press CTRL/T after the Monitor prompt character.
This command causes the terminal to print a T after which you specify the baud
ratex (1 to 8). A colon (:) separates the baud rate from the program starting
address, and a comma is used between the starting and ending address of the
memory block to be recorded. Prepare the cassette by installing and rewinding a
tape before typing a carriage return. Always allow the recorder to attain a normal
operating speed by waiting several seconds before hitting the return key. For
instance, assume you wish to save sample program number one on Page (22).

MON> CTRL/T T1:100,126 @
MON>

This command writes the data from memory locations 100 through 126 to
cassette tape at 2400 baud. When the data is completely written, program control
is returned to the Monitor and the FANTOM II prompt character reappears. To
specify 300 baud, type 8 rather than 1.

«Any integer can be used to specify a baud rate. However, the common rates use: 300 for T8; 600 for
T4; 1200 for T2; and 2400 for T1.

Because 300 baud is the recommended rate, the Monitor lets you select and type
T rather than CTRL/T when writing data. With this feature, you may standardize
all your tapes at 300 baud and, in so doing, be able to use either the keypad or the
terminal to LOAD your tapes. For example, the following two commands are
equivalent:

MON> CTRL/T T8:100,126 @
or .
MON> T 100,126 &

The LOAD (L) command allows you to read data from a cassette tape into
memory. The baud rate with which the tape was written must agree with the
baud rate at which you wish toread the data. If the baud rates do not agree or you
find a tape error, possibly due to dirt on the recorder heads, a tape error message
will be generated. To use the load command, type L followed by the integer code
(1 to 8) that indicates the selected baud rate. For example:

would load a tape written at 2400 baud. A tape written at 300 baud can beread by
either an “L8” or “L” command.

ET-3400 CASSETTE USAGE

You may use the ET-3400 keypad to save a block of memory on cassette tape. This
routine prompts you for the first and last address of the memory block to be
recorded. To execute the cassette dump routine from the keypad, use the DO
function to transfer control to address 1A8F. The following two prompts are
printed on the ET-3400 displays:

_—___Fr.

__.__La.

Yourespond to the prompts by entering the first (Fr.) and last (La.) address of the
block of memory to be saved on cassette tape. Before you enter the last digit,
activate the cassette recorder by pressing the record button on the cassette. For
instance, assume you wish to save sample program number one on Page 22.

® Press DO (D) on the ET-3400 keypad and enter address 1A8F.

e Enterthe firstaddress (0100) of the memory block to be transferred after
the _ _ _ _ Fr. prompt.

19

20|

® Enter the first three digits of the last address (012) after the _ __ _ La.
prompt.

e Install and rewind a magnetic tape. Then press the Record button. Be
sure the leader passes the recording head.

e Enter the last digit (6) of the address. When the memory block is
recorded, the ET-3400 displays will print CPU UP.

The ET-3400 cassette LOAD routine, located in the Monitor from address 1ABC
through 1AD4, reads a block of memory data from cassette tape into computer
memory. The routine proceeds until the last record is found or until a tape error
occurs. An error can be caused by many diverse problems such as, dirt on the
tape or tape heads, an incorrect baud rate, etc. If an error is found the ET-3400
display prints:

Error
If no error is found, the CPU UP message is printed after the data is completely

loaded. Don’t forget to turn off the recorder at this point. The following proce-
dure transfers binary data from a cassette tape into computer memory:

® Pressthe DO (D) key on the trainer and enter the first three digits of the
cassette loader routine, 1AB_ .

¢ Install and rewind the cassette tape.

® Pressthe PLAY button on the recorder and enter the last digit {C) on the
keypad.

® Wait for the message (CPU UP or Error) to be printed on the displays.

USING A TELETYPEWRITER

Two commands let you Punch/List formatted absolute binary tapes using the
Motorola MIKBUG* format. The tape format is shown in Figure 1. When you
want to load or store binary data from a teletypewriter, use the L. or P monitor
commands. For instance, to transfer binary data from a paper tape to memory,
enter the following command from your console:

MON> LO

NOTE: Always activate the teletypewriter before you enter any monitor com-
mands.

*Registered Trademark, Motorola Inc.

To Print/Punch a formatted binary tape, enter the P command followed by a
beginning and ending address. FANTOM Il responds by outputting the data. The
next example displays the sixteen bytes of memory from hexadecimal location
1400 to 140 F.

MON> P 1400, 140F&®
S11314000FCE10006F016F03861A700867FA7022D
S9

MON>

Figure 1 is a breakdown of the Motorola MIKBUG* format. Use the information
only to decode programs stored in the MIKBUG* format.

/ } Leader {Nullsl
@D (CR) Formatting for printer
Frame DA {LF) readability ; ignored
00 {NULL) by leader
' 53 S Startof-record
2 CcC CC = Type of Record
2 —_ — Byte Count itwo frames -
4 ® one byte)
5 g - -
6 s E - - Address/Size
7 3 2 - —
8 E o 3
q & =4 £
S o - - Data

10 S 3 I }
. x o

o 2
. = >
R @
: \ — }
N

Frames 3 through N are hexadecimal digits n 7-bit ASCH) which are converted
10 BCD. Twoe BCD digits are combined 10 make one 8-bit byte

The checksum is the one’s complement of the summation of 8-bit by tes

cc 30 cc- 31 e 39
Header Data End-of F.ie
Frame Record Record Recorc
1 Start-of-Record __ K] s 53 S 53 S
2. Type of Record ___ 30 @ 31 1 39 9
3 31 3 30
1
" Byte Count 22 12 26 6 33 @3
5 30 3 30
6 Address Size 30 31 1100 30 0000
7. 30 0000 30 30
8 30 30 30
9 34 39 46 FC
10 Data 38 4811 18 98 43
. 34 30 {Checksumi
. 34 44-0 32 32
i I o
AB (Checksumi
. L 48
=]
9E
|
N. Checksum 45
Figure 1

Courtesy of Motorola Semiconductor Products Inc.

2|

A SAMPLE PROGRAM

The sample program provides you with a routine to test the operation of your
ETA-3400 Microcomputer Accessory. You can use the routine to gain profi-
ciency with the FANTOM II Monitor. The routine is a duplicate (with minor
changes) of a program listed in the ET-3400 Manual.

0100
0103
0105
0107
0109
010B
010D
010E
0111
0114
0115
0117
0118
0119
011B
011D
011F
0122
0124

BD
86
20
D6
CB
D7
48
BD
CE
co
26
16
5D
26
86
DE
8C
26
BD

FCBC START
01
o7
F1 SAME
10
F1

FE3A OUT
2F00

WAIT
FD

EC
01
FO
Ci10F
EA
1400

JSR
LDA
BRA
LDA
ADD
STA
ASL
JSR
LDX
DEX
BNE
TAB
TST
BNE
LDA
LDX
CPX
BNE
JSR

> W W W

REDIS
$01

OuT

DIGADD+1
$10

DIGADD+1

OUTCH
$2F0O0

WAIT

SAME
$01
DIGADD
$C10F
ouT
MAIN

Use FANTOM II when you enter, verify, and execute the sample program. When
the program is running, the LED display on the ET-3400 Trainer will sequen-
tially turn each segment on and off and then return to the monitor.

MONITOR COMMAND SUMMARY

REGISTER
COMMAND

R

CTRL/P
CTRL/X
CTRL/A
CTRL/B
CTRL/C

MEMORY

COMMAND

D addr1, .. .,addrN

M addri

[addr1

CTRL/S addr1, addr2,cnt

FUNCTION

Display all the registers.
Display/alter the program counter.
Display/alter the index register.
Display/alter accumulator A
Display/alter accumulator B
Display/alter the condition codes.

FUNCTION
Display an area of memory on your console start-
ing from location addr1 through addrN.

Display/Alter sequential memory location start-
ing from addr1.

Display sequential program instructions starting
from memory location addri.

Transfer a block of memory contents starting
from location addr1 to the memory location
starting at addr2. The hexadecimal integer count

{cnt<=FF) is the number of bytes to be trans-
ferred.

23

24|

PROGRAM EXECUTION CONTROL

COMMAND
G addr1

S addri

E cnt

H addr1

C addr1

CTRL/H

FUNCTION
Run the program starting from location addr1.

Execute a single program instruction from loca-
tion addr1.

Using the present value of the program counter
as a starting value, execute a series of instruc-

tions. (cnt<=FF)}

Insert a single haltpoint address into the break-
point table.

Remove a single haltpoint address from the
breakpoint table.

Examine the status of the breakpoint table.

INPUT/OUTPUT OPERATIONS

COMMAND

T addri, ... ,addrN

CTRL/T #,addr1,addrN

L #

FUNCTION

Write the memory contents from location addr1
through addrN to a cassette tape at 300 baud.

Write the memory contents from location addr1
through addrN to a cassette tape. The symbol
"#" refers to an integer value representing the
desired output baud rate.

Read a cassette tape into memory at 300 baud.
Read a cassette tape into memory. The symbol

14" refers to an integer value representing the
desired output baud rate.

ET-3400 USAGE

COMMAND

D 1A8F

— — — — Fr
— — — — lLa

D 1ABC

TELETYPEWRITER

COMMAND

P addri1,addrN

Lo

FUNCTION
Start the cassette and:
enter the first address

enter the last address

Start the cassette and the monitor routine that
reads a cassette tape.

FUNCTION
Punches a tape using the MIKBUG+ format.

Reads a paper tape that was created with the
MIKBUG format.

25

2|

HEATH/PITTMAN TINY BASIC

Tiny BASIC is a subset of BASIC+ that allows you to easily create your own
computer programs. For instance, a program to balance your checkbook is easy
to write using Tiny BASIC. The People’s Computer Company (PCC), a nonprofit
corporation in Menlo Park, Ca., conceived the idea of a compact computer
language designed to teach programming skills. The implementation of Tiny
BASIC follows the philosophy of the original idea.

In keeping with the “small is good’’ philosophy, Heath/Pittman Tiny BASIC
employs a two-level interpreter approach with its consequent reduction in
speed. The Heath Tiny BASIC firmware is permanently located in your computer
system. The obvious advantage to this arrangement is the protection from a
runaway program given to the Tiny BASIC interpreter. Also, you do not need to
load the interpreter from cassette every time BASIC is used.

The following pages describe the function, operation, and features of Tiny
BASIC. Some of the major features are:

® Integer Arithmetic (16-bit)

® Twenty six Variables (A, B, ... ,Z)

® TFifteen BASIC statements:
LET LOAD INPUT REM
RUN SAVE PRINT IF (THEN)
END GOTO GOSUB RETURN
BYE LIST CLEAR

® FUNCTIONS: Random (RND)
User (USR)

#BASIC is a registered trademark of the Trustees of Dartmouth College.

EDITING COMMANDS

Tiny BASIC lets you modify a program by inserting, changing, or deleting lines
in the program. You can insert lines by typing a line with a line number that is
not currently in the program. You can change lines by typing a new line with the
same line number, and you can delete lines by typing a line number followed
immediately by a carriage return.

Two control characters also permit you to edit a line as you enter it. Hold the
control (CTRL) key down and then press a U or H to delete either a complete line
of text or a single character, respectively.

CTRL/U This command deletes the current line.

CTRL/H This command deletes the previous character.

21

28

USING TINY BASIC

Heath Tiny BASIC employs several FANTOM II Monitor subroutines. Therefore,
you must always initialize the Monitor and use the Monitor command (G) to start
BASIC. This causes Tiny BASIC to execute a CLEAR command. BASIC then
prints a prompt character (:) on your terminal, indicating that the system
firmware is functioning and awaiting a command. The entry to Tiny BASIC is at
1C00, so you must use “G 1C00” to start it.

For example, the following program prints a message on your terminal several
times. The procedure to implement this program requires that you initialize the
FANTOM II Monitor, start the Tiny BASIC interpreter, create and execute a
BASIC program, and finally return control to the monitor.

® Initialize the FANTOM II monitor by entering '""DO 1400 " .

® Type "G 1COD <" on your console. This is the Tiny BASIC starting
address.

® Enter the following program statements after the prompt (:) charac-
ter.

1100 LET I=0

2200 PRINT "HEATH TINY BASIC"
2300 I=I+1

:400 IF I<b GOTO 200

2500 END

® Type "RUN @'". The program prints
HEATH TINY BASIC
five times on your display, and then outputs a prompt character.

e Type "BYE " . System control is then returned to the monitor.

The BReaK key is used to interrupt the execution of a Tiny BASIC program. This
is particularly valuable if a program is in an infinite loop. You may stop it by
pressing the BReaK key and holding it until Tiny BASIC responds
"10 AT NNN". Theserror message tells you that the BreaK key was pressed and
line NNN is the next line to be executed. To continue running your program, you
may type "GOTO NNN'".

NOTE: When your program is at an INPUT statement, the BreaK key is disabled.
You must either respond to the INPUT request with data or use a “MASTER
RESET"’ from the ET-3400 keypad to regain system control.

MODES OF OPERATION

You can use either the COMMAND mode or the PROGRAM mode when working
with Tiny BASIC. An instruction in the COMMAND mode does not have a line
number and is immediately executed after the carriage return. An instruction in
the PROGRAM mode has a line number and will not execute until a RUN
command is given. For example, the following two statements perform the same

operation. However, the second statement will not be executed until you type
RUN @ on the keyboard.

_PRINT "TESTING THE ETA-3400 ACCESSORY" &

~10 PRINT "TESTING THE ETA-3400 ACCESSORY" @

The important thing to remember about the modes of operation is: The COM-
MAND mode primarily assists you in detecting and debugging program errors,
whereas the PROGRAM mode collects statements that will eventually become
your finished computer program.

All Tiny BASIC instructions are valid in either mode. However, some of the
instructions only make sense in one of the modes. For this reason, RUN and LIST
should not be used in the PROGRAM mode. Also, END and RETURN should not
be used in the COMMAND mode.

All instructions function the same in either mode except for INPUT and GOTO.
In COMMAND mode, the data that is to be INPUTted must be on the same line.
Thus,

CINPUT X,5,Y,7
will cause the variable X to be set to 5 and Y to be set to 7. In addition, in the

COMMAND mode, a GOTO will not be accepted until the program has been
started with a RUN command at least once.

29

30

INSTRUCTIONS

A list of the instructions that Tiny BASIC recognizes is given below. It assumes
that you are familiar with programming in the BASIC language. If you are not
comfortable using BASIC, a course such as “BASIC Programming,” Heath Model
EC-1100, will help you to become proficient with BASIC.

INSTRUCTION FORM

REM {text)

LET Var = Exp
or
Var = Exp

INPUT Vart,....,VarN

PRINT “‘message’’;Arg
or
PR Argil,...,ArgN

GOTO NNN

GOSUB NNN

RETURN

DESCRIPTION

The remark (REM) is a nonexecutable statement,
used only for commentary.

This instruction assigns the value of the expre-
sion to the variable. Variable values are not pre-
set. Therefore, always assign an initial valuetoa
variable before using it.

This instruction allows you toread data from the
keyboard and assign values to the variables.

The message or value of the argument is printed
on the console terminal. Messages may be
numbers or letters and are enclosed within quo-
tations. If a comma is used between items in the
PRINT list, items are printed in fields that startin
columns 1, 8, 16, 32, and so on. If semicolons are
used between the items, no space is left between
them when they are printed.

The program is unconditionally transferred to
the statement numbered NNN and execution
continues.

The go-to-subroutine (GOSUB) instruction
transfers program execution to the statement
number. When the RETURN instruction is en-
countered in the subroutine, program execution
returns to the statement following GOSUB.

Once program control is transferred to a sub-
routine, program execution continues until pro-
gram control encounters a RETURN statement. A
subroutine must always be terminated with a
RETURN statement.

IF Exp1 rel Exp2

THEN Stmt
RUN
END
LIST
LIST NNN

LIST NNN1,NNN2

CLEAR

BYE

SAVE

LOAD

If the test “Exp1 rel Exp2” is true, the statement
after the “THEN” is executed. This statement
can be any Tiny BASIC statement. The “THEN
Stmt” part can be replaced by

GOTO NNN
Tiny BASIC recognizes the relational operators:
= < > <= >= <> ><

This instruction starts the program at the state-
ment with the lowest statement number.

When the interpreter encounters an END state-
ment in your program, it stops program execu-
tion and returns control to the command mode.

The LIST instruction writes the entire buffer
contents to your terminal. The LIST instruction
followed by an argument writes either a single
program statement or the range of statements
between the arguments. ((NNN1 < NNN2))

The interpreter removes all program statements
from the buffer when it encounters a CLEAR
instruction.

Executing a BYE instruction causes the interpre-
ter to exit BASIC and return to the FANTOM II
Monitor. The exit does not clear the buffer and
you canreturn to BASIC with the buffer contents
intact by using a warm start (see Page 33).

The SAVE instruction directs Tiny BASIC to
write the buffer contents at 300 baud to a cassette
tape.

The LOAD instruction reads a cassette tape at
300 baud and transfers a previously saved com-
puter program into the buffer.

31

32|

MATHEMATICAL EXPRESSIONS

A mathematical expression is the combination of one or more constants, vari-
ables, and functions connected by arithmetical operators. For instance, the Tiny
BASIC statement: LET A = 5+6/3—2*2 contains a mathematical expression.

NUMERICAL CONSTANTS

All constants in Tiny BASIC are evaluated as 16-bit signed integers. An integer
constant is written without a decimal point, using the decimal digits zero
through nine. Unless they are preceded by a negative sign, integer constants are
assumed to be positive.

VARIABLES

A variable is any capital letter (A-Z). The letter is a symbol for a numeric value
capable of changing during program execution. The value of this variable can
range from —32768 to 32767. “Appendix A’ contains the address of each of the
26 variables used by Tiny BASIC.

OPERATORS

Tiny BASIC uses four arithmetical operators; addition (+), subtraction (—),
multiplication (*), and division (/). The statement LET A = 5+6/3—2%*2 is an
example of a mathematical expression using these operators. Tiny BASIC pro-
cesses these operators in the same fashion that you would use to solve an
algebraic expression. For example, Tiny BASIC first evaluates 6/3 and 2*2 and
then evaluates the expression to A=5+2—4 and sets the variable A equal to 3.
Because Tiny BASIC evaluates multiplication and division before addition and
subtraction, you must be careful when writing any mathematical expression. If
you are not certain of the order of operations, use parentheses to force the order
you wish. Evaluation always proceeds from left to right, except that arguments
enclosed within parentheses are evaluated first.

Tiny BASIC also uses two unary (+ or —) operators. These operators denote
whether an expression is positive or negative. The expression LET A = 5— (—3)
causes the variable A to equal eight.

33

TINY BASIC RE-INITIALIZATION (Warm Start)

Tiny BASIC, in conjunction with the FANTOM II Monitor, allows you to exit
Tiny BASIC and then re-enter it without clearing program statements and vari-
ables. In particular, the warm start re-entry preserves any remaining program
and sets your memory limits. You can also reserve a block of memory by
changing the high or low memory address (‘““Appendix A, Tiny BASIC Memory
Map”) and combine a BASIC program with a routine written in machine code.

The warm start is used after you have left Tiny BASIC by typing “BYE” or by
pressing RESET on the ET-3400 Trainer. From the FANTOM II Monitor, when
you have the “MON>" prompt, type “B”’ to do a warm start of Tiny BASIC.

34

FUNCTIONS

You may use either of two intrinsic functions in Tiny BASIC. The random (RND)
function allows you to generate a positive pseudo-random integer. The user
(USR) function is actually a call to a machine language subroutine that you have
previously written. You can use either function inthe COMMAND or PROGRAM
mode.

THE RND FUNCTION

The RaNDom function selects a positive pseudo-random integer between zero
and one less than the argument. The argument is an integer or variable between 1
and 32767. For instance, the following statement, when inserted in the sample
program, causes the computer to store a random integer between zero and eight
in the variable J.

LET J = RND(9)

THE USR FUNCTION

If a subroutine is written in Tiny BASIC, you simply use the GOSUB and
RETURN commands to call and return from the subroutine. This is no problem.
But suppose you wish to call a machine language subroutine from a program
written in Tiny BASIC. This is the purpose of the USR function.

The USR function also permits you to call two routines in the Tiny BASIC
interpreter. These two are commonly called PEEK and POKE, but they are not
part of Tiny BASIC’s vocabulary. You must implement the USR function to call
the PEEK and POKE interpreter subroutines. These two routines let you get at
nearly every feature of your microcomputer. As the name implies, you can
examine the contents of selected memory locations with the PEEK routine. The
POKE routine lets you enter data into memory locations.

First, how do machine language subroutines work? A subroutine is called with a
JSR instruction. This pushes the return address onto the stack and jumps to the
subroutine whose address is in the JSR instruction. When the subroutine has
finished its operation, it executes the RTS instruction, which retrieves that
address from the stack, returning control to the program that called it.

Depending on what function the subroutine is to perform, data may be passed to
the subroutine by the calling program in one or more of the CPU registers and
results may be passed back from the subroutine to the main program in the same
way. The registers contain either addresses or more data. In some cases, the
subroutine has no need to pass data back and forth, so the contents of the
registers may be ignored.

The USR function may be called with one, two, or three arguments. These
arguments are enclosed by parentheses, separated by a comma, and may be
constants, variables, or expressions. The first of these is always the address of the
subroutine to be called. The second and third arguments allow you to pass data
through the CPU registers. The value of the second argument is placed in the
index register while registers A and B contain the third argument. The forms of
the USR statement are:

A = USR (sa)
A = USR (sa, x)
A = USR (sa, x, 1)

The starting address (sa) and the index register (x) are 16-bit arguments. The
third argument (r) is also 16 bits, but must be split between two registers. The
most significant 8 bits of the third argument go into the B register, while the least
significant bits are placed in the A register. However, it is important to realize
that the three arguments in the USR function are decimal expressions and not the
hexadecimal expressions that are normally associated with machine language
programs. Any valid combination of numbers, variables, or expressions can be
used as arguments.

The value returned by a USR function is a 16-bit number that is split between the
A and B registers. The most significant byte is in the B register, and the least
significant byte is in the A register. If your BASIC program does not use a
returned value (such as POKE), the USR does not have to set up one. However, if
the USR is supposed to return a value (such as PEEK), you must set up the value
in the machine language of the USR.

The sample program on the next page shows you how to implement the USR
function. The program accesses the Tiny BASIC interpreter subroutines **‘POKE”
and “PEEK’’, which permit you to alter or examine the contents of memory
locations. The program lets you store fifteen integer variables into an array that
occupies the lowest memory in your computer system.

The program uses a simple loop to input and store data in memory locations zero
through fourteen. After running the program, use the BYE command to exit Tiny
BASIC and return to the Monitor. You can then examine the memory locations
and verify that the program stores data in memory. By using a warm start, you
can return to your Tiny BASIC program without deleting program statements.

The program accesses two machine language subroutines. PEEK and POKE.
PEEK is permanently programmed into ROM starting at hexadecimal memory
locations 1C14 (7188) and POKE is at location 1C18 (7192).

35

36

10
11
12
13
14
15
16
17
18
20
21
22
23
24
30
31
32
33
34
40
41
42
43
50
51
52
53
54
55
56
57
58
60
62
64
70

REM THIS PROGRAM IS AN ADAPTATION OF A ROUTINE
REM PUBLISHED BY TOM PITTMAN FOR KILOBAUD MAGAZINE.
REM HEATH HAS OBTAINED PERMISSION FROM KILOBAUD TO
REM REPRINT SEVERAL ARTICLES AT THE END OF THIS
REM MANUAL ABOUT TINY BASIC. THESE ARTICLES PRESENT
REM AN INFORMATIVE DISCUSSION ON TINY BASIC.

REM

REM

REM

REM LET "L" REPRESENT THE VARIABLE FOR THE

REM ADDRESS OF THE INDEX REGISTER.

REM

LET L=0

REM

REM LET "J" REPRESENT THE VARIABLE DATA THAT

REM WILL BE STORED IN ARRAY MEMORY LOCATIONS 0-15.
REM

INPUT J

REM

REM "POKE" THE VARIABLE "J" INTO LOCATION "L"

REM

LET J=USR(7192,L,J)

REM

REM USE THE "PEEK"COMMAND TO WRITE DATA FROM

REM ARRAY LOCATION "L" INTO VARIABLE "N", THEN

REM USE A PRINT STATEMENT TO VERIFY THAT THE DATA
REM WAS CORRECTLY STORED.

REM

LET N=USR(7188,L)

REM

PRINT "INTEGER ",N," IS LOCATED AT ADDRESS ",L

REM

REM INCREMENT INDEX REGISTER AND TEST FOR END OF ARRAY.
LET L=L+1

IF L<15 GOTO 30

END

SAMPLE USR PROGRAMS

In the next example, the USR function lets you call two separate machine
language subroutines. A listing of these routines is provided in Figures 1A and
1B. The first routine, “LEDQOFF”, turns off the ET-3400 LED display, while the
other routine, “LEDON”, lights various LED segments. Both routines use ac-
cumulators A and B to pass a value from the USR function to the BASIC program.

0000 BD FE50 LEDOFF JSR OUTST1

0003 00006o FCB 0.,0.0

0006 0000GOo FCB 0,0,0

000S 80 FCB 80

000A 86 44 LDAA #$44

0ooC 5F CLRB

000D 39 RTS
Figure 1A

0100 CE C16F LEDON LDX DG6ADD

0103 BD FESD JSR QUTST1
0106 3E5BOS FCB 3E,5B,05
0109 47158D FCB 47,15,8D
010C 86 AA LDAA #/AA
010E 5F CLRB
010F 39 RTS

Figure 1B

The USR function requires that you either reserve an area of memory for machine
code by adjusting the low memory address of BASIC user space upward, or you

use the available bytes in low memory.~ Both methods are featured in this
example.

*NOTE: See “Appendix A” for a complete memory map. Always use caution when you are
working in memory locations below 100y for subroutines. This area is generally used by BASIC
and the Monitors to store program variables. This example only shows you that areas of memory
are available. However, the accepted procedure is toreserve an area of memory above address 100y
for your programs.

37

38 |

Use the following procedure to adjust BASIC’s low memory limit. For example,
the “LEDON” subroutine requires sixteen bytes of memory. Therefore, add the
number of program bytes to the constant 0100, and insert the result in memory

locations 20, and 21,. Replacing these values changes the low memory limit in
BASIC.

0100 Tiny BASIC low memory address.
+ 10 Number of program bytes needed.
0110 New low memory address.

Reserve memory locations 0100, through 010F for the program by using the
following procedure. First, enter BASIC from the monitor. This will initialize the
interpreter, and you will be able to set the new low memory limit by exiting
BASIC and replacing the value with your new low memory limit. For example:

MON> G 1C00
HTB1: BYE
MON> M 20 <8
0020 D1 @
0021 00 10 @@
0022 NN ECS
MON>

Now use the Phantom II Monitor to enter the machine code from Figure 1A and
1B. The two subroutines are almost identical because they call another sub-
routine (OUTST1) located in the ET-3400 monitor. This routine outputs data to
the LED displays. The major difference between the routines is in the program
data. Changing this data changes the display.

Observe that the program statement, LDX DG5ADD, is missing from the LEDOFF
routine. The operand, DG6ADD, corresponds to Hexadecimal value C16F, which
is the address of the left-most digit on your ET-3400 Trainer. This value must be
in the index register before the USR program inserts this value (49519,, = C16F;)
into the index register for the second program.

The machine language subroutines performs one additional operation before
returning to BASIC. The hexadecimal value entered intoaccumulators A and Bis
returned to the USR variable (i.e. A=USR(0)). When the return from subroutine
instruction is executed, these values are converted to a decimal equivalent and
stored in variable A. The value stored in this variable determines the on/off delay
time of the LED display. Changing the value in the accumulators lets you alter
this delay time.

Always use a warm start to reenter BASIC after you adjust the memory limits and
enter the machine code. If you do not use a warm start, BASIC will reinitialize the
available memory and write over any program that you may have in memory.
That is:

MON> B €&

Enter the following BASIC program statements after you adjust the low memory
boundry and enter your machine language subroutines.

10 K=5

20 PR ' OBSERVE ET-3400 DISPLAY"
30 A=USR(256)

40 GOSUB 100

50 A=USR(0,49519)
60 GOSUB 100

70 K=K-1

80 IF K>0 GOTO 30
90 END

100 A=A-1

110 IF A>0 GOTO 100
120 RETURN

The LED display on the ET-3400 will display a message when you run the
program. Program statement 30 calls the machine language routine that prints
the “USr Fnc.” message. After lighting the display, the program returns to
BASIC and enters the time delay subroutine.

Program statement 50 calls the routine that turns off the LED display. Note that
the decimal value, 49519, is equivalent to the hexadecimal value C16F. Setting
the index register in the calling program reduces the memory requirements in
the subroutine.

The starting address of each routine is supplied in decimal as the first argument
in the USR function. If the address is not included, the program will never be
executed. If the address is wrong, the jump will be to the wrong place in memory
and unpredictable results will occur.

20|

APPENDIXES

LOCATION
0000-000F
0010-001F
0020-0021
0022-0023
0024-0025
0026-0027
0028-002F
0030-007F
0080-0081
0082-00B5
00B6-00C7
0100-0FFF

1C00
1C03
1C06
1C09
1CoC
1COF
1C10
1C11
1C12
1C13
1C14

1C18

APPENDIX A

Tiny Basic Memory Map

SIGNIFICANCE

Not used by Tiny BASIC.

Temporaries.

Lowest address of user program space.
Highest address of user program space.
Program end + stack reserve.

Top of GOSUB stack.

Interpreter parameters.

Input line buffer and Computation stack.
Random Number generator workspace.
Variables: A,B,...,Z

Interpreter temporaries.

Tiny BASIC user program space.

Cold start entry point.

Warm start entry point.

Character input routine.

Character output routine.

Break test.

Backspace code.

Line cancel code.

Pad character.

Tape mode enable flag. (HEX 80 = enabled)

Spare stack size.

Subroutine (PEEK) to read one byte from RAM to B and A.
(address in X)

Subroutine (POKE) to store A and B into RAM at address in X.

NUMBER

APPENDIX B

Tiny Basic Error Message Summary

MEANING

104
123
124
132
133
134

Break during execution.

Memory overflow; line not inserted.

Line number 0 is not allowed.

RUN with no program in memory.

LET is missing a variable name.

LET is missing an =.

Improper syntax in LET.

LET is not followed by END.

Improper syntax in GOTO.

No line to GOTO.

Misspelled GOTO.

Misspelled GOSUB.

Misspelled GOSUB.

GOSUB invalid. Subroutine does not exist.
PRINT not followed by END.

Missing close quote in PRINT string.
Colon in PRINT is not at end of statement.
PRINT not followed by END.

IF not followed by END.

INPUT syntax bad — expects variable name.

INPUT syntax bad — expects comma.
INPUT not followed by END.
RETURN syntax is bad.

RETURN has no matching GOSUB.
GOSUB not followed by END,

41

42

139
154
158
164
183
188
211
224
226
232
233
234
253
259
266
267
275
284
287
288
290
293
296
298
303
304
306
330
363
365

END syntax bad.

Cannot list line number 0.

LIST not followed by END statement.
LIST syntax error — expects comma.
REM not followed by END.

Memory overflow, too many GOSUB’S.

Expression too complex.

Divide by zero.

Memory overflow.

Expression too complex.

Expression too complex using RND.
Expression too complex in direct evaluation.
Expression too complex — simplify.
RND(0) not allowed.

Expression too complex.

Expression too complex for RND.

USR expects (before argument.

USR expects) after argument.

Expression too complex.

Expression too complex for USR.
Expression too complex.

Syntax error in expression — expects value.
Syntax error — missing) .

Memory overflow — CHECK USR function.
Expression too complex in USR.

Memory overflow.

Syntax error.

Syntax error — check IF/THEN.

Missing statement. Type keyword.
Misspelled statement. Type keyword.

APPENDIX C

Heath/Wintek Monitor Listing

43

“l

HEATH KE
FAM AND

0000

ooon
0004
0020

1000
1000
1001
1002
1003

FEGK
FEFC
FF76
FCEC
FI7E
FEZ0
FI43
Fo2s
FU84
FES2

oocCt
ooCh
oocKh
00CE
00CF
oont
OCE4
0004
00k 4
0QEC
O0EE
00F 0
00F 2
00F 4
00F4
00F7

YROARD MONITOR

CHARACTERS

DEFINED

XkX

% I I e

XX

DEEUG

3.

CR
LF
SFACE

*X

TERM
TERM.C
TAFE
TAFE.C

XX

SSTEF
SWIVE1
OFTAR
REDIS
HIsrLAY
QUTRYT
BRSF
FROMFY
GuUTSTA
OQUTSTR

b %

USERC
USERE
USERA
USERX
USERF

NER
BKTEL
TO

T1
DIGALDD
USERS
T2
SYSSWI
UIRQ

HEATH/WINTEK TERMINAL MONITOR SYSTEM

EY JIM WILSON FOR WINTEK CORFORATION
COFYRIGHT 1978 BY WINTEK CORF.

ALL RIGHTS RESERVED

CONDITIONAL ASSEMRLIES

EQu

0 DERUG CODE OFF

CHARACTER DEFINITIONS

EQU
EQU
EGU

FIA

ORG
RME
RME
RME
RME

ODH
OAH

DEFINITION

$1000
1

1
i
1

EXTERNALS

EQu
EQu
EGU
EQU
EqQu
EQu
EQU
EQU
EQU
EQL

RaM

ORG
RME
RME
RME
RMRE
RME
ORG
EQU
RME
RMK
RME
RME
RME
EQU
RME
RME

OFE&EH
OFEFCH
GFF74H
OFCRCH
OF 7 EH
OFE20H
OFDA3H
OFI25H
OFC8&H
OFES2H

TEMFORARIES

OCCH
CONDX CORES

ACCUMULATORS
INDEX
Fa.Co

DO

FOUR BREAKFOINTS ALLOWELD

[
* m
ra -
m I
o

[FRIRCVEE S SRS B (6 SR I

HEATH KEYROARD MONITOR
RAM ANl CHARACTERS DEFINED

00FA LUSWI RME 3
OOFD UNMI RME 3
FFFF IF IERUG-1
ELSE
1400 ORG $1400
ENDIF
&K MAIN MONITOR LOOF
X
* 1) FEELS OUT MEMORY
* 2) SEARCHES FOR FAST INCARNATIONS
X A) CLEARS BREAKFUOINTS TF REINCARNATED
X B) CLEARS EBREAKFOINT TABLE OTHERWISE
X 3) SENDS FROMFT "MON:"
X 4) ACCEFTS COMMAND CHARACTERS ANID (HIMFS
X TO AFFROFRIATE HANDLER
1400 OF MAIN SET
1401 CE 10 00O LIDX +TERM TERMINAL. FIA
1404 &F 01 CLR 1sX IN CASE TRREGULAR ENTRY
1406 &F 03 CLK 3 X
1408 86 01 LA A ¥1
1404 A7 00 STA A 09X
140C 86 7F LDA A #01111111E
140E A7 02 STA A 29X
1410 Cé6 04 LA R #4
1412 E7 01 STA R 1sX
1414 E7 03 STA B LED
1416 A7 00 STA A 0s X IDLE MARKTING!!
X NOW FIND MEMORY EXTENT
1418 09 MAIN1 DEX
1419 A6 00 LhA A 09X
141 &3 00 CoOM 0sX
1410 43 COoM A
141E A1l 00 CHF A 0sX
1420 26 Fé EBNE MAINI1
1422 63 00 COoM 0sX RESTORE GOOIN RYTE
1424 86 15 LA A $4%XNER+5
1426 09 MAINZ DEX GO TO MONITOR GRAVEYARD
1427 4A DEC A
1428 26 FC ENE MAINZ
1424 35 TXS
142R 86 OC LIva A F2ANBR+4
1420 EE 08 LIX 2XNER s X RETURN AIIIRESS IF ANY
142F 8C 14 4C CFX FMAINSG
1432 27 09 REQ MAIN4 IS RE-INCARNATION
1434 Cé FF LA R ¥SFF
1436 30 TGX
1437 E7 04 MATN3 STa R 2KNER+2.X
1439 08 INX
143A 4A LEC A

1438 26 FA ENE MAIN3

HEATH KEYROARDI MONITOR
MAIN - MAIN MONITOR LOOF

1430 846 04 MAIN4 LA A #NER CLEAR EBREAKFOINTS
143F 33 MAIN44 FUL R
1440 33 FUL R
1441 30 T8X
1442 EE 0OC LOX 2XNBR+4 X
1444 E7 00 STA B 09X
1448 44 LEC A
1447 26 Fé ENE MAIN44
1449 0OC CLC NO ERROR MESSAGE
1444 31 INS
144 31 INS
144C 24 O MAINS RCC MAINS NO ERROR
144E EDI 16 18 JSR ouTIS
1451 O 0A 45 FCR CRsLFs "ERROR! 7740
145K ED 146 18 MAINS JSKR QUTIS
145E On OA Al FCR CRyYLFs "MON:= 790
1466 701 10 00 MAINGS TST TERM
1469 2A FR BFL. MAINGS
i44R RO 18 E1 JSR INCH INFUT COMMAND
146E CE 19 EF LIX FCMDTAR-3
1471 08 MAINY INX
1472 08 INX
1473 08 INX
1474 Al 00 CMF A OsX
1476 25 F9 ERCS MAIN7
1478 26 2 BNE MAINS ILLEGAL COMMAND
1476 36 FSH A
147k EBLDI 18 43 JSR OUTSF
147E 32 FUL A
147F C&é AC L& R F-MAINS/256X206+HHAING
1481 37 FSH H
1482 Cé6 14 LA K EMAING /206
1484 37 FSH R
1485 E& 02 i.0A R 29X
ia87 37 FSH R
1488 E&é 01 LA R 1sX
148A 37 FSH R
148Er GF CLR E
148C DE F2 Lnx USERS
148E 39 RTS
Xk GO - GO TO USER CODE
X
X ENTRY?! (X) = USERS
X EXIT? UFON BREAKFODINT
X USES ALLsTOST1,T2
148F ED 16 25 GO JSR AHV
1492 24 04 ECC Gotd NO OFTIONAL ANNRESS
1494 A7 07 STA A 79X
1496 E7 06 STA B 4 X
1498 RD FE &R GO1 JSR SSTEF STEF FAST BKFT
1498 (& 04 LA R ENER
14900 30 GO2 TSX COFY IN RREARFOTINTS

149 EE OC Lonx 2%NER+4, X

47

HEATH KEYROARD MONITOR
GO - GO TOo USER CODE

1440 A6 00
14A2 36
14A3 36
14A4 86 3F
14A6 A7 00
14A8 35A
14A9 26 F2
l4AaR 20 3E
l4an 30 GO3
14AE A& 064
14R0 26 02
14B2 6A 05
14R4 E&6 03 G033
146 44
1487 A7 06
1489 9F F2
14BRR <E EC
14RD 346
14BE 86 04
14C0 97 EC
14C2 32
14C3 30
14C4 08 GO4
14C5 08
14C6 Al oOn
14C8 26 19
14CA E1 OC
14CC 26 15
14CE ED 16 18
1401 oD 0A 00
1404 846 04
14n6 33 G044
i4n7 33
1408 30
1409 EE OC
14n0R E7 00
1400 44
14DE 26 Fé
14E0 7E 15 53
14E3 74 00 EC GO5
14E6 26 IiC
b 4
14E8 BRI FE &R
14ER 9F EC GO7

14D} CE 14 AD
14F0 7E FE FC

LDA
FSH
FSH
LItA
SThA
DEC
BNE
BRA

78X
LA
ENE
DEC
LDA
LDEC
STA
STS
LIS
FSH
LDA
5TaA
FUL
TSX
INX
INX
CMF
ENE
CMF
ENE
JSR
FCR
Loa
FUL
FUL
T8X
LDX
STA
DEC
BNE
JMF

DEC
ENE

JSR
8TS
L.OX
JMF

TI>DIDD

>D>m

>D>D>D

@ D

NOT

OsX

$$3F
Oy X

Go2
GOz

b9 X
G033
S X
SeX

b X
USERS
T0

DECREMENT USER PC

#NER
TO

SEARCH TAERLE FOR HIT
2XNER+5y X
GOS
2XNEBR+4y X
GO0S

ouTIS
CRsLLF«0O
#NER

NO HIT HERE

OF CODE INTO R

2XNER+4,X
0 X

G044
REGS DISFIL.AY REGISTERS
TO
G04

MONITORS S0 INTERFRET

SSTEF
TO
$#603
SWIVE1

STEF PAST SWI

48|

HEATH KEYEROARIN MONITOR

EKFT - INSERT BREAKFOINT
b $ ¢
*
b
X
X
14F3 30 EKFT
14F4 86 FF
14F6 Cé& 04
14F8 08 BKF 1
14F9 08
14FA A1 04
14FC 26 04
14FE A1 05
1500 27 038
1502 ShA BIKF2
1503 26 F3
1505 On
1508 39
1507 BRI 16 25 BRF3X
1508 24 04
150C A7 05
150E E7 04
1510 oC EKF 4
1511 39
*X
X
X
¥
X
16512 846 04 CLEAR
1514 97 EC
1516 BRI 16 20
1519 20 04
15%1R A6 07
1510 E& 06
151F 30 CLEL
1520 08 CLE2
1521 08
1522 A1 05
1524 26 04
1526 E1 04
1528 27 07
152A 74 00 EC CLEZ
1520 26 F1
152F 0N
1530 39
1531 Cé FF CLE4

1533 E7 04
5%5 E7 05

1537 0C

EKFT

ENTRY?

EXIT
USES

T8X
DA
LA
INX
INX
CHMF
ENE
CHF
EEQ
NEC
BNE.
SEC
RTS

JEK
ECC
STA
5Th
CLC
RTS

CLER®

ENTR
EXIT

USES

LA
5TA
JSR
BCS
LA
L.Da
TSX
INX
INX
CMF
ENE
CHF
BER
LEC
BNE
SEC
RTS

LA
STA
STA
CLC

+
’
+
*

R
Y

+
+
+

A
A

A

.o

INSERT EREAKFOINT INTO TARLE

NONE
‘C’ SET IF TARBLE FULL
ALL,TO
£$FF
¥#NER
LOOK FOR EMFTY SFOT
49X
EKF2 NOT EMFPTY
G X
EKF3 IS EMFPTY
EKF1 STILL HOFE
FULL M
AHY GET BREAKFOINT VALUE
EKF4 NO ENTRY
SeX
49X
CLEAR BREAKFODINT ENTRY
(X7 = USERS
T BET IF NOT FOUND
ALLTO
#NER
TO
AHY GET LOCATION
CLE1 NO VALID HEX
71X
61X USER FUC FOR DEFAULT
By X SEARCH TARLE
CLES NOT FOUNT
45X
CLE4 FOUNI
TO
CLEZ2
F5FF
49 X CLEAR ENTRY
G X

49

HEATH KEYROARD
RKFT - INSERT BREAKFOINT

1538

1539
153C
153E
1540

1542
1543
15446
1547
1548
1544
154D

1553
1554
15564
1558
1554
1550
155E
1560
1362
1564
15466
1568
156A
156C
15610
156F

1572

1574

39

ED

e
25

84
20

36
ED
32

44

kI
oo

BRI

aF
[E
86
81t
36
&h
86
8L
84
8n
84
an
846
09
nF
CE
8n
DE

16
09
01

05

FE

FE

F2
43
26
42
24
41
20
58
1K
50
18
53

EC
00
ocC
Fa2

MONITOR

6B

18
00

4R

ER

EXEC

EXECO

EXEC1

I I K X X

RTS

EXEC -~ FROCESS MULTIFLE STNGLE STEF

ENTRY?! NONE
EXIT: REGISTERS FRINTED
USES: ALLsTO»T15T2

JSR AHY GET COUNT
ECS EXEC1

LbAa & *1 DEFAULT COUNT
ERA EXEC1

FSH @ SAVE COUNT
JSR SSTEF STEF CORE
FUL A

LEC A

ENE EXECO MORE STEFS
NE N QUTIS

FCE CRsLF»0Q

STEF -~ STEF USER CODIE
ENTRY? NONE

EXIT? REGISTERS FRINTED
USEST ALLsTO»T1,T2

JER SSTEFR STEF USER CORE

REGS - DISFLAY ALl USER REGISTERS

ENTRY: NONE
EXIT? REGISTERS FRINTELD
USESG? ALLYTO

CI.LR B

L.IX USERS
LIA A $C
KSFK REGS1
LA A ¥R
RSR REGS3
LDA A A7
ESR REGS3
LA A /X7
ESR REGS2
Loa A $'F7
ESR REGS3
LIa A /57
X

STX TO
LIX $¥T0-1
BSR REGS1

LEX USERS

HEATH KEYBROARI
REGISTER DISFLAY COMMANDS

1576
1578
15764
157¢C
157E
157F

1580
1581
1582
1585
1587
1584

158C
1580
158E
158F
1590
1591
1692
1594
1596
1597
1594
159C
159E
1%59F
15A0
1541
15A3
15A4
15A4
15A8
1584
15AR

EE
nF
Ad
8h
ocC
39

08
sc
ED
86
ED
20

08
08
o8
]

08
08
8k
an
37
ED
24
an
17
33
DA
27
09
“a7
Al
27
on
39

06
EC
00
63

18
30
18
&7

40
Ea

16
2F
05

08

00
00
01

MONITOR

8]
%}

REGS1
REGS2
REGS3

I} K W K KR I

REGF
REGX
REGA

REGR
REGC

REG1

REG2

I W H ¥ X
3

MEM

(LD ¢
8STX
LDA
RSk
CLC
RTS

INX
INC
JSR
LDA
JSR
ERA

61X (X) = USERFC
TO

A 09X

TYFINO TYFE INSTRUCTION

OUTCH OUTFUT REGISTER NAME
A gr=

OUTCH

TYFINZ2

REGISTER DISFLAY COMMANDS

ENTRY! (X)) = USERSF

(B) = 0

EXIT: OFTIONAL REFLACEMENT VALUE STORED
USES: ALL,TO

ITNX
ITNX
INX
INC
INX
INX
ALD
RSR
FSH
JSR
RCEC
ESR
TEA
FuUl.
necd
REQ
DEX
5TA
CiF
REQ
SEC
RTS
MEM

E
A 540 DISFLACE REG NAME
REGS1 OUTFUT WITH NAME
E
AHV
MEMA4
REG1
E
E
REGZ
A 0 X
A 0sX
REG?2
- DISFLAY MEMORY RYTES

ENTRY?: (R) = 0

(X) = USER S.F.

USES?: ALL»TO

nEC

R

HEATH KEYROARD

MEM - DISFLAY MEMORY OR INSTRUCTION

15A0
15AE
15RO
15E2
15R4
15ERS
15Ré
15K7
15E9
15EA
15RE
15SRC
1SRN
15RF
1301
15C3
15C4
15Cé
15C7
1509
15CE
15CC
1500

15CE
1500
1501
1503
1505
1508
1SDE
1500
15DE
150F
1561
15E3
1SE4
19E6
15E7
1SE9
1SEF
15F1
15F3

37
EE
an

34

33
24
81

08
sn
37
8n
23

33
39

Ad
36
nF
860
oo
CE
8L
32
S
2R
an
SR
24
SC
8h
44
DE
8L
c1

107
73
07

00

09
£2

04h

08

st
Fi

00

EC
43
(o121
00

2n

OE
b6

09

2F
41
EC
19
01

MONITOR

00
EC

X

2 I M K I

INST

MEM1
MEM2

MEM3

MEMA

MEMS

TYFPINS

TYFING

TYFINI

TYFINZ

INST -

ENTRY?

USES?

FSH
LOX
ESK
ECC
FSH
FSH
T8X
LEOX
INS
INS
CLC
FUL
BCC
ESK
RCS
INX
ESR
FSH
RSE
BL.S
CL.C
FUL
ETS

TYFING -

ENTRY

i

E

EXIT?
USES?

LIe
FSH
STX
ESR
FCR
L.IX
ESK
FUL
187
EMI
BSR
IEC
BPL
INC
BSR
FCE
LIX
ESK
CMF

A
A

R

k

(B) = O

(X) = USER S.F.
ALLSTO

brX
AHY
MEM1

OrX

MEM3
REG1
MEMS

TYFINS

AHV
MEM2

DISPFLAY INSTRUCTIONS

GET USER F.C.

TYFE THE DATA
SAVE MODE FLAG
GET REFLACEMENT VALUE

TYFE INSTRUCTION IN HEX

(xX)

AlL

O0sX

TO
ouTIS
CRsLF»0
#TO
OQUT4HS

TYFINT
RYTCNT

TYFIN1

ouTIS
‘DATA='50
TO

OUTZ2HS

$1

= ANDBRESS OF INSTRUCTION
(X) = ANDRESS OF NEXT INST.

0F CODE
ONTO STACK

ONE RYTE ONLY

IS VALID TNST.
RESTORE (R)

o1

o2

HEATH KEYROARID

MEM

- DISFLAY MEMORY OR

15FR
15FD
15FE
15FF
1600
1402
1604
1606
1607
1609

1604
14600
160E

1611
1612
1613
1616
1617

Cé
30
08
5

26
Cé
g
SA
26

39

an
8n
7E

37
SF
Bl
33
39

20
13
OF

04

FC
04
04

FE

[=4
~)

03
16

MONITOR
INSTRUCTION
EBMI THE1
BEQ OUT2HS
ERA QUTAHS
X OISKE - DTISFLAY BREAKPOINTS
%
X ENTRY?! NONE
X EXIT? RREAKFOINT TARLE FRINTED
b 4 LUSES S ALl
ISk LA R +é OFFSET TNTO TaARLE
TSX
IISEL INX
LDEC R
RNE NISE1
LDA E ENER
DISE2 ESK OUTA4HS
DEC R
BNE DISRK2
RTS
*K OUTAHSy OQUT2HS - DUTFUT HEX ANIF SPACES
*
X ENTRY $ (X) = ADNLDRESS
X EXITS X UFDATED PAST BYTE(S)
b USES: XsArC
QUTAHE EBSK THR TYFE HEX BYTE
QUT2HS BSR THE
&3 JMF QUTSF
XX THR - TYFE HEX RYTE
*
X ENTRY ? (X) = ANNRESS OF RYTE
X EXIT: X INCREMENTED FAST RBYTE
X USES S Xytrs
THE FSH R
CLR B
E4 JSR OCH
FUL E
THE1L RTS

*

I I MW I W K I K

QUTIS - OQUTFUT IMREDDED STRING

CALLING CONVENTION:

JSR ouTIsS
FCR ‘STRING”»0Q
ZNEXT INST:

EXIT: TO NEXT INSTRUCTION
USES? A X

HEATH KEYROARLD
MEM - DISFLAY MEMORY OR INSTRUCTION

1618
1619
161k
i61C
161D
161E
161F
1622
1623

1625
14626
14629
162R
1620
1420
162E
162F
1430
1631
1632
1633
1634
1635
146346
1637
163A
1630
163D
163E
163F
14640
1641

14643
1644
1645
1644
1647
1648

30
EE
31
31
37
oF
ED
33
4E

SF
ED
24
34
37
48
59
48
59
48
59
48
a9
37
36
BTt
24
33
1R
33
31
31
20

31
31
33
32
on
39

00

17 C3

00

18 A3
in

18 A3
07

E8

MONITOR

ouTIS

%

I K I I I} I W N

AHVD

AHVI

AHV2

AHVZ

TSX
LnXx
INS
INS
FSH
CLR
JER
FUL
JMF

AHV

E
E

E

ENTRY
EXIT?

USES?:

CLK
JSR
RCC
FSH
FSH
ASL
ROL
ASL.
ROL.
ASL
ROL.
ASL.
ROL
FSH
FSH
JSR
ECC
FUL.
ARA
FUL
INS
INS
ERA

INS
INS
FUL
FUL
SEC
RTS

b3

D> DD UMD WD

-+

O0sX

QAS

0 X

ACCUMULATE HEX VALUE

NONE
(BA)Y = ACCUMULATED HEX VALUE OR
(A) = ASCII IF NO HEX

‘CY SET FOR VaALID HEX
“Z7 SET FOR TERMINATOR = CR

EyAsC
IHR GET FIRST DIGIT
AHU3 NOT HEX
MAKE WAY FOR NEXT DIGIT
IHID
AHV2 THIS NOT HEX
DISCARD OL.D VALUE
AHV1

SKIF LATEST VALUE

5|

HEATH KEYROARD MONITOR
BRYTCNT - COUNT INSTRUCTION BYTES

1649
1644
164R
164E
164F
1651
1653
1655
1656
1657
1659
1654
165C
165E
1660
1662
1664
14666
1668
14664A
166C
166E
1670
1672
1674
1676
14678
1679
i674

167R
1467E
1485
1688
14684
168K
168C
148F
1491
1692

34
14
CE
08

24
Ab

sc
26
32

25

81
24
81
24
81

25

81
27
84
81
27
84
81
c2
sc
Sc
39

kD
53
23 1]
24
34
37
kD
24
34
37

FF

08
FR
00

FC

1E
30
04
20
14
60
i1
8n

RD

16
AC
16
19

16
10

7%

18
49

25

rJ
w

X

I W I I I ¢

BYTCNT

EYT1

RYT2

RYT3

BYT4
BYTS
RYT6
BYT?

3%

¥ W I I W I

COFY

EYTCNT - COUNT INSTRUCTION EYTES

ENTRY!
EXIT?

FSH A
TAE

Lox

INX

SUR E
ECC
LA
ROR
INC
ENE
FUL. A
RCS

CMF A
RCC
CMP
RCC
CHMF
ECS
CHF
BEQ
ANII
CMF
EEQ
AN
CMF
SEC
INC
INC
RTS

DD

> 3D > > D

mmo DD

(A) = OPCODE

(B) = 0s1+2 OR 3

‘C’ CLEAR IF RELATIVE ADNDRESSING
‘2’ SET IF ILLEGAL

#0OFTAR-1

#8
BYT1
QX

RYT2

BYT?7

#4630 CHECK FOR ERANCH
RYT3

$#$20

RYTS IS RRANCH

3460

BYTé IS ONF RYTE

#6810

RYTS I8 E&R

#$ED

#4$8C

RYTA4 IS X OR SF TMHM,
$¥$30 CHECK FOR THREE BYTES
#4630

F$FF

COFY - COFY MEMORY ELSEWHERE

ENTRY?
EXIT:
USES?

COMMAND

JSR
FCE
JSR
RCC
FSH A
FSH E
JER
BCC
FSH A
FSH K

NONE
BRLOCK MOVED
AL L.

SYNTAX? (CNTL—=)D <FROMEe<TOXy<COUNT>

CuUTIS

‘SLIDE “»0

AHY GET ¥FROMX
COF3 NO HEX

ARHY GET XTOx
Cor2 NO HEX

HEATH KEYROARD

COFY - COFY MEMORY ELSEWHERE

1693
1694
1698
1699
169A
169N
16%9E

169F
146A0
i6A1
16A2
1643
16A4

16A5
16A8
146AA
146AC
16A0
16AE
16AF
16E2
15R4
16E6
15E8
146RE
14RD
16RF
16C1
16C2
14CA4
14C6
16C9
16CaA
146CE
16CE
146011
14614
1605
1607
1609
161A
140€C
1600
161F
146E2
16E4
14ES

BRIt
24
36
37
34
oc
39

31
31
31
31
on
39

RI

29

86
16
34
34
R

g1
26
Rl
84
81
27
34
81
26
k7
AF
30
ED
ERD
23 (]
30

nz
33

37
s
R
nz
33

oA

16
07

19

16
02
08

i8

o3
F7
18
7F
39
34

31
E?
Ci

i8
i8
18

01
EC

03

EC
18

MONITOR

25

-3

r3
4]

DE

&F

c2

et
.

cz2

COFi

COF2

COF3

L.OAOO
LOAO

LOAL

LOAZ

JSK
REC
FSH A
FEH R
JSR
CLC
RTS

INS
ING
INS
INS
SEC
RTS

AHY GET XCOUNTX

COFt NGO HEX

MOVE MOVE IIATA
NO ERRORS

LOAD - LOAD DATA INTO MEMORY

ENTRY ¢
EXIT:
USES?

JSR
ECS
LA A
TAE

LES

LES

JSR

AND A
CMF &
ENE

JSR

ANDI A
CHMF A
REQ

DES

CHMF A
ENE

8TA A
CLR A
TSX
JSR
JSR
JSR
TSX
LDX
STA
FUL
SUR
FSH
LDA
JER
8TA
FUL
EC

o<l o B~ i~ < o}

m o

NONE
‘7 SET IF ERROR
ALLSTO

AHV GET OFTIONAL FARAMETERS
LLOACO
8 DEFAULT TO CASSETTE

SCRATCHFAD ON STACK
ICT INFUT CASSETTE/TERM
¥7FH
'8’
LOAT
ICT
#7FH
$#'9°
LOA4 IS EOF

;'.Ill
LOAL NOT START-OF-RECORI
OC16FH TURN ON L.F.

THR COUNT
IHR ALDRESS (2 BYTES)
IHE

1,X GET FWA OF BUFFER
T0

$3 ACCOUNT 3 RYTES
T0

IHR
T0

99

56|

HEATH KEYROARD
LOADL - FROM TAFE OR

18E6 26 FA4
146E8 7F C1 6F
16ER D16 EC
14ELl CE 00 EC
146F0 RD 18 C2
16F3 4C

16F4 27 E9
16F& On

16F7 31

146F8 31

16F9 39

16FA 8E 40
16FC BD 18 &5
16FF EBD 16 25
1702 14

1703 C4 7F
1705 20 03
1707 CER 09

MONITOR

TERMINAL

LOA3
L.OA4

*

3¢ I K R I I I I W K W RK K K

¢ I} K W I ¥ N

CTLT

I I ¥ K

RCRD

ENE LOA2

CLR O0C16FH TURN OFF I.F.

LA R TO

LnX #T0

JSR IHE

INC A

REQ LOAL

SEC

INS

INS

RTS

TIME CRITICAL ROUTINES {1111}

SINCE CASSETTE I/0 IS DONE USING OMLY SOFTWARE
TIMING LOOFSs THE ROUTINE ‘EIT7 MU&T RE CALLED
EVERY 208 US. CRITICAL TIMES IN THESE ROUTINES
ARE LISTED IN THE COMMENT FIELDS OF CERTAIN
INSTRUCTIONS TN THE FORM *NNN US". THESE TIMES
REFRESENT THE TIME RFEMAINING BEFORE THE NEXT
RETURN FROM ‘BIT‘ ., THE TIME INCLUDES THE
LARELED INSTRUCTION AND INCLUDES THE EXECUTION
OF THE ‘RTS’ AT THE END OF ‘RIT‘, SOHE
ROUTINES HAVE "NNN US USEDR"™ A8 A COMMENT
ON THEIR LAST STATEMENT. THIS REFPRESENTS
THE TIME EXFIRED SINCE THE LAST RETURN
FROM “EIT/ INCLUDING THE LARLED INSTRUCTION.

HIGH SFEED LOAD

ACCEFTS ADDITIONAL RIT/CELL FARAMETER

ENTRY?! (A) = COMMAND

(R) = 0

USES ! ALLsTOsT1,T2

AL A ¥340 DISFLACE TO PRIMTING

JSK OUTCH ECHO TO USER

JSR AHV

TAR

AND E ¥$7F

ERA FTAF

RCRD - RECORD MEMORY DATA IN ‘KCS’ FORMAT

ENTRY: (B) = 0

USES? ALLyTOsT1,T2

ADD K ¥9

HEATH KEYROARD MONITOR
FUNCH - FUNCH MEMORY

XX
X
X
X
1709 G5A IUMF
b $ 4
*
*
X
X
X
1704 30 FTAF
170 37
170C BRI 16 25
170F 24 OFE
1711 A7 03
1713 E7 02
1715 BRI 16 25
1718 A7 05
171A E7 04
171C A& 05 FTAF1
171E Eé 04
1720 FE 02
1722 IF EE
1724 97 FS
1726 I'7 F4
1728 33
*X
L3
%
X
X
X
¥
b 4
X
X
X
1729 5 FUNEH
1724 2F 07
172C EI» 18 27
172F 86 07
1731 20 02
1733 86 04 FNCHO
1735 4A FNCH1
1736 26 FIh
1738 37

1739 D6 F4

LUMF - RAW MEMORY NDUMF 16 RYTES FER LINE

ENTRY?

USES?

LEC

FTAF

ENTRY?

B

EXIT:
USES?

TEX
FSH
JSR
ECC
STA
STA
J8R
STA
STéh
LLA
LA
LoX
STX
STA
STA
FUL

FUNCH -

ENTRY:

= D>

oD D

oD

USES?

8T
RLE
JSR
LDA
BRA

LDA
DEC
ENE
FSH
LDa

E

@ > 2>

(R) = 0O
TOrT1,T2

- FUNCH TO TAFE

INEFAULT VALUES ON STACK
EELOW RETURN ANDRESS
‘C’ SET FOR ERROR
ALL»TOsT1,T2

CASSETTE/TERMINAL

ACCUMULATE HEX

USE DEFAULT
STORE FWaA

FILLAG
AHV
FTAF1
3 X
29X
AHV
SeX
449X
G X
449X
29X
T1
T2+1
T2

GET LWAy FUWA

WRITE LOADER FILE TO TERMINAL OR CASSETTE
(T1) = FWA RYTES TO FUNCH
(T2) = LWA BYTES TO FUNCH
(R) = CASSETTE TERMINAL FLAG!
(B) » O THEN TO CASSETTE
USING (R) CELLS PER RIT
(B) = O THEN TO TERMINAL
(B) < O THEWN TO TERMINAL WITH
IMREDIDEDR SFPACES AND NO S1+ETC.
ALLTO»T1
FNCHO
oLT QUTFUT LEADER
#7
FPNCH1
¥4 186 UG
FNCH1
SAVE FLAGF 160 US
T2 (RA) = END? 156 US

o/

HEATH KEYROARDI MONIT
FUNCH —~ FUNCH MEMORY

173 96 FS
1730h 90 EF
173F D2 EE
1741 25 S8
1743 81 OF
1745 C2 00

1747 33
1748 24 02
174A 20 03
174C 86 OF
174E 01

174F 97 EC
1751 8R 04
1753 97 EI
1755 CE 17 Ré
1758 SI

17569 24 03
175 CE 17 CO
175E 8D 63
1760 CE 00 EE
1763 4F

1764 01

1765 5D

1764 2R 03

1768 09
1769 AS 00
1768 01
176C 01
176y 8 75
176F 01

1770 26 F9
1772 DE EE
1774 8D 62
1776 74 00 EC
1779 2A F9
177k 43

1727C 36
1770 01
177E 86 07
1780 44
1781 26 FI
1783 32
1784 Sh
1785 2R 02
1787 8@l 6E
1789 Eké 10 00
178C 43
1781 49
178E DF EE

1790 IF EE
1792 22 9F

1794 08
1795 37
1796 86 06
1798 44

1799 26 FIi

OR

FNCH2

FNCH3

FNCH35

FNCHS

FNCH&

FNCH?

FNCH75

FNCHS8

LI'A
SUR
SEC
ECS
Ci#
SEC
FUL
RCC
ERA
LIA
NOF
STA
ADD
STh
LIX
TST
RFL
LBX
ESR
LIX
CLR
NOF
787
EBiI
DEX
BIT
NOF
NOF
ESR
NOF
ENE
LIX
RSK
DEC
EBFL
CoM
FSH
NOF
LDA
LEC
ENE
FUL
TST
BMI
ESR
LDA
conM
ROL
8TX
STX
EHI
INX
FSH
LA
DEC
ENE

D> D

mx D>

> 2 >

5o

>

>DD>D m D >

> D>m

T2+1
Ti+1
T1
FNCH?
$15
0

FNCH2
FNCH3
¥15

T0

$4
TO+1
¥S1STR

FNCH35
$#CRSTR
OAS
#T0+2

FNCHS

QX

OCH

ENCHS
T1
0SH
TO
FNCHé

$7
FNCH?
FNEH?7S

OHE
TERM

T1
T1
FNCHO
$6

FNCH8

(BA) = ENI - CURRENT
IIONE 5 144 US
140 US

RESTORE FLAG
AT LEAST FULL RECORD

COUNTER

RYTE COUNT
114 US

OUTFUT ASCII STRING

(A) = CHECKSUM

S CYCLE NUTHINC

182 U8

182 US

NO CHECKSUM

NOT DONE§ NO BREAK

HEATH KEYROARD MONITOR
FUNCH - FUNCH MEMORY

179k 33 FNCH? FUL E 140 US

179C 01 NOF

179D 846 03 LA A #3

179F 4A FNCHA DEC A

1740 26 FId ENE FNCHA

1742 CE 17 BR Lox $#59STR

17A3 5D T8T B

1746 2R OD EMI FNCHC RETURN

17A8 8D 19 ESR 0AS

176A SID TST B

174k 27 08 EEQ FNCHE NOT CASSETTE

17Aalr 86 13 LIA A #19

174F 44 FNCHE DEC A

1780 26 FD ENE FNCHE

17R2 80 73 ESk OLT

1784 0OC CLC NO ERRORS

17R% 39 FNCHC RTS

17B6 0D 0A 33 SI1S8TR FCE CRsLFy“ 51750

17BE Ol 0A 53 S9STR FCE CRLFy"597 90

17C0 oI 0A 00 CRSTR FCE CRLF»0
b 3 0AS - OUTFUT ASCII STRING
X
X ENTRY: (X)) = ALDRESS OF STRING IN FORM:
X ‘STRING 1+ 0
X (B) = CASSETTE/TERM FILAG
X EXIT? X FOINTS FAST END OF STRING ZEROD
X UsSES: Xy C

17C3 A6 00 0AS LDA A O X g7 USs

17C5 08 INX

17C6 8o 49 0AS1 ESR OAE 88 US

17C8 01 NOF

17C? 86 10 LA A $16 208 US

17CE 44 0AS2 DEC A

17CC 26 FI ENE 0AS2

17CE As6 00 LDa A 0sX

1700 08 INX

172011 6In 00 T5T 0sX

1703 26 F1 ENE 0AaSt NOT LAST RYTE

1705 08 INX

17n6 20 39 RRA AR OUTFUT LAST AND RETURN
XX 0SH - OUTFUT OFTIONAL SFPACE WITH HEX RYTE
X
X ENTRY?! (X)) = ADDRESS OF RYTE
X (A) = CHECKSUM
X (B) = CASSETTE/TERMINAL FLAG
X EXIT? (X) INCREMENTEI'» (A) UFDATEDR
X USES?: XetisC

1708 AR 00 0S5H ADID A OrX 174 US

170A 36 FSH A

60

HEATH KEYEROARD
OUTFUT ROUTINES

170k
17nn
170E
17E0
17E3

17E4
17E6
17E7
179
17EA
17EER
17ED
17EF
17F1
17F2
17F3
17F6

17F7
17F8
17F%
17FA
17FER
17FC
17FE
1800
1801
1803
1804
1806
1808
1804
180C
180N
180F

86
L
24
ED
32

AE
36
86
01
4A
26
Ab
an
32
08

39

346
44
44
44
44
8n
86
44
26
32
84
81
24
20
01
8E
8R

05

09
18

00

06

FD

00
0é

00

oR

12

FI

OF
0A
2

03

o7
30

MONITOR

63

FoO

¥*

I I I} I I W K K

o
]
=

O0CHO
OCH1

% K I I ¥

OHE

OHE1

OHE2

OHRZ

OHE4

LA A 45

T8T E

EBFL 0CHO NO SFACE

JSR OUTSF QUTFUT SFACE
FUL A

OCH - OUTFUT AND CHECKSUM HEX BYTE

ENTRY! (X) = ADNRESS OF BYTE

(/) = CHECKSUM

(B) = CASSETTE/TERMINAL FLAG
EXITS (X) INCREMENTEIl» (A) UFDATED

£Z4 SET IF END OF HEADER INFQ
USES? XshrC

Al A OrX 174 US
FSH A

Lna A *6

NOF

DEC A

BNE 0CH1

LDA A 0sX

RSR OHE

FUL A

INX

CFX ¥T1+2

RTS 16 US USED

OHE - OUTFUT HEX EYTE

ENTRY: (A) = BYTE
(B) = CASSETTE TERMINAL FLAG
USES: AL

FSH A 112 US
LSK A

LSk A

L.SK A

LSRR A

ESR OHE2

LTIA A ¥18 208 US
NEC A

ENE OHE1

FLH. A

AND A $$F

CMF A $10

RCC OHR3 IS 4 - F
ERA OHEA

NOF

Alll A ¥7

ADD A 430

61

HEATH REYROARD MONITOR
OUTFUT ROUTINES

1811
1812

1814
1815
1817
1818
1819
1814
181C
181n
181E
1820
igz22
1823
1824

1825

1827
1828
1829
182R
182C
182E
182F
1831
1832
1833
1835
1836

Sh

2F

oC
8n
346
on
44
an
01
44
26
8h
32

08

20

on

an
37
Cé
17
8o
01
44
26
33
32

51

iE

Fé

[~
b

10

i3

046

Fa

I I I I I

OAR

OCE1

¥ I I I kX

oLT

OLT1

OAR - OUTFUT ASCII RYTE

ENTRY?

EXIT:
USES!

T8T
BLE

OCE

R

ENTRY

USES:?

CLe
BSK
FSH
SEC
ROR
ESR
NOF
LSK
ENE
RSR
FLIL.
INX
DEX
ERA

LT

‘

ENTRY
EXIT:
USES!

SEC
FSH
ESR
FSH
LA
TERA
BSR
NOF
neeC
ENE
FUL
FUL

*.

..

(A) = ASCII

(B) = CASSETTE/TERMINAL FLAG
(A) PRESERVEDN

C

80 US
OUTCH

QUTPUT CASSETTE RYTE

(R CELLS/RBIT COUNT

[

(A) CHARACTER
C
START RIT: 74 US
RIT1 72 Us
208 USs
STOF RIT
EIT 200 us
208 USs
OCE1
RIT
8 CYCLE FSEUDO-NOF
EIT

DUTFUT LEFADRER TRAILER

NONE
3 SECONDNS MARKING WRITTEN
€

78 US
RIT1
#110

EIT

OLT1

62

HEATH KEYROARD MONITOR
OQUTFUT ROUTINES

1837
1838
183A
183R
183C

183E
183F
1841
1842
1843
1845
13446
i848
1849
184Ek
184D
184E
1850
1851
1853
185%
1856
1858
1859
185A

185B
185C
185F
1862

1863

36

01
01
20

36
86

8C
86
4A
26
AC
sn
86
44
26
07

8n
5A
26
33
32
39

01
k8

hed
oy

39

86

03
01

in
Fh

10
1E

Fo

o1
Q7

10 02
10 02

20

I I I W IH

==
-
—

RIT1

RIT3

RIT4
RITS

BITA

FLIF
FLIF1

I I I W

QUTSF

RIT - OUTFUT ‘C’ TO CASSETTE

ENTRY?

USES

FSH A
LIA A
NOF
NOF
RRA

FSH
LA
FSH
FCR
LA
LEC
ENE
INC &
ESR
L.Da
LEC
ENE
TFA
ANDL A
KSR

DEC E
ENE

FUL E
FUL A
RTS

m D> D

> D

D> >

(B) = CELL/RIT COUNT
‘c’ = BIT
¢ EXCEFT ‘C’
192 US
$21
RIT3 182 US
64 US
1
$8C 3 CYCLE SKIF
29
BITS
FLIF 43 Us
$30
BIT6
$1 MASK TO CARRY
FLIF1
KIT4

B AlLL TIMES REFERENCED HERE !!!

FILIF - FLIF CASSETTE RIT

ENTRY

USES?

NOF
ECR A
STA A
RTS

DUTSF -

ENTRY?
EXIT:
USES:

LA A

(a) = O THEN NO FLIF
(A) = 1 THEN FLIF
AsC EXCEFT 'C7

TAFE
TAFE
24 US

QUTFUT SFACE TO TERMINAL
NONEF

ha) = 7~ 7

arC

#I f\

63

HEATH KEYEOARD MONITOR
OUTFUT ROUTINES

ok OUTCH ~ BUTFUT CHARACTER T0O TERMINAL
X
X ENTRY! (A) = CHARACTEK
X EXIT? (A) FRESERVED UNLESS -LF-
* USES? C
1865 36 QUTCH FSH A
1866 37 FSH R
1867 8O 21 RBSR RRI RAUD RATE DNETERMINE
1869 On SEC STOF RIT
186A 8It 32 kSR WOE
186C OC cLc START RIT
1860 8D 2F ESR WOE
186F 0D SEC
1870 46 ROR A
1871 8I 2R ouTci RSR WOk WAIT - OQUTFUT RIT
1873 44 LSR A
1874 26 FR ENE ouTC1
1876 B8I 26 RSK WOR WAIT: OUTFUT STOF
1878 33 FUL. Fk
1879 32 FUL A
1874 81 0A CHF A $LF
187C 26 OR ENE ouTcz2
1B7E 36 F&H A
187F 4AF CLR A
1880 8In E3 ESR QUTCH QUTFUT FILL CHARACTER
1882 8D Ei RSR OUTCH
1884 8I IF ESR OUTCH
1886 8In DD RSR ouTCH
1888 32 FUL A
1889 39 ouTcz2 RTS
K ERL - BAUD RATE DETERMINATION
x
X ENTRY?! NONE
X EXIT? (B) = BAUDI' RATE DIVISOR
X (COMFENSATEN FOR 5%13 EXTRA
X EXECUTION TIME!!)
X USES!? ksC
1884 34 ERD FSH A
188 Cé 01 Lha R ¥1 ASEUME 110 RAUD
18801 RBé6 10 00 LhA A TERM BAUD SWITCH DATA
18920 43 coM A
1891 84 OE AND A ¥1110R MASK TO SWITHCES
1893 44 LSk A
1894 27 04 REQ BRDZ2 IS 110
18946 36 ERIN1 ROR R
1897 44 LDEC A
1898 26 FC ENE ERI1
1894 €O 05 SUR R #5 EXECUTION COMPENSATION
189C 32 ERDI2 FUL. A

igen 39 RTS

64 |

HEATH KEYEOARD MONITOR
OUTFUT ROUTINES

189E
189F
18A1

18A3
18A5
18A7

1849
18AR
184D
18AF
18Ek1
18E3
18RS
18R7
18R9
18ERE
18RI
18RE

18RF
i8C1

37
8o
20

8n
81

27

80
25
81
25

80
81

28
8R
8E
81
oC
39

80
3%

72
&8

3C
20
FéA

X0
ocC
oA
10
1i
064
08
11
30
on

Fé

I I I R I x

WOE

I

3 I} I I ¥ ¥ ¥ K

IKD

I I ¥

>
12

SH

ASH1

ASH2
ASH3

I I W W K X

WOE - WAIT AND OUTPUT ERIT

ENTRY: (R) = DELAY COUNT
‘07 = BRIT

EXIT: (R)y ‘C’ FRESERVED

USES? c

FSH E

ESK DLE DELAY ONE RIT
ERA WIE1

IHD - INFUT HEX DIGIT FROM TERMINAL

ENTRY NONE
EXIT: Ay = HEX VALUE IF VALID
ASCII OTHERWISE
‘C7 SET IF HEX
2’ SET IF E€R
USES! ArC

..

RSk INCH
CHF A ¥8FACE
REQ ITHI TGNORE SFACES

ASH — ASCII TO HEX TRANSLATOR

ENTRY?: (A = ASCII
EXIT, USES! SEE "IHD"

SUEB A 07

BCS ASHI1 NOT HEX

CHMP A ¥10

RCS ASH3

SUR A +°A -0

CHMF A : 23

ECS ASH2Z I8 HEX

ADD A # A -0 DISFLACE BACK

ALD A ¥#0°

CHMF A #CR

cLC

RTS

SUE A #-10

RTS

IHE - INFUT HEX RYTE

ENTRY: (RB) = CASSETTE/TERMINAL FLAG
(X) = ADDRESS
(A) = CHECKSUM

EXIT: Ay X UFDATED
(k) FRESERVED

HEATH KEYROARD MONITOR
INFUT ROUTINES

18C2
18C3
18C5
18C7
18C9
18CA
18CE
18cC
18CI
18CF
1801
1803

18N05.

is8n?
1809
18DA
180C
ig8nn

18IE
18DF

i8E1
1BE2
18E4
18ES
iBES
18E7
18E8
18EER
18ED
18EF
18F1
18F2
18F4
18F 6
18F7
18F9
18FR
18FD
1900
1902

34
8
84

5h
2t

an
17
16
54
SC
70
2K
8L
25
14
86
8D
44
24
8L
25
7C
84
33

i9
7F
E0

00

A

10
FE
15

F7

80
OE

FE
09
03
10
7F

Q0

00

IHE

IHED

36 I I I ¥

ICT

¥ I} I ¥ ¥H

INCH

INC1

INC2

INC3

INCA4

FSH A SAVE CHECKSUM

RSR IicT INFUT CASSETTE/TERMINAL
AND A #7FH

RSK ASH AGCII - HEX

ASL A

ASL A

ASL A

ASL A

5ThA A TO

ESKR ICT INFUT CASSETTE/TERMINAL
AND A #7FH i

ESK ASH ASCII - HEX

ADD A T0

STA A 0sX FLACE TN MEMORY

FUL A
CADLDE A 0 X

INX

RTS

ICT - INPUT FROM CASSETTE OR TERMINAL

ENTRY! (R) = CASSETTE/TERMINAL FLAG
EXIT? (A) = CHARACTER
USES? A C

TST B

BGT Ice IS CASSETTE

INCH - TINFUT TERMINAL CHARACTER

ENTRY? NONE
EXIT: (A) = CHARACTER

USES?: AsC

FSH R

RSR ERD RAULNI RATE DETERMINE
TRA

TAR

LSR R

INC R

TST TERM

EMI INC2 WAIT FOR SFACING
KSR WIE WAIT» INFUT START
ECS INC2 WAS NOISE

TAE

LTIA A $80H

ESR WIE WAIT: INFUT RIT
ROR &

RCC INC3

ESR WIE GET STOFP

RCS INCA4 NO FRAME ERROR

INC TERM SEND STOF RIT
AND A $#$7F MAGK T0O SEVEN RITS

FUL B

65

66|

HEATH KEYROARD MONITOR
INFUT ROUTINES

1903 39

3 3

X

X

X

X
1904 37 WIE
1905 8Ir OC
1907 CRk 80
1909 €O 80
190 €9 00 WIE?
190n F7 10 00
1910 356
1911 33
1912 39

*%

%

X

X

*
1913 C5 FE T
1918 26 11
1917 GA
1918 27 02
i?1Aa Cé6 38
1¢91C €8 31 DLEL
191E 36
1?1F 86 12 DLE2
1921 4A ILE3
1922 26 FD
1924 GA
1925 26 F8
1927 32
1928 RC 19 13 Di.R4
1928 01
1922C G4

192D 26 F9
192F Fé6 10 00
1932 (€4 FE
1934 39

k3

I I I I I K K K

RTS

WIE -~ WAIT AND INFUT BIT

ENTRY?: (R) = DELAY COUNT
EXIT! ‘C’ = RIT

USES! C

F&H K

RSKR DLE WAIT ONE RIT TIME
Al R ¥80H

SUE B $80H

ADC E ¥0 COFY RBRIT INTO LSE
" STA H TERM

ROR B ' RESTORE SMASHED 'C”
FUL B

RTS

OLE — DELAY ONE EIT AND RETURN (TERM) IN E
ENTRY! (R) = DELAY CONSTANT

EXIT? (B) = {(TERM) .AND. 11111110 K
USES? C EXCEFT ‘G

RIT E $OFEH

EBNE .E4 NOT 110 ERAUD

DEC R

REQ NLEL 110 FULL. BIT TIME
LA E $56

EOR E #49

FSH A

LA A ¥18

LEC A

ENE DLE3

BEC E

RNE DLE2

FUL A

CFX DLE S5 CYCLE NUTHIN’
NOF

EC R

ENE Ll.B4

LDA R TERM
AND R ¥$FE
RTS

ICC - INPUT CASSETTE CHARACTER

GETS RITS FROM CASSETTE IN SERIAL FASHION
EACH BIT CONSISTS OF SEVERAL ‘CELLS”
EACH CELL IS EITHER 1/2 CYCLE OF 1200HZ
OR 1 CYCLE OF 2400HZ
AT 8 CELLS/RIT THE ROUTINE IS “KCS”
COMFATIELE

67

HEATH KEYROARD MONITOR
INFUT ROUTINES
X
X ENTRY: (E)
X EXIT? (A)
3 c
X USES!? asC
1935 37 Icc FSH K
1936 9S4 LSR R
1937 8It 1E ICC1 RSR TNC
1939 25 FC RCS ICC1
1928 GA EC R
193C 24 F9 EFL ICC1
193E 33 FUL R
193F 86 7F LDOA A #0111
1941 37 ICC2 FSH R
1942 36 FSH A
1943 8n 12 ICC3 RSR TNC
1945 5A LEC R
1946 26 FR ENE ICC3
1948 32 FUL A
1949 33 FUL K
19244 446 ROR A
194K 25 F4 ECS ICC2
1940y 37 FSH R
1924E 36 FSH A
194F 8D 06 ICC4 ESR TNC
1951 G5A IEC R
1952 26 FR EBNE ICCA
1954 32 FUL A
19595 33 FUL E
1956 39 RTS
XK TNC - TAKE N
X
X WAITS FOR 1/
b §
X STRUCTURE AS
X ZERQ CELL
b 4
* ENTRY? NONE
* EXIT: ‘c
X Al
X USES? Ay
1957 ERé& 10 02 TNC LDA A TAFE
1984 8I 02 RSR TNC1
195C 24 OF RCC TNC3
195E 37 TNEL FSH E
195F GF CLR R
1960 GC TNC2 INC R
1961 B1 10 02 CMF A TAFE
1964 27 FaA BEQR TNC2
1966 Bé6 10 02 LDA A TAFE
1969 C1 1n CMF R 29
1968 33 FUL E

= CELLS FER EIT

= CHARACTER

= STOP FIT
TAKE NEXT CELL
NOT START EIT
NOT ENDUGH CELLS

11111F FRESET ASSEMEL Y
TAKE NEXT CELL
GET STOF EIT

EXT CELL

2 CYCLE OF 1200 HZ OR

1 CYCLE OF 2400 HZ

S

URES EXIT AT ENI OF

CELL VALUE
NEW CASSETTE DATA

o

WAS ZERO

NO TRANGITION

HEATH KEYEROARD MONITOR
INFUT ROUTINES

19460C 39 TNC3 RTS
XX MOVE - REENTRANT MOVE MEMORY
*
X ENTRY?! STACK:> RETURN (0s%5)
X COUNT (2+8)
X T40 (4,5)
X FROM (695D
X EXIT: STACK CLEANED
¥ USES? ALL
1960 30 MOVE TEX
196E EE 02 L.OX 29X CHECK COUNT <> 0
1970 27 74 REQ MOvV4 NO MOVE
1972 30 MOVEA TSX k% ALTERNATE ENTRY X%
1973 A6 05 LA A G X (RAY = T0O
1975 E6 04 LoA R 45X
1977 A0 07 SUR A 7 X (Ba) = TO - FROH
1979 E2 06 SRC R b X
197 25 24 RCS Mov2 IS MOVE DOWN
1970 26 03 RNE MOV1
197F Al TST A
1980 27 64 REQ MOV 4 NISFLACEMENT = 0
X HAVE MOVE UF -~ MUST START AT TOF
X TO AVOID CONFLICT
1982 86 FF MOV1 LDA A -1 (RA) = ~1
1984 16 TAE
198% 36 FSH A DELTA = -1
1986 37 FSH R
1987 AR 03 Allll A 3 X (EA)Y = COUNT - 1
1989 E9 02 ALC R 29X
1988 36 FSH A
198Cc 37 FSH E
1980 AR 05 ADD A Tie X TO = TO + COUNT - 1
198F E9 04 ADC H 45X
1991 A7 05 STA A S X
1993 E7 04 STA R 4y X
1995 33 FUL E
1996 32 : FUL A
1997 AR 07 ADD A 79X FROM = FROM
1999 E9 06 ALC K 69X 4+ COUNT - 1
199R A7 07 5TA A 79X
199 E7 06 STA R &y X
199F 20 OE RRA MOoV3
X HAVE MOVE DOWN -~ MAY START AT TOF
19A1 86 01 MOU2 LA A #1 DELTA = 1
1943 SF CLR B
19A4 36 FSH &
1?45 37 FSH R
1946 4AF CLR A
1947 A0 03 SUR A I X (RA) = - COUNT

69

HEATH KEYROARD MONITOR
MOVE - MOVE SURROUTINE

19A9
19AR
12aD

196F
19E0
19R2
1?Ek4
19RS
19R7
19H9
19Rka
19RC
19RE
19C0
19C2
19C4
19C4
19C8
19CahA
19CC
19CE
1900
1en2
1904
1906
ieng
19Da
i9nc
19LE
19E0
19E1
19E3
19E4
19ES

19E4
19E8
199
12EA
19ER
19€EC
19D
19EE
12EF
19F0

E2
A7
E7

EE
31
31
31
31
31
31
31
31
4E

02
03
02

o8
0] 4]

06
00

01
00
09
08
09

01
00
07
06
07
06
01
00
05
04
05
04
CF

cc

00

00

MOV3

MOV4

SEC
STA
STA

E
A
k

29X
3rX

29X

ACTUAL MOVE

TSX
LoX
LDA
T6X
LoX
STA
T5X
LA
L.Ttey
AR
AlIC
STA
S5TaA
LA
LIt
ADD
ALC
STA
STA
LnoA
LDA
AL
ALC
STA
STA
ENE
8T
ENE
INS
INS
T8X

LDx
INS
INS
INS
INS
INS
INS
INS
INS
JMP

NIWDO>DUDYD>IONDMDODTDOoDTD D>

>

By X
0»X

b X
O X

1eX
O X
P X
8y X
P X
8+ X
1+X
0sX
7+ X
b9 X
7 X
b9 X
1,X
O X
S X
45X
Se X
49X
MOV3

MOV3

0 X

0sX

COUNT = - COUNT

LOOFP FOLLOWS

BUMF XFROMX

BUMF XTOX%

RUMF %COUNTX

COUNT < O

DISCARD DELTA

10

HEATH KEYROARD
TARLES

19F2 54
19F3 17 07

19FS &3
19F6 15

19F8 352
19F9 15 53

19FR 50
19FC 17 0A

19FE Al
19FF 13 AC

1401 4AC
1402 146 AG

1A04 49
1A05 15 A

1A07 48
1A08 14 F3

1A0A 47
1A0F 14 8F

1A0D 43
1A0E 1% 39

1A10 44
1Aa11l 17 09
1413 43
1Al4 1G i

1A1é6 Az
1A17 1C 03

1A19 18
1Aia 15 8E

1A41C 14
i1Aallr 16 Fh

1A1F 13
1A20 1& 7R

1422 10
1423 15 8C

-
> D
Rk
o

1% FE

MONITOR

*R

CMOTAE

COMMANT

FCR
FREg

FOE
FIE

FCH
Flik
FOR
FIiR

FCR
FTE

FCE
Fg
FCR
FUOE

FCE
Fhk

TARLE

5 T' 7
RCRR

IB!
.’F\./
REGS

!Fxl
FTAF

e
iiE M

T
LOAD

T
INGT

HY
ERFT

GO

ta E' 2
EREC

e
TIUMF

ol
CLEAR
f}'_:(:'
LEOZH
‘X ~40H
REGX

ST -40H
CTLT
£G4 0H

CaOry

B 40H
REGF

“H - A0H
n1SK

TAFE RECORI NATA

STEF USER CORE

VISFLAY USER REGISTERS

FUNCH 10 FAFER TaRE

NIGFLAY MEMUORY CRYTES

AT FROM TalRE

NIGPLAY MERORY CINST)

HAL TEIHHNT THSERT

G PO USER COUE

AU TTRLE STER

NUME HEHORY

RREESEFOTNT L Eal

GOTO B&ASTC

WaRM START TdTRY

JESPEAY TNEHE X

HI SFEED TeFE

SLIWE MEMORY !

NISHLAY F.Co,

HALTROINT | TGT

HEATH KEYROARD MONITOR

TARLES

1AZ28
1A29

1AZER
1A2C

1A2E
1AZ2F

1A31
1A32

1A34
1435
1437
1A38
1439
1A3R
1830
1A3E
1440
1A42
1A45
1448
1A4ER
1440
1AG0
1A51
1AG2
1A55
1A56
1459
1ASA
1AGC
1ASE
1A40
1462
14463
1Aé6é6
1468
1A&ER
1ASE
1470
1471

1A73

03

15

02

e
.

01

15

00
FC

OF
an
35
31

09
26
6F
PF

BO
CE
Cé
Bl
4F
BT
BRI
36
ED
32
nE
Al
26
&C

8C
26
CE
8c
26
4C
20

i3

?1

?0

00

FE
00
EE

- 00

FC
00
02
FI

FE

o

EE
00
13
00

00
03
00
FF
EC

I

EE

20

43

Fi

oF
FF

¥

MTST

MT82

MTH3

MTS4

MTES

FER
Fhg
FCH
Fhig

FCR
FIR

FCr
FLOR

MTST - MEMORY DIAGNQSTIC

NISPLAYS LA
CURRENT TESY
ENTRY?

EXIT:

UBESE

SEX
HSR
THES
INS
CLR
LHE X
HHE
CLR
sTa
LIS
JSR
X
L.IA
JOR
CLR
MEC
JEGR
FSH
JER
FUL
Lnx
Gtk
BNE
ING
NEX
CFrX
ENE
LX
CFX
ENE
INC
BRA

STX

€7 -40H
REGC

‘B -40H
REGE

‘- 40H
REGA

‘2°~40H
$FCOO0

MONE

N

RNTSPLAY CORDX

BNIGRLAY B ACC.

LDISFLAY @& All.

EXIT 10 OLD MONITO

FIELTE ON LEDS
FATTERM IN “"DaTa”

FaAlLED ADDRESS/-FATTERN RUSPLAYER
FROCESSOR HAL.TED

L Ly TO» T1«DIGADD

Frar

OrX

MTe2
O X

11
#T0~1
REILS
11

42
UTSPLAY

ouTeYT

BKGF

T1

09X
MTS&
O X

ENTGANNE
MTSS
#10-13
-1

MTH4

MTE3

T1

FIND TOF OF MEHRORY
S5TACK AT TOF

CLEAR @l MiLEORY

HOFE THIS I8 Gaont

REGET DISFLAYS

QUTFUT LW FOUNL

QUTFUT FATTERN

RACKGFACE DISPLAYS

Pt URE S

SKIF CONTAMINGTEN

R

AREA

"

HEATH KEYROARD MONITOR
MEMORY LIAGNOSTIC

1A7% HD FC BC JSR RERLS RESET NISPLAYS
1A78 CE 00 EE X 4#T1
147 5C INC E
1A7C BD F 7K JSK RISFLAY
1A7F 3E WAl
* K FTOF - FIND MEMORY TOF
X
X SEARCHES NBOWN FROM 1000H UNTTL FINOS
X GOOR MEMORY
*
X ENTRY S NONE
X EXIT: Oy = LWa MEMORY
X USES: X
1480 36 FTOF FSH A
1481 CE 10 00 LnX ATERM TOF OF MFEMORY L
FFF# IF NERUG-1
ENDIF
1A84 86 55 LA A #55H TEST PaTTERN
1A86 09 FTO1 KX
1A87 A7 00 GTA A 0sX
1489 Al 00 CMF A Qs X
1A8R 26 F9 ENE 1ot
1a80n 32 FUL A
1ABE 39 RTS
XX CCh ~ CONSOLE CASSETTTE NUNMF
X
X ENTRY ! NONE
X EXIT?S T LED MONTTOR
* USES! ALLsTOsT1s712
1ABF C& 08 ccn Lo K £33
1491 8t 42 RGR INJFIA THETALIZE Pia
1493 8E 00 EN LOS $T0-1
14946 37 FPSH Rk
1497 ERD FC 86 JER OUTSTA
1A94 47 895 FCE A7Hy O5HFBOH TFR
1A9C CE 00 EE Lnx 371
1A9F (Cé6 02 LAk 42
1a4Aa1 RO FC BC JER REDNIS RESFET NISFLAYS
1AA4 BIOOFII 25 JSR FROMFT FROMFT FWa
1aA7 BD FC 86 JBR QUTSTA
1aAA OE FD FCR OEH » 7DIIH+80H i
1AAC ERI FC RC JOGR REDIS RESFET WISFILAYS
1AAF CE 00 F4 LDnX $T2
1AR2 RO FI1 25 JSK FROMFT FROMFT LWa
tARS 33 FUL. R
1ARSs ERIN 17 29 JER FUNCH

1aR? 7E FC 00 (CCD1 JMF $FCO0 EXIT TO WMONTITOR

HEATH KEYROARDN MONITOR
LED MONITOR TAFE FPROCESSORS

XX
X
X
X
X

1ARC C& 08 CCL

1ARE 8D 15

1ACO 8D EE

1aC2 39

1aC3 31

1aC4 BD 16 A

1AC7 24 FO

1AC9? ERI' FC RC

1ACC RID FE 52

1ACF 4F 0% 05

1AI4 3E
¥k
X
X
®
X
%
X
¥
¥

1AL CE 10 00 IN.FIA

14808 &F 01

1ala &6F 03

LATIC 846 8¢

1ADNE A7 00

1AEQ 43

1aE1 A7 02

1AE2 846 (04

1AES A7 03

1aE7 39
KK
¥
¥
¥

1AF6 86 OL TYsT

1AF8 B7 10 00

1AFR C6 04

1aFnK F7 10 01

1B0O0 BD 16 18 TTS0
1E0O3 O OA G4

irin 20 E1

CCL -~ CONSOLE CASSETTE LOAD

ENTRY! NONE

EXLT: 10 CONSOLE MONITOR IF SUCESS
USES: ALLy TOSsHIGHEST MEMORY

Ll R 8

BSR INL.FIA INITIALIZE FIA

RSR FTOF FINDN MEMORY TOF

TXE

INS

JGR LOAO ILOAN MIZMORY

RCC ccni NORMAL RETURN

JSR RELXS FRINT ERROR MESSAGE
JGR OQUTSTR

FCR AFHy OSHy QSHy 1)y OOH+80H

WAI

INFIA - INITIALTZE FIa FOR LED MONCTOR

INITVIALLZE CASSETTE SIDE FOR LOaAD QR DUMF
ANDU SET (TERM) S0 THAT A BREAK IS5 NOT
SENSED.

ENTRY S NONE
EXTT NONE
USES! e X

LIx #TERM

CLR 1+X

CLE 3¢ X

Loa A FLOOOO0GOR

STh A OrX INTO DR
coM A

STA A 29X INITIALIZE CALGETTE
L A #4

STA A KED

RTS

LON L.

TTST — TERMINAL TESTER

ENTRY{ NONE

EXIT? NEVER

LOA A ¥1

STA A TERMNM

LA R $4

STA k TERM.C

J5KR OUTIS

FCE CRyLFy "THIS (8 A TERMINAL- TEST »0
BRA Trs0

13

14

HEATH KEYROARD MONITOR
TERMINAL TEST

1B1F D

STATEMENTS =18632

FREE BYTES =14823

NO ERRORS DETECTED

APPENDIX D

Excerpts from “Kilobaud”

The following magazine articles have been reproduced with permission from
Kilobaud. They provide entertaining and educational material that enables you
to more fully appreciate and enjoy your ETA-3400 microcomputer accessory.

The programs will not necessarily run as is on your computer accessory, but with
some modifications you can run the programs.

75

76

Ron Anderson
3540 Sturbridge Ct.
Ann Arbor Ml 48105

Tiny Basic

l ssue #1 of Kilobaud con-
tained an article by Tom
Pittman describing his Tiny
BASIC. As a very optimistic
owner of a new KIM-1, and
with a SWTP CT-1024 TV
terminal on order, | sent my
order off to Tom’s Itty Bitty
Computer Company, and
soon my Tiny BASIC listing
arrived. Lacking the terminal,
I spent a Saturday loading
Tiny by _hand with the hex
keyboard and verifying it.
When the last kit of the TV
terminal arrived, | loaded
Tiny. A close reading of the
instructions indicated that |

ways to save memory:

1. PRINT may be abbre-
viated PR in all cases. For
example:

50 PR*“HI THERE!”
2. Tiny needs no spaces in
the program statements. A
listing is hard to read without
them, but it is better than
running out of memory.
3. Tiny has no absolute value
function. This can be imple
mented easily as follows:

100 1F A <0 A=-A
4. Tiny has no ON N GOTO
statement (see Example 1).

ME THINK A MOMENT .. .
and that is what seems to be
happening.

I've made my Hunt the
Hurkle game a little more
interesting for a first-time
player by including a random
1 out of 15 chance of seem-
ing confusion on the part of
the computer. The result is
that instead of the normal
THE HURKLE 1S HIDING
message, the printout is as
shown in Example 3.

THE HURDLE IS HIKING
NO, THAT’S NOT RIGHT

NOW WAIT A MINUTE!

THE HIDEL IS HURKING.
THE HURKLE IS HIDING.

Example 3.

(pause random time)
{pause random time)
(pause random time)
(pause random time)

tions extends to more than
one full page, it is lost before
it can be read. This would
also be a problem with a
scrolling display, particularly
if the TVT is running at 1200
baud. The program can con-
tain a “pause for read”” which
can be implemented easily at

Here the program resumes
its regular course.

Last but not least, Tiny
BASIC lacks any kind of
string manipulation. It is
possible to get around this by
using Y and N for Yes and No
responses as shown in Exam-
ple 4.

150 ON N GOTO (100,110,120,130)

Example 1.

had to insert some I/O jump
addresses. This done, Tiny
ran with nothing more than
operator problems.

It was not hard to begin
programming some of the
simpler games from Basic
Computer Games published
by Digital Equipment Corp.

As limited as it is, using
only 2%K of memory (I had
added an Econoram 4K
expansion to my KIM), a
great deal can be done with it
that is not obvious on first
glance.

At the bargain price of $5
I didn’t expect a full course
in BASIC programming. But
there are some features that
are not obvious and could be
expanded upon for those of
us who are rank beginners.

First, here are a couple of

The following allows the
same results:

60 GOTO 100+10*N

This is particularly useful
in implementing a game like
Bombers (see Basic Computer
Games). Here the player is
given a multiple choice, and
the number he enters (N}
determines a branch in the
program.

My TV typewriter is the
kind that “pages’; when the

60 Y=1

70 N=0

80 INPUT R

90 IF R=1 GOTO 10

999 END

50 PR“WANT TO PLAY AGAIN";

85 REMARK R FOR RESPONSE

100 PR“THANKS FOR PLAYING. HOPE YOU ENJOYED IT”

Example 4.

the desired point.

100 T=0
105 T=T+1
110 1¥ T <150 GOTO 105

The T less-than number may
be adjusted for a suitable
time delay. These steps may
be a subroutine, and T may
be randomized by Example 2.

115 RETURN

1101F T <(RND(150)+10) GOTO 105

Example 2.

screen fills, it ““flips"’ a page
and starts to fill it from the
top. If output such as instruc-

The delay loop is used to
add interest to a game, where
the computer outputs “LET

Kilobaud, December 1977

A little ingenuity allows
many tricks in Tiny BASIC.
Use a little imagination, and
it can be great fun.

| started out in this hobby
with full intentions never to
waste time playing games
with my computer. Obviously
I've changed my mind. The
reason is that programming
games seems to be a very
good way to learn all the
tricks and non-tricks of pro-
gramming in BASIC. | still
intend to do alot of machine
language programming, but |
can’t imagine a way to learn
BASIC faster than by using it
to program a game. Thanks,
Tom Pittman, for Tiny
BASIC. It really works. ®»

Along with pointing out the
differences between Tiny
BASIC and standard BASIC,
Tom offers here some com-
ments and opinions on
BASIC and structured pro-
gramming. [Interestingly, his
manuscript fs one of the few
we’ve received which was pre-
pared using a text editor (a
Mode!/ 37 TTY driven by a
COSMAC 1802 microproces-
sor). It would seem that more
of wus f{including myself)
should be at this stage by
now. — John.

Tom Pittman
PO Box 23189
San Jose CA 95153

f you have an Altair or

IMSAI computer or any
8080-based system, you have
your choice of several ver-
sions of BASIC. There are
rumors of BASIC for 6800
and 6502 within the next few
months. But these require
memory — probably more
than you have with your low
budget machine.

The alternative is Tiny
BASIC. The language is a
stripped down version of

regular BASIC, with integer
variables only — no strings, no
arrays, and a limited set of
statement types. It was first
proposed by Bob Albrecht,
the ‘“dragon” of Peoples
Computer Company (PCC) in
Menlo Park, as a language for
teaching programming to
chitdren. The PCC newspaper
ran a series of articles {largely
written by Dennis Allison)
entitled ‘“Build Your Own
BASIC,” suggesting how Tiny
BASIC might be implemented
in a microprocessor. The
important portions of these
articles have been reprinted in
Dr. Dobb’s Journal of Com-
puter Calisthenics and Ortho-
dontia, published by PCC and
available in most computer
stores.

11

Tiny Basic

-«« @ mini-language

BASIC

Before we get into Tiny
BASIC, let us look at high
level languages in general and
BASIC in particular.

When you program in ma-
chine language, each com-
mand, or statement, repre-
sents one operation from the
machine’s point of view.
When we think of a single
concept like, ‘A is the sum of
B and C,”” a machine language
program to perform this oper-
ation may take several opera-
tions, such as:

LDA B
LDA C
STO A

A high level language, on
the other hand, iets you put a
single human idea into a
single program statement, for
instance:

LET A B+ C

BASIC is one of a class of
“‘algebraic” tanguages in that
it permits the representation
of algebraic formulae as part

for your micro

of the language. Other lan-
guages in this class are
FORTRAN and ALGOL.
COBOL does not generally
fall in this class (except for
the “‘super’” versions).

Of critical importance to
all algebraic languages is the
concept of an expression. An
expression is the program-
ming language notation for
what we might think of as
“the right-hand side of a for-
mula.”” Alternatively, we can
think of an expression as “‘a
way of expressing the value
of some number which the
computer is to compute.”

An expression may consist
of a single number, a single
variable name (all variables
are referred to by name in
high level languages), a single
function call (discussed in
detail later), or some combin-
ation of these, separated by
operators and possibly
grouped by parentheses. For
this discussion, when we refer

Kilobaud, January 1977

to an operator, we mean one
of the four functions found
on a cheap pocket calculator:
addition symbolized by " +*";
subtraction by - **; multipli-
cation by “ *” {we do not
use X" because that would
be confused with the name of
the wvariable “'X”); and
division by " /". {The usual
symbol for division does not
appear on most typewriter
and computer keyboards.)
Thus, A-B_
Cc-D
becomes, in computerese,
- By - D

Here the parentheses are used
to indicate priority of opera-
tions. Normaltly multiplica-
tion and division are per-
formed first, then addition
and subtraction. Without the

parentheses the expression,
A-B
C-
would be understood by the
high level language as,

ar—% d

18

which is not the same at all.

In BASIC, when an expres-
sion is encountered, it is
evaluated. That is, the values
of the variables are fetched,
the numbers are converted (if
necessary), the functions are
called, and the operations are
performed. The evaluation of
an expression always results
in a number which is defined
to be the value of that expres-
sion.

The first example which
we discussed showed a simple
BASIC statement,

LET A B
This is called an assignment
statement, because it assigns
the value of the expression
"B + C" to the variable A. All
algebraic high level languages
have some form of assign-
ment statement. They are
characterized by the fact that
when the computer processes
an assignment statement, a
single named variable is given
a new value. The new value
may not necessarily be

different from the old; for
example:

This is also a valid assignment
statement, even though
nothing changes. Assignment
statements are also used to
put initial values into var-
iables, for instance:

BET 3

Control Structures

One of the important char-
acteristics distinguishing
different high level languages
is the control structure
afforded to the programmer.
The control structure is deter-
mined by the various per-

mitted control statements,
which alter the flow of pro-
gram execution. Normally

program execution advances
from statement to statement
in sequence, although there
are however, circumstances in
which this sequence is
altered. The most common
control structure allows one
set of operations to be per-

formed if a certain condition
is true, and another, if it is
false. In “structured program-
ming'’ this is referred to as
the “IF ... THEN ... ELSE”
construct; its general form is
"IF condition is true, THEN
do something, ELSE do some
other thing.”” The full gener-
ality of this control structure
is not directly available in
BASIC, but, as we shall see,
this is only a minor incon-
venience.

Standard BASIC uses the
IF ... THEN construct, and
makes it work something like
a conditional GOTO:

IF A>3 THEN 120

If the value of the variable A
is greater than three, then
(GOTO) line 120, otherwise
continue with the next state-
ment in sequence. Actually,
the condition to be tested
consists of a comparison
between two expressions,
using any of the comparison
operators which are given in
Fig. 1.

Photo courtesy of Electronic Product Associates, Inc., 1157 Vega Street, San Diego CA 92110.

In each case, if the compar-
ison of the two expressions
evaluates as true, the implied
GOTO is taken; otherwise the
next statement in sequence is
executed. In Tiny BASIC the
syntax is slightly different.
Instead of a statement num-
ber, a whole statement
follows the THEN part of the
IF ... THEN. The compar-
ison above, in Tiny BASIC,
would be:
IF A>3 THEN GOQTO 120

But we could also validly
write:

IF A<=3 THEN LET A=A+10

or some such. Note that this
is not wvalid in standard
BASIC.

The GOTO construct has
been the subject of contro-
versy in the last few years. A
strong case has been made for
““GOTO-less programming’”’
which uses only certain other
control structures to achieve
structured programs which
are more readable and fess

ANV ANV
[

= Equality (the comparison is true
if the two expressions are equal)

Greater than

Less than

Less or Equal (not Greater)
Greater or Equal

> Not Equal

Fig. 1. Comparison Operators.

prone to errors. | believe that
both good and incomprehen-
sible programs are possible
regardiess of the control
structures used or not used,
but | seem to be in a minority
at this time. Suffice to say
that BASIC is not conducive
to structured programming in
the technical sense of the
term.

Standard BASIC has one
control structure which has
been omitted from Tiny
BASIC. This is the FOR . ..
NEXT loop. Normally, if a
program requires some se-
quence to be performed
thirteen times, the following
program steps might be used:

10 FOR I=1 TO 13
20 ...
30 NEXT T

Statement 20 would be exe-
cuted 13 times, with the
variable | containing succes-
sively the values, 1, 2, 3. ..
12, 13. In Tiny BASIC the
same operation is a little
more verbose:

10 TLET T-1

20 ...

30 LET I=1=1

40 1F I<=13 THEN GOTO 20

but, as you can see, nothing is
lost in program capability.

Data Structures

Standard BASIC also has
some data structures which
have not been carried over
into Tiny BASIC. The only
data structure in Tiny BASIC
is the integer number, which
is further limited to 16 binary
bits for a value in the range of
-32768 to +32767. Compare
this precision with the six

digit precision in standard
BASIC, which also gives you
fractional numbers {some-
times called ‘'floating
point’’). Regular BASIC
allows arrays, or variables
with multiple values distin-
guished by “‘subscripts,” and
strings, which are variables
with text information for
values instead of numbers. We
will see presently how these
deficiencies in Tiny BASIC
can be overcome.

Input/Output

Thus far we have said
nothing about input and out-
put, how to see the answers
the computer has calculated,
or how to put in starting
vatues. These needs are
accommodated in BASIC by
the PRINT and INPUT state-
ments. Numbers are printed
(in decimal, for us humans to
read) at the user terminal by
the PRINT statement:

PRINT A, B + C
This prints two numbers; the
first is the value of the var-
iable A, and the second is the
value of the expression B+C.
In general, the PRINT state-
ment evaluates and prints
expressions. It is perfectly
valid to write

PRINT 1, 123, 0-0
although we know in advance
what will be displayed on the
terminal. To make our output
more readable, BASIC per-
mits the program to print out
text labels on the data.
PRINT "THE SUM OF 1 + 2 1IS",
will display the line:

THE SUM OF 1 + 2 IS 5

To feed new numbers

from the terminal to the pro-

3+ 2

gram the INPUT statement is
used.
INPUT A, B, C

will request three numbers
from the input keyboard. The
more popular versions of
Tiny BASIC have an extra
capability here beyond stan-
dard BASIC, in that the oper-
ator can type in numbers and
whole expressions. Thus, if in
response to the INPUT re-
quest above, the operator

types

1+2, 37(4+5), B-A

the variable A will receive the
value 3, B will receive the
value 27, and C will receive
the value 24 = 27-3. There-
fore, a program in Tiny
BASIC, which permits no
text strings, can display and
accept as input limited text
information:

10 LET y=1

20 LET N=0O

30 PRINT "PLEASE ANSWER Y OR N'';
40 INPUT A

50 ‘IF A=Y THEN GOTO 100

60 IF A=N THEN GOTO 120

7¢ GOTO 30

This little program asks for an
answer, which should be
either the letter Y’ or the
letter ‘N’ (or their equiva-
lents, the numbers 1 or O,
respectively). 1f the operator
types anything else, the re-
quest is repeated. Obviously,
this technigue will not work
for something like a person’s
name where any letters of the

alphabet in any sequence
must be expected, but it is
certainly an improvement

over no alphabetic input at
all.

A generalized text output
capability in Tiny BASIC
depends on another charac-
teristic peculiar to Tiny
BASIC and not shared by
standard. That is the fact that
the line number in a GOTO
or GOSUB statement is not
limited to numbers only, but
may itself be any valid ex-
pression which evaluates to a
line number. The program
which is shown in Fig. 2
prints A, B, or C, depending
on whether the variable N has
the value 1, 2, or 3. Note
that, if N is out of range,
nothing is printed.

The USR Function
What about the fact that

there are no arrays? Let us
turn to the USR function for
a way to store and retrieve
blocks of data. The remarks
which follow apply only to
my version of Tiny BASIC
and are unique in that
respect.

The USR function is in-
voked with one, two, or three
arguments (expressions
separated by commas within
the parentheses). The first {or
only) argument is evaluated
to the binary address of a
machine language subroutine
somewhere in the computer
memory. The USR function
does a machine language sub-
routine call (JSR instruction)
to that address. The user is
obliged to be sure that there
is in fact a subroutine at that
address. If there is not, Tiny
BASIC (and thus your com-
puter} will execute whatever
is there. The second and third
arguments, if present, will be
loaded into the CPU registers
before jumping to this sub
routine. On exit, any answer
the subroutine produces may
be left in the CPU accumula-
tor, and it becomes the vatue
of the function. Two machine
language routines are already
provided with the BASIC
Interpreter; if S is the address
of the beginning of the inter-

preter,
USR(S + 20, M)

has as its value the byte
stored in memory at the
address in the variable M

(that is, the contents of the
second argument is evaluated
to a memory address). Also,
USR(S + 24, M, B)
stores the low order 8 bits of
the value of B into the
memory location addressed
by M. The return vaiue of this
function is meaningless.

Consider the standard
BASIC program in Fig. 3(a}
to input ten numbers and
print the largest as compared
to the Tiny BASIC program
in Fig. 3(b).

I have used this example
for two reasons: First, it
shows how the USR function
may be used to simulate the
operation of arrays. Second,
it is typical of many of the
applications commonly ad-

19

80

20 RETURN
30 PRINT “A"
35 RETURN
40 PRINT "B"
45 RETURN
50 PRINT 'C"
55 RETURN

10 IF N>0 THEN IF N<& THEN GOSUB 20+(N * 10)

to argue for arrays; however,
neither real nor simulated
arrays are required for this
program! Here is the same
program, with no arrays:

10 LET TI=1
20 LET L=0
30 INPUT V

40 IF L<V THEN LET L=V
50 LET TI=I+1

60 IF T<=10 THEN GOTO 30
90 PRINT 1,

Summary

Tiny BASIC is not a super
language. But, it also does not
require a super computer to
run. I've given here only a
cursory examination of the
power of Tiny BASIC. A full
description of Tiny BASIC
may be found in the Itty

Bitty Computers Tiny BASIC
User’'s Manual. This comes
with a hex paper tape of the
program and is available for
$5 from: Itty Bitty Com-
puters, PO Box 23189, San
Jose CA 951563.

There are different ver-
sions for each of the follow-
ing systems, so be sure to
specify which system you are
running:

M6800 with MIKBUG,
EXBUG, or home brew (Exe-
cutes in 0100-08FF); AMI
Proto board (Executes in
EOOO-E7FF); SPHERE
{Executes in 0200-09FF);
6502 with KIM, TIM or
homebrew (Executes in

Fig. 3. Programs to input ten numbers and print the largest.
(a) Standard BASIC; (b} Tiny BASIC.

Fig. 2. Program to Print A,
B, or C, depending on the
vaiue of N.

0200-0AFF); JOLT (Exe-
cutes in 1000-18FF); APPLE
(Executes in 0300-0BFF);
KIM-2 4K RAM (executes in
2000-28FF).

Although few people have
paper tape systems, we are
unable to provide the pro-
gram on audio cassette. But if
you request it, we will supply
a hexadecimal listing of the
program instead of tape
which you can key in and
then can save on cassette for
future use.

If you have a small 8080

domain. Most of them have
been published in Dr. Dobb’s
Journat, which is $10 per
year from: People's Com-
puter Company, PO Box 310,
Menlo Park CA 94025. This
journal has also published a
number of games which run
in Tiny BASIC.

One final comment. Tiny
BASIC was originally con-
ceived as ‘‘free software” by
the people at PCC. The 6800
and 6502 versions described
in this article are not free;
they are proprietary and
copyrighted. Software is my
only source of income, and, if
| cannot make it from pro-
grams like Tiny BASIC, |
won't write them. Please
respect the labor of those of
us who are trying to make

system, there are several quality software available to
widely differing versions of vyou: pay for the programs
Tiny BASIC in the public youuse.®
10 LET 1-1

10 FOR 1=1 TO iC Z0 INPUT V

20 INPUT V(1) 25 LET V=USR(S=24,1,V)

30 NEXT 1 30 LET 1=I+1

40 LET L=V(1) 35 IF I<=10 THEN GOTO 20

50 FOR I=2? TO 10 40 LET L=USR (S+20, 1)

60 IF L>=V{(1) THEN 80 50 LET 1=2

0 LET L=V(T) 60 IF L<USR(S+20,I1) THEN LET L=USR{S+20,1)

80 NEXT I 80 LET I=I+1

90 PRINT L 90 PRINT L

Tiny BASIC Shortcuts

Tom Pittman’s Tiny BASICs (6502, 1802, etc.) are somewhat limited
in capabilities. This is the first of several articles discussing
methods to expand those capabilities.

Charles R. Carpenter
2228 Montciair Place
Carrollton TX 75006

Writing small but useful
programs in Tiny BASIC
(to paraphrase Tom Pittman) is
a practical reality. Getting the

most out of your programs is
easier if you work with the inter-

preter's limitations. The utility
program in Fig. 1 shows how to
work with some of these lim-
itations. This program is titled
“Loans,” but it could be any
comparison of WHAT-IF alter-
natives. Here's what we’ll be
working with (and without):
® Decimal numbers not al-
lowed.
® Number range limited from
-32768 to + 32767.

® 72 characters maximum on
Input lines.

® Implied statements and ab-
breviations to save bytes of
memaory.

(Note: Tom Pittman now has an

experimenter’s manual avail-

able that explains many of

these features and how to work

with them. They are not as sim-

pie as my approach. The

manual is available from Itty

Bitty Computers, PO Box
23189, San Jose CA 95153))

These are not significant
handicaps if you're estimating
the effect of several alter-
natives. Round numbers are
usually acceptable if you only
want to get on base in some
specific ball park (clichés are
fun once in a while).

Byte-saving Tips

Saving bytes of memory is a
practical approach if your com-
puter has limited memory (|
have 1250 bytes of free space
now). Let's taik about the
memory-saving part first.

Fig. 1 is an example of a pro-
gram with no statement short-
cuts; Fig. 2 uses all the implied
and abbreviated statements
possible in this Tiny BASIC in-
terpreter. Memory in Fig. 1 is
492 bytes, an average of 17
bytes per line, while Fig. 2 uses
410 bytes for an average of 14
bytes per line. REM comments
were added later and used 470
bytes.

Using implied statements
causes the program to run

THE REASON.

110 INPUT N
115 PRINT
120 LET A=0

140 PRINT**

150 PRINT‘*

160 PRINT"S

170 INPUT P,R,T,X
190 LET I=P*T*R
200 LET O=100*P+1
210 LET M=0/X

TINY BASIC FOR KIM-1
6502 V.1K BY T. PITTMAN.

PROGRAMMED BY:

C.R. (CHUCK) CARPENTER W5USJ
2228 MONTCLAIR PL.
CARROLLTON TX 75006

THESE PROGRAMS ILLUSTRATE BYTE SAVING
TECHNIQUES IN LIMITED MEMORY SYSTEMS.
THE FIRST PROGRAM USED 492 BYTES. THE
OTHER USED 410 BYTES. AN INCREASE

(OR SAVING) OF 82 BYTES. IMPLIED
STATEMENTS AND ABBREVIATIONS ARE

PRINT*“LOANS : HOW MANY -

PRINT*INPUT: PRINCIPAL IN HUNDREDS (P)”’
RATE IN PERCENT (R)”’

TIME IN YEARS (T)”’
PAYMENTS IN MONTHS (X)”

220
230
240
250
260
270
280
290
300
310
320
360
370
380
390

LET A=A+1
PRINT
PRINT
PRINT

PRINT
LET N=N-1

PRINT

PRINT
END

=40
I

G

U

[+2
YSUB |

o= =
~ N

x
z

1226 AT 1
:END

:PRINT*“THERE ARE ;1;* BYTES LEFT”’
THERE ARE 288 BYTES LEFT

Fig. 1. First program version using no shortcuts to write the program or save bytes. This program uses 492 bytes, exclusive of the REM
statements. REM statements use 470 bytes. The short routine above illustrates how Tiny BASIC finds the number of bytes of free
space remaining. The user’s manual tells how to do it.

PRINT*“LOAN NUMBER -""; A"
PRINT*INTEREST IS $"*;1

PRINT**MONEY OWED IS $";0

PRINT*PAYMENTS ARE $';M

IF N>0 THEN GOTO 170

PRINT*“DONE"’

Kilobaud, June 1978

81

82

slower, but the increase in pro-
gram lines is worth the loss of
speed (if speed is your concern
then Tiny BASIC may not be for
you, anyway). Memory saving
wasn't really necessary for this
short program; but in a 100-line
program over 200 bytes could
be saved (12 to 15 lines’ worth).
Such significant savings allow
you to write longer programs.
The programs are stili small,
but even a few more lines make
them more useful. And that’s
what we're trying to do. Bytes
could be saved in a few more
places, such as the spaces in
the print input, tines 130
through 160, but in the interest
of clarity, | ieft them alone.

Decimal Values

Calculations involving
decimal numbers can be han-
dled several ways. Anytime a
percentage or a calculation
resulting in a fraction occurs, a
decimal number results.
Dollars and cents are decimal
numbers, too. Tiny BASIC trun-
cates decimal numbers down
to the next lower whole num-
ber. If the number is less than
one, the result is zero. (For this

reason, accountants would
probably not want to use Tiny
BASIC)

Lines 130 through 180 are the
input lines for this program. |
used principal in hundreds and
rate in percent to avoid decimal
percentage entry and to pre-
vent dividing percent by 100 (to
get back to a decimal percent-
age). The math comes out right
when it's printed out in line 250.
| then multiplied the total loan
value by 100 in line 200 to make
the right amount print in lines
270 and 290.

Principal input in hundreds
also helps avoid the number-
limitation problem. Keeping the
numbers to be operated on
small limits precision but
keeps the multiplication re-
sults in range. Adding a state-
ment in a print line to multiply
(or divide, etc.) by some factor
will put the answer back in the
right magnitude. This is sort of
like using engineering notation
with a slide rule. The difference
is the lack of decimal numbers.

An input-line limitation of 72
characters restricts the
amount of data you can input.
Two character spaces are used

:LIST

100
110
115
120
130
140
150
160
165
170
190
200
210
220
230
240
250
260
270
280
290
300
310
320
360
370
380
390

INPUT N
PR
A=0

PR**
PR
PR*
PR
INPUT P,R,T,X
I=P*T*R
O=100*P + 1
M=0/X
A=A+1

PR

PR
PR

PR

N=N-1

IF N>0 GOTC 170
PR

PR*“DONE"”’

PR

END

PR“LOANS : HOW MANY -”

PR“INPUT: PRINCIPAL IN HUNDREDS (P)”
RATE IN PERCENT (R)”’

TIME IN YEARS (T)”’
PAYMENTS IN MONTHS (X)”’

PR “LOAN NUMBER - "";A;*"”
PR“INTEREST IS $;1

PR“MONEY OWED IS $,0

PR*“PAYMENTS ARE §"";M

Fig. 2. Second program version using implied statements and
abbreviations to save bytes. This version uses 410 bytes.

by the prompting question
mark and following space. This
reduces actual data input to 70
characters, including the re-
quired commas between the
data entries, With the loan
amount in hundreds, | was able
to input values for six loans in-
stead of five. To overcome the
limited data-input situation,
write programs that will per-
form calculations, hold the
results and return for more

data. !'ve done this on some
data-processing routines with
good resuits.

There’s another way to ac-
commodate more data than the
line will hold. Simply input as
many loan numbers (or WHAT-
IFs)as needed in line 100. When
the program has used the data
entered, it will ask for more un-
til the number of N entries is
reached in line 320. Question
marks will show up each time

76

2,4,48,50,18,5,60

LOAN NUMBER - 1
INTEREST IS $1200

PAYMENTS ARE $144

LOAN NUMBER -2
INTEREST IS $1920

PAYMENTS ARE $123

LOAN NUMBER -3
INTEREST IS $3600

PAYMENTS ARE §126

LOAN NUMBER - 4
INTEREST IS $1500

PAYMENTS ARE $180

LOAN NUMBER - 5§
INTEREST IS $2400

PAYMENTS ARE $154

LOAN NUMBER - 6
INTEREST IS $4500

PAYMENTS ARE $158

DONE

loan values at three rates.

LOANS : HOW MANY -

INPUT: PRINCIPAL IN HUNDREDS (P)
RATE IN PERCENT (R)
TIME IN YEARS (T)
PAYMENTS IN MONTHS (X)

740,10,3,36,40,12,4,48,40,18,5,60,50,10,3,36,50,1

MONEY OWED IS $5200

MONEY OWED IS $5920

MONEY OWED IS $7600

MONEY OWED IS $6500

MONEY OWED IS $7400

MONEY OWED IS $9500

Fig. 3. Sample run. Simple interest calculations of two different

From Fig. 3 From Fig. 5
Simple Int Compound Int
Interest% Years Amount Equiv-Int% Years Amount
1. 10 3 $5200.00 11 3 $5320.00
2. 12 4 5920.00 15 4 6400.00
3. 18 5 7600.00 26 5 9200.00
Mult Actual Loan Value Difference
1.1.33% $5324.00 +$ 4.00
2.1.574 $62986.00 — 104.00
3. 2.288 $9152.00 + 48.00

Fig. 4. For a loan of $4000.

line 170 runs out of data and
line 320 is still greater than
zero.

This program only calculates
simple interest loans. Com-
pound-interest calculations re-
qguire decimal numbers and
raising numbers to some
power. The multiplier for com-
pounding over n periods is
{1+ 1N, where | is the interest
expressed as adecimal and nis
the number of years (or
periods).

You can use this multiplier to
calculate the approximate
equivalent while percentage
over the term of the loan. Your
calculated answer will result in
a much more realistic loan
evaluation. | made some of
these calculations, and Fig. 4
has some examples.

In the program itself, there
are no unusual or unique pro-
gramming techniques. There
are two counting loops—one
starting at line 110 and the
other at line 120. Whatever

value is input for N is
decremented in line 310 until
the data sets, input in line 170,
are used up. The counter that
starts in line 120 numbers the
printed output each time a pass
through the program is com-
pleted.

I tried to use N to do both, but
could not without using more
program lines. Otherwise, this
is simply a fundamental pro-
gram with input between lines
100 and 170, calculations be-
tween lines 190 and 220 and out-
put between lines 240 and 290.

Summary

It is easy to save bytes of
memory if you remember to use
implied statements and state-
ment abbreviations. The user’s
manual for Tiny BASIC shows
what is, and is not, allowed.
Both the decimal number and
number range limitation can be
handled by using software
math techniques (multipliers,
dividers, engineering notation,

83

23

DONE

ple interest calculation.

LOANS : HOW MANY -

INPUT: PRINCIPAL IN HUNDREDS (P)
RATE IN PERCENT (R)
TIME IN YEARS (T)
PAYMENTS IN MONTHS (X)
740,11,3,36,40,15,4,48,40,26,5,60

LOAN NUMBER -1
INTEREST 1S $1320

MONEY OWED IS $5320
PAYMENTS ARE $147

LOAN NUMBER -2
INTEREST 1S $2400

MONEY OWED IS $6400
PAYMENTS ARE $133

LOAN NUMBER - 3
INTEREST IS $5200

MONEY OWED IS $920¢

PAYMENTS ARE $153

Fig. 5. Loan value two, rerun to show the effect of compound in-
terest on the total loan value. Compare the results with the sim-

etc.). Line input characters
limited to 70 (72 with prompting
question mark and space) can
also be handled by pro-
gramming techniques.
Remember, if you input more
than a total of 72 characters in
a single line, the program will
stop. Nothing more will happen

until you reset your system. If
you have to reset and want ta
save the program already in
memory, then reenter the inter-
preter at the soft entry point.
The Tiny BASIC user’'s manual
explains how to do this, too. A
program does not have to be
big to be useful. R

Charles R. Carpenter
2228 Montclair Place
Carroliton TX 75006

Not So Tiny

Perhaps after running this series we won’t be calling it Tiny anymore!

KIM-1 and KIM-2 in redwood enclosure, ACT-1 TVT, Telpar Printer, Computerist power supply, Radio
Shack recorders.

:LIST

10 REM ORIGINAL VERSION

Il REM

100 FOR Y=1TO 10

{IOLET C=0

120 FOR X =1 TO 350

130 LET F = INT(2*RND(1))

140 IF F=1 THEN 180

150 PRINT “T’%;

160 GOTO 200

170 REM C COUNTS NO OF HEADS
180 LET C=C+1

190 PRINT “H’’;

200 NEXT X

210 PRINT

220 PRINT “HEADS (' OUT OF 50 FLIPS™
230 NEXT Y

240 END

Listing 1.

rograms written in Tiny

BASIC and other small in-
terpreters can be useful and
fun. First, some changes in pro-
gramming techniques and
phitosophy are needed, though,
because there are fewer
statements and commands in
smail interpreters.

One basic and very useful
pregramming tool is the loop.
Several articles have been writ-
ten about the power and use of
loops properly written and ex-
ecuted in a program. Usually in
larger BASICs, these loops are
written with FOR-NEXT
statements. In Tiny BASIC, the
equivalent statements are LET,
IF ... THEN GOTO.

To illustrate the conversion

of FOR-NEXT statements to
LET, IF THEN GOTO
statements, | have used the
program in Listing 1. This is a
coin-flipping routine with one
counting loop inside another.
The outside loop resides be-
tween lines 100 and 230; the in-
side loop is between lines 120
and 230. Lines 10 and 11 are my
comment and are not part of
the original program. It is not
possible to run this program on
my system because the Tiny
BASIC interpreter would not
recognize line 100 and would
stop.

Listing 2 is my version rewrit-
ten in Tiny BASIC. | have added
a couple of features, such as
the INPUT N line, which lets
you select N sets of 50 flips.
Also, | like to see DONE (or
something) at the end of a pro-
gram. This way | know the pro-
gramdidn't quit in the middle (if
the algorithm was right, any-
way). Otherwise, Tiny BASIC
used two more program lines
than the larger BASIC version.

In my program, the two main
loops comparable to the sam-
ple program are started with 7
LET statement. The outside
loop is between lines 110 and
250 and controls the number of
passes of 50 flips set in line
100. The inside loop is between
lines 130 and 210 and controls
the number of flips set in line
210. As | stated there are two
additional lines—the counters
for the two loops. The loop

counter in line 200 increments

by one on each pass through
the program until it reaches the
values in line 210. Incrementing
the | loop (in {ine 240) by one oc-
curs until the value in line 250 is
reached. In this case, | is com-
pared to N, the value input in
line 100. The vaiue of N lets the
user select how many sets of 50
flips are to be run by the pro-
gram before it ends.

Coin flipping, counting and
printing are handled in lines
140 to 190. Line 140 randomizes
the number 2 (1 is added so
there are no zeros). If the ran-
dom number is 1, it becomes ¢
“head” and passes to the head
counter in line 180. The head
counter increments by one and
prints an H, then increments
the X loop by one. If X is less

Reprinted with permission of Kilobaud Magazine.

than the limiting value (50}, the
program returns to the flip
routine at line 140 and starts
through again.

If F does not equal 1 in line
150, the value becomes a “tail,”
aTis printed, X is incremented
(by jumping to line 200) and
compared to the limiting value.
This time; if 50 flips have oc-
curred, the program falis
through to the print statement
inline 230. Heads (C) counted in
line 180 are printed out and the
program tests therelationships
in lines 240 and 250. When | >
N, the program prints DONE
and ends.

Tiny BASIC, even though
small in size, has powerenough
to produce significant pro-
grams. Applications are limited
only by your imagination and
user space in your computer’'s
memory. in addition to some
tricks using implied statements
and commands to save
memory, | have written pro-
grams to plot a graph, do sim-
ple graphics, do some limited
data processing and simulate
assembly processes in a small
manufacturing company.

I plan to try several potential
capabilities that include use of
the USR function to save and
load from a cassette tape. |
would like to share my ideas
with anyone interested, and |
betieve Kilobaud would be hap-
py to publish programs for the
development of a Tiny BASIC
software library. @

:LIST

i0 REM TINY BASIC FOR KIM-1

11 REM 6502 V.IK BY T. PITTMAN.

12 REM

13 REM PROGRAMED BY:

14 REM C. R. (CHUCK) CARPENTER WS5USJ
15 REM 2228 MONTCLAIR PL.

16 REM CARROLLTON, TX. 75006

17 REM

18 REM FLIPS A COIN ‘N’ TIMES 50 AS SELECTED
19 REM IN LINE 100, THEN PRINTS THE NUMBER OF
20 REM HEADS IN EACH 50 FLIPS.

21 PR

22 PR

100 INPUT N

II0LET I=1

120 LET C=0

130 LET X =1

140 LET F=(RND(2)+ 1)

150 IF F=1 GOTO 180

160 PRINT T,

170 GOTO 200

180 LET C=C+1

190 PRINT “H"’;

200 LET X=X +1

210 IF X<=50 GOTO 140

220 PRINT

230 PRINT “HEADS *;C;** OUT OF 50 FLIPS™
240 LET I=1+1

250 IF I<=N GOTO 120

260 PRINT

270 PRINT *DONE”’

280 END

:RUN

?5
HTTHTTTHHTHHTTTTHHHHHHTHHHTHTHHTTTHHTTHHTTTHHTHTTH
HEADS 26 OUT OF 50 FLIPS
HHTHHHTHHHHHTTHTTHHTTHHTHHTTTTHHTHHHTHTHTHTTTTTHHH
HEADS 28 OUT OF 50 FLIPS
TTHHTTTHHHHTTTHHTHHHHHTHTTHTHHTHHTHHHTHHTHTTTTTHHH
HEADS 28 OUT OF 50 FLIPS
THTHHHHTTTTHTTTTTHTTTTHHHTHTHTHHHHHHTTTTHTHHHTHTHH
HEADS 25 OUT OF 50 FLIPS
TTHTTHHTTTTTTTTHTTHTHTTTTHTTTHTTHHHTTHTHHTHTHTHTHT
HEADS 18 OUT OF 50 FLIPS

DONE
Listing 2.

85

86

Tiny BASIC:
Still Going Strong!

Marc 1. Leavey, M.D.
4006 Winlee Road
Randalistown MD 21133

fter assembling a home
computer system, one
of the first things hobbyists

machine-language subroutines
or vectored interrupts, don’t
come across well to “out-
worlders.”” Furthermore,
most of the games or educa-
tional programs available re-
quire BASIC with string capa-

Tiny BASIC, exists that fits
comfortably in the 4K gener-
ally available in a minimal
system. Versions are available
for most popular CPU’s from
Itty Bitty Computers of San
Jose CA. Although Tiny

As an aid to those needing
software to impiement on a
“Tiny” system, | present
three game programs. Exten-
sive personal research (| cor-
nered my wife) demonstrated
the appeal of these games to
non-computer-oriented (i.e.,
normal) people. Each will run
in a Tiny BASIC-equipped
computer with 4K of mem-
ory. Although | used the
SWTP M-68, programs should
be interchangeable with any

Tiny BASIC.
Remember, these pro-
grams are written in Tiny

BASIC. Although with minor
modifications, as in the RND
function, they will run in
standard BASIC, they will
not be efficient. String han-
dling and FOR-NEXT lcops
could simplify and speed up
these programs, but then they
wouldn’t be Tiny BASIC.

want to do is demonstrate to bility. This implies eight to BASIC does not have strings, Enough introduction. On
their friends and neighbors ten kilobytes of read-write FOR-NEXT loops or several to the programs.

what their new machines can memory, usually more than other features of “'standard’”

do. Unfortunately, those beginning systems have. BASIC, it is still a useful Battle of Numbers
things we love to do, like Fortunately, a language, language. Battle of Numbers, fre-

420 IF R > =A GOTO 450
430 IF R=0 GOTO 450

10 REM BATNUM [TINY BASIC]
20 REM VER 1.2 — 13 AUG 77

30 REM MARC I. LEAVEY, M.D. 440 R=A

40 REM *HOME UP, ERASE, PRINT HEAD* 450 IF R=L GOTO 500
50 PR *”,“BATTLE OF NUMBERS” 460 C=R-L

60 PR 470 IF C > 0 GOTO 510
70 PR “HOW MANY OBJECTS IN” 480 C=C+B

490 GOTO 510
500 C=A+RND(B-A+1)
510 PR “I TAKE ”.C

80 PR “THE PILE”;
90 INPUT P
100 1F P <=0 GOTO 70

110 PR “WHAT IS THE MINIMUM YOU” 520 P=P-C
120 PR “CAN TAKE™; 530 GOTO 600
130 INPUT A 540 PR

550 IF L=0 GOTO 580

560 PR “I TAKE” ;P:“AND LOSE! [LUCKY!]"”
570 GO TO 770

580 PR “1 TAKE”;P;“AND WIN!!"

590 GO TO 770

600 PR ©”

610 PR “THERE ARE”P;*OBJECTS.”

620 PR “HOW MANY DO YOU TAKE™;

630 INPUT H

640 1IF H << A GOTO 660

140 [F A~ 0 GOTO 180

150 PR “YOU HAVE TO TAKE AT"

160 PR “LEAST 1 EACH TIME!”

170 GOTO 110

180 PR “WHAT IS THE MAXIMUM”

190 PR “YOU CAN TAKE";

200 INPUT B

210 IF B > =A GOTO 250

220 PR “THE MINIMUM CAN’T BE”

230 PR “LARGER THAN THE MAXIMUM!”

240 GOTO 110 650 IF H <=B GOTO 700
250 W=1 660 IF H <> P GOTO 680
260 L=0 670 1IF P <A GOTO 720

680 PR “YOU MAY TAKE FROM':A“TO’":B
690 GO TO 620

700 P=P-H

710 1F P >0 GOTO 380

270 PR “DO YOU WIN OR LOSE BY TAKING”
280 PR “THE LAST OBJECT (W OR L)”:

290 INPUT Z

300 IF Z=1 GOTO 320

310 L=A 720 1IF L=0 GOTO 750

320 T=A+B 730 PR “>> > YOU LOSE! <<”
330 Y=1 740 GOTO 770

340 N=0 750 PR *“** YOU WIN! *%*

350 PR “D0O YOU WANT TO GO FIRST": 760 GOTO 770

360 INPUT Z 770 PR

780 PR “ANOCTHER MATCH™";
790 INPUT Z

800 IF Z=1 GOTO 10

999 END

370 IF Z=1 GOTO 600
380 IF P > B GOTO 410
390 IF P<=A GOTO 540
400 IF L=0 GOTO 540
410 R=P-T*(P/T)

BATNUM program listing.

Reprinted with permission of Kilobaud Magazine.

quently abbreviated BAT-
NUM, is one of the oldest
number games. In it, a pile of
objects is established and
items are removed until the
game ends.

In the computer version,
the size of the starting pile,
minimum and maximum
number per turn and win or
lose on the last token are all
determined by the player.
The computer will go first or
give you the option. It is a
challenging game, and, with
the proper strategy, you can
win it.

As with all listings in this
article, BATNUM is fairly
self-explanatory, but a few
points bear mentioning. Tiny
BASIC allows PR for PRINT;

all other commands are
spelled out. The statement
PR "' contains control char-

acters used for homing the
cursor and clearing the screen
or line. Although Tiny has no
string inputs, single-letter
variables may be input at
INPUT statements. Thus the

sequency

100 Y=1

200 N=0

300 PR “ANOTHER GAME™;
400 INPUT Z

could be answered by Y or N,
and the variable Z would
equal 1 for yes or 0 for no.
Kind of a pseudo-string.

Bagels

The second listing shows
the Bagels program, which
also has been around in vari-
ous forms for some time. The
theory of this game is that
the computer selects a ran-
dom number with three dif-
ferent digits. |t then requests
a guess from you. After first
checking for other than three
digits or double digits, the
computer responds three
ways (shown in Example 1).

Thus, if the computer’s
number was 439 and you
guessed 497, it would re-
spond: PICO FERMI, show-
ing two correct digits — ane
in the right place and one in
the wrong. PICOs come out

I HAVE A NUMBER
GUESS? 111

NO DOUBLE NUMBERS!
GUESS? 234
BAGELS!

GUESS? 123
BAGELS!

GUESS? 5678

THREE DIGITS, PLEASE!
GUESS? 567

PICO

GUESS? 890

PICO FERMI

GUESS? 590

FERMI

GUESS? 690

FERMI FERMI

YOU MUST BE NEW AT THIS GAME!
THE FIRST NUMBER 1S 6
G UESS? 691

FERMI FERMI

GUESS? 698

CORRECT! IN 10 GUESSES!
TRY ANOTHER? Y
I HAVE A NUMBER
GUESS? 123
BAGELS!
GUESS? 456

PICO PICO

GUESS? 789

PICO

GUESS? 457

PICO PICO

GUESS? 458

PICO PICO PICO
GUESS? 845

CORRECT! IN 6 GUESSES!
TRY ANOTHER? N

Bagels run.

THE PILE? 21

CAN TAKE? 3

CAN TAKE? 1

HOW MANY OBJECTS IN
WHAT IS THE MINIMUM YOU

WHAT IS THE MAXIMUM

YOU CAN TAKE? 1

THE MINIMUM CAN’T BE
LARGER THAN THE MAXIMUM!
WHAT IS THE MINIMUM YOU

WHAT 1S THE MAXIMUM
YOU CAN TAKE? 3

BAGELS = No digit correct
PICO = Correct digit in wrong place
FERMI = Correct digit in correct place

Example 1.

DO YOU WIN OR LOSE BY TAKING
THE LAST OBJECT (W OR L)? L

DO YOUWANT TO GO FIRST? N

I TAKE 2

THERE ARE 19 OBJECTS,
HOW MANY DO YOU TAKE? 3
i TAKE 2

THERE ARE 14 OBJECTS.
HOW MANY DO YOU TAKE? 2
I TAKE 2

THERE ARE 10 OBJECTS.
HOW MANY DO YOU TAKE? 2
1 TAKE 2

THERE ARE 6 OBJECTS.

HOW MANY DO YOU TAKE? 2
I TAKE 2

THERE ARE 2 OBJECTS.
HOW MANY DO YOU TAKE? 1

ITAKE 1 AND LOSE! [LUCKY!]

ANOTHER MATCH? N

BATNUM run.

Bagels program listing.

10 REM BAGELS <TINY BASIC >
20 REM VER 2.0 - 31 AUG 77
30 REM MARC I LEAVEY, M.D.

70 PR <7
100 X=100+R ND(900)

120 W=X

130 X=W/100

140 Y=(W-X*100)/10

150 Z=(W-X*100-Y*10)

200 IF X=Y GOTO 100

210 IFY=ZGOTO 100

220 IFX=ZGOTO 100

290 PR“I HAVE A NUMBER”

300 G=0

310 G=G+1

312 IF G=9 PR “YOU MUST BE NEW AT THIS GAME!”
313 IF G=9 PR “THE FIRST NUMBER IS ”:X
314 IF G=14 PR “1 CAN'T BELIEVE IT!”
315 IF G=14 PR “THE FIRST TWO NUMBERS ARE"X:Y
320 PR “GUESS”;

330 INPUT D

340 IF D=W GOTO 900

344 [F G=18 PR “I GIVE UP!”

346 IF G=18 PR “THE NUMBER WAS W
348 IF G=18 GOTO 920

350 IF D < 100 GOTO 950

360 IF D ~>999 GOTO 950

370 A=D/100

380 B=(D-100*A)/10

87

390 C=(D-100*A-10*B)

400 IF A=B GOTO 850

410 IF A=C GOTO 850

420 IF B=C GOTO 850

430 F=0

440 P=0

450 IF A=X THEN F=F+1

460 IF A=Y THEN P=P+1

470 IF A=Z THEN P=P+1

480 IF B=X THEN P=P+1

490 IF B=Y THEN F=F+1

500 IF B=Z THEN P=P+1

510 IF C=X THEN P=P+1

520 IF C=Y THEN P=P+1

530 IF C=Z THEN F=F+1

540 IF P+F=0PR “BAGELS!";
550 IF P=0 GOTO 600

560 P=P-1

570 PR “PICO

580 GOTO 550

600 IF F=0 GOTO 640

610 F=F-1

620 PR “FERMI s

630 GOTO 600

640 PR

650 GOTO 310

850 PR “NO DOUBLE NUMBERS!”
860 GOTO 310

900 PR

910 PR “CORRECT! IN”:G**GUESSES!”
920 PR “TRY ANOTHER";

930 INPUT Z

940 IF 2=Y GOTO 10

945 GOTO 999

950 PR “THREE DIGITS, PLEASE!”
960 GOTO 310

999 END

before FERMIs, so their or-
der is of no help in determin-
ing the correct sequence.

This program demon-
strates a few useful tech-
niques. The sequence from
lines 100 to 220 breaks the
three-digit number W down
to three integers: X, Y and Z.
They are then checked for
duplicate digits; if one is
found, another number is se-
lected. Similar statements at
lines 370 to 390 break the
guess D down to integers A, B
and C. Comparisons between
A, Band C,and X, Y and Z
increment the PICO and
FERMI flags (P and F, respec-
tively). These flags are used in
a pseudo FOR-NEXT loop to
print the PICO and FERMI.
If neither is set (P+F=0),
BAGELS gets printed. A
guess counter (G) is also tal-
lied in to offer the player
some form of feedback.

Lunar Lander

Another popular game is
the simulated landing of a
spacecraft on the moon. Ver-
sions have been published in
all major books and maga-
zines, including Kifobaud.
The object is quite simple:
Land your lunar excursion
module {LEM) without crash-
ing. In this program, con-
stants for fuel, velocity,
height and gravity are ran-
domized at each play. This
adds a degree of difficulty
because the same strategy
does not always work.

The loop at lines 92 to 96
counts to 50, giving the
player a chance to read the
introduction. Subroutine 600
produces a line feed and line
erase for each 40 feet or so
below 500 feet. This makes
the LEM, which is drawn by
lines 700 to 720, descend the
screen as the game progresses.

10 REM LUNAR LANDER [TINY BASIC]
20 REM VER 3.0 - 30 AUG 77
30 REM MARC 1. LEAVEY, K M.D.

40 PR 7 “LUNAR LANDER™”

50 PR

55 PR

60 PR “TRY TO LAND THE LEM ON THE”
65 PR

70 PR “SURFACE OF THE MOON BY ENTERING”
75 PR

80 PR “FUEL BURN RATES WHEN REQUESTED.”
85 PR

90PR “GOOD LUCK!”
92 1=50

94 1=11

96 [F 1 >0 GOTO 94
100 F=100+R ND(75)
110 V=RND(50)-100

120 D=400+RND(200)
130 G=1+RND(8)

200 GOSUB 600

210 GOSUB 700

220 IF F > 0 GOTO 240
230 B=0

235 GOTO 250

240 GOSUB 750

250 IF B > F THEN B=F
255F=F-B

260 C=B-G

270 D=D+V+C/:

280 V=V+C

400 IF D > 0 GOTO 200
410 IF D <-1 GOTO 500
420 GOTO 530

500 GOSUB 660

510 GOTO 800

530 GOSUB 900

540 GOTO 800

600 PR*;

610 S=12-D/40

615 1F S <=0 GOTO 650
620 PR "

630 8=5-1

640 IF S >0 GOTO 620

650 RETURN

660 PR

665 PR “CRASH” **CRASH” *“CRASH”
BT0 PR K K K27 ok hokk 03 ok kK2
675 PR

680 PR “IMPACT VELOCITY:”:V
685 PR “LEM BURIED”:-D;*FEET”’

690 PR

695 GOTO 1010

700 PR 0, “FUEL:":F

710 PR*“{#1”.“SPEED: ”;V
720 PR* - 7 “HEIGHT: ":D;
730 RETURN

750 PR “ BURN: ”';

760 INPUT B

770 RETURN

800 PR

810 PR “ANOTHER GAME”:
820 Y=1

830 INPUT A

840 IF A=Y GOTO 100

850 END

900 PR “”

910 PR

920 PR “LEM ON SURFACE OF THE MOON”’

930 IF v <-5 GOTO 1000
935 PR

940 PR “CONGRATULATIONS !

945 PR

950 PR “”,“PERFECT LANDING!”

955 PR

960 PR“TOUCHDOWN VELOCITY: "V
np

970 PR“FUEL REMAINING:
980 RETURN

1000 PR “EXCESSIVE SPEED ON IMPACT!”

1005 PR
1010 IF F=0 GOTO 1050

1020 PR ¥:** UNITS OF FUEL REMAINING”
1030 PR “PRODUCED EXPLOSION COVERING”
1040 PR 100*RND(F+3);“SQ MILES OF LUNAR SURFACE”

1050 PR

1060 PR“LEM DESTROYED!”
1070 PR*“** ¥#%% YOU BLEW IT! **xxxx"

1080 RETURN

Lunar Lander program listing.

In the sample run, this rou-
tine has been bypassed since
it makes little sense on hard
copy. It does add some flavor
to the CRT version, though.

| hope the reader will be
able to introduce his or her
acquaintances to the world of
personal computers by imple-
menting these simple pro-
grams. Comments or ques-
tions are welcome; readers
interested in Tiny BASIC
should write (I have no con-
nection with IBC): Itty Bitty
Computers, P.O. BOX 23189,
San Jose CA 95153. (A self-
addressed stamped envelope
should accompany requests
for replies.) m

TRY TO LAND THE LEM ON THE 0 FUEL: 103
SURFACE OF THE MOON BY ENTERING i#1 SPEED: -80
FUEL BURN RATES WHEN REQUESTED. /\ HEIGHT: 113 BURN: ? 6
GOOD LUCK!
0 FUEL: 97
[#] SPEED: 75
/\ HEIGHT: 35 BURN: 7 12

/\

FUEL:
SPEED:

HEIGHT:

FUEL:
SPEED:

HEIGHT:

FUEL:
SPEED:

HEIGHT:

FUEL:
SPEED:

HEIGHT:

111
-84
431

106
-80
349

103
-78
270

103
-79
192

BURN:

BURN:

BURN:

BURN:

?

CRASH CRASH CRASH

5 * Kk ¥k EEE R 2 * Kk k ok

IMPACT VELOCITY: -64
LEM BURIED 35 FEET

3
85 UNITS OF FUEL REMAINING
PRODUCED EXPLOSION COVERING
300 8Q MILES OF LUNAR SURFACE
0o
LEM DESTROYED!
**k%k k%% YOU BLEW IT! **kkxkx
4] ANOTHER GAME? N

Lunar Lander run.

89

m James L. Barnard

4781 Melbourne Rd.
Baftimore MD 21229

Match Pennies:
A Game That Learns

ere is a program that

demonstrates a com-
puter’s ability to show adaptive
(artificial) intelligence and pat-
tern recognition. The program
is in the form of a simple penny-
matching game and is planned
as follows.

The computer guesses
whether you are going to pick
heads or tails. If it guesses cor-
rectly, it will subtract a point
from your score. If it is wrong,
your score is increased by a
point.

To perform this task, the
computer must decide whether
to pick heads or tails. in the pro-
gram, | have established
criteria for making this deci-
sion. The computer has to keep
a record of the human's
previous plays. it will then look
up in this record previous plays
that match the situation with
which it is now presented. Us-
ing earlier results, it now has a
basis to make a decision on
whether to play heads or tails.

Here’s an outline of this
basic concept:

1. Situation memory (16 cells)

2. Situation comparer

3. Input data (heads or tails)

4. Decision maker

5. Decision output (heads or
tails)

6. Win/lose detector

7. Scorekeeper (from human’s
view)

The implementation of the
outline has a different ap-
pearance. The program is writ-
ten in Pittman Tiny BASIC. To
set up the situation memory, |
selected 16 variables. These
act as 16 memory cells, each to
contain a0 = headsora 1 =
tails. The 16 cells are ad-
dressed by a memory address
register that represents the last
four human plays (head, tail,
head, tail, etc.). This address
(situation) register is contained
in four variables. As a new play
is generated, the play that oc-
curred four plays ago is shifted
out and each play is shifted one
position, with the present play
being shifted in as the least
significant part of the address
(situation) register. Thus, the
address (situation) register is
at all times a representation of

10 LETH =0
15 LETT =1

25 INPUT X

20 PRINT “TYPEHEADSORTAILS(HORT)”

Example 1.

the last four human plays.

The computer uses this ad-
dress register to compute a cell
number (address). This is done
by giving each of the four plays
contained in the address
register a value (power of 2).
The oldest play, if it was a tail
(=1), is represented by 8; next,
if it was a tail, by 4, and so on
until the latest play equals 1.
These are then added to com-
pile a number (0-15). This cor-
responds to a cell number. The
program stores the human's
latest play (input data — heads
= 0; tails = 1)in the cell whose

PRINT INPUT
REQUEST B

{OINPUT

PRINT
COMPUTER'S
GUESS

COMPUTE
STQRE CE£LL NO
FROM SEQUENCE
COUNTER

b
i
i
g
STOHE INPUT
AT CELL NO

$TORE

SEQUENCE
COUNTER

cell number is computed from
the address register. This tells
the computer that the human
played H, T, H, T, for example,
and then played heads again.

The next part of the program
shifts the {atest play into the
address register. It then com-
pares the latest play to the vari-
able V (computer’s guess from
the end of the last play) to de-
termine if the guess is a match
or not. Depending on the re-
sults of the comparison, the hu-
man’s score is incremented or
decremented, and the human is
shown the results. Then the
computer (using the latest shift
address register value) looks
up the cell number and gets the
human’s play the last time this
situation occurred. This is then
used for computer’s next guess
(variable V).

Fig. 1is a flowchart of theen-
tire program and shows the
four main parts of the pro-
gram’s main loop:

1. Store (present data with last
situation).

2. Shift (to get latest situation).
3. Check Win/Lose.

4. Fetch guess (based on latest
situation).

At first, the program will tend
to make the computer appear
dumb. This is because the
memory cells and address
register are initialized with data
that is not derived from data

PRINT
HUMAN @WING "

COMPUTE
GUESS CELL NO
FROM SEQUENCE
COUNTER
COOKJP
GUESS

Fig. 1. Flowchart.

Reprinted with permission of Kilobaud Magazine.

the human is presently playing.
As soon as the memory con-
tains data acquired from play-
ing, the computer adapts and
seems to get progressively
more intelligent.

The chart in Table 1 shows
how the program gradually

Game Computer's Human’s Win/Lose Wrote Read Game
No. Play Play Cell No. Cell No. Total
0 T w 0 *
1 T H w H-0 H-1 1
2 H H L H-1 H-3 0 -
3 H H L H-3 H-7 -1 *
4 H H L H-7 H-15 -2 *
5 H H L H-15 H-15 -3
6 H T w T-15 H-14 -2 *
7 H T w T-14 H-12 -1 *
8 H H L H-12 H-9 -2 *
9 H H L H-9 H-3 -3 3
10 H T W T3 H-6 -2 *
1 H T w T-6 H-12 -1 8
12 H H L H-12 H-9 -2 9
13 H H L H-9 T3 -3
14 T T L T3 T-6 -4
15 T T L T-6 H-12 -5
16 H H L H-12 H-9 -6
17 H T W T9 H-2 5 *
18 H H L H-2 H-5 -6 *
19 H T W T5 H-10 -5 *
20 H H L H-10 T-5 -6
21 T T L T-5 H-10 -7
22 H T W T-10 H-4 6 *
23 H T w T-4 H-8 -5 *
24 H T w T-8 H-0 -4 1
25 H T W T-0 T-0 -3
26 T T L T-0 T-0 -4
27 T H w H-0 H-1 -3
28 H H L H-1 T-3 -4
29 T H w H-3 H-7 -3 4
30 H H L H-7 T-15 -4 6
31 T H w H-15 H-15 -3
32 H H L H-15 H-15 -4
33 H H L H-15 H-15 -5
34 H T W T-15 T14 -4 7
35 T H w H-14 H-13 -3 *
36 H H L H-13 H-11 -4 *
37 H H L H-11 H-7 -5 30
38 H T w T-7 H-14 -4
39 H H L H-14 H-13 -5
40 H H L H-13 H-11 -6
4 H H L H-11 T7 -7
42 T T L T-7 H-14 -8
43 H T W T-14 H-12 -7
44 H T w T-12 T-8 -6
45 T H w H-8 H-1 -5
46 H T W T1 H-2 -4
47 H T w T2 T-4 -3
48 T T L T4 H-8 -4
49 H H L H-8 T1 -5
50 T T L T T-2 -6
51 T T L T2 T-4 -7
52 T T L T4 H-8 -8
53 H H L H-8 T-1 9

adapts to different patterns of
play. The program uses a little-
known aspect of Pittman Tiny
BASIC: that a variable may be
set to a given value and an in-
put requested. The letter of the
preset variable may then be
typed, and the input will be

equal to the preset value, as in
Example 1. If a player types H,
the value of X will be 0; if he
types T, the value of X will be 1.

So, try your luck playing the
computer at matching pennies.
Remember, it may sucker you
at first. You may think that the

computer cheats, so | have in-
cluded a PEEK command in the
program. If you type 2 instead
of H or T, the computer will
show you its next guess. It is
not fair to “peek’ every time as
you may cause the program to
have a nervous breakdown.l

Read from Comment

Game No.

Reset

H, H Pattern

—~ H, H, T, T Pattern

- H, T Pattern

- T, T Pattern

~ H, H Pattern

- H, H, H, T Pattern

— H, T, T, T Pattern

*Reset State
(initialization)

Table 1. Penny-match game.

50 PR“MATCH PENNIES WITH THE COMPUTER!”’
60 PR*“‘IF THE COMPUTER GUESSES THE SAME AS YOU PICK '

70 PR*“THEN THE COMPUTER WINS AND THE HUMAN LOSES!”
86 PR“TYPE YOUR FAVORITE NUMBER(0-100)’

87 INPUT X

100 GOSUB 600

105 PR“HEADS OR TAILS(H OR T)”
110 INPUT X

120 IF X =2 GOSUB 210

130 IF X>1 GOTO 105

140 GOSUB 300

150 GOSUB 400

160 GOSUB 215

170 IF X =V PR**“HUMAN LOSES!”’
ITSIFX=VW=W-1

180 IF X<>V W=W+1

185 IF X<>V PR“HUMAN WINS!"’
190 PR“YOUR SCORE IS ;W

195 GOSUB 500

200 GOTO 105

210 PR*YOU PEEKED!! -- NOT FAIR!”
215 PR“THE COMPUTER GUESSED ’*;
220 IF V=0 PR**"HEADS"”’

225 IF V=1 PR*TAILS”

230 RETURN

300 Y =(8+A)+ (4+B) + 2+C)+ D
05SIFY=0F=X

JICIFY=1G=X

CNUVumOT

Program listing.

415 A=X

420 RETURN
500 Y =(8+A)+ (4xB)+ (2+C)+D
S05IFY=0V=F
SIOIFY=1V=C
SISIFY=2V=E
S20IF Y=3V=I
S251FY=4V=]
S30IFY=5 V=K
SISIFY=6 V=L
540 IFY=7V=M
S45 IF Y=8 V=N
S50IFY=9V=0

S80IF Y=15V
590 RETURN
600 A =0
605 B=0
610 C=0
615 D=0
617 E=0
620 F=0

625 G=0
630 H=0
635 1=0

640 J =0

645 K=0
650 L=0

655 M=0
660 N=0
665 0 =0
670 P=0

675 Q=0
680 R=0
685 S=0

687 T=1

690 U=0
692 V=0
695 W =0
696 Z=0

697 RETURN

Gregory L. Oliver
P.O. Box 184
Euless Tx 76039

Why Not Trig Functions
For Your 4K BASIC?

A while back, a neighbor’s
kid was looking through

y copy of 101 Basic Computer
Jdames and asked if he could
play Gunner. “No,” | replied,
‘‘my computer can’t do this line

with SIN(X) in it.” So he settled
for Lunar Lander. While he was
occupied, | wondered if it was
possible to simulate this and
other math functions, included
in 8K BASIC but missing in my

210 Let A=0

220 Input X

250 Go to 220

270 let X =X *2

280 Gosub 1000
290 Let A=A+ 1

330 Go to 370

390 Go to 500

510 Input A

530 Stop

100 REM artillery game by G.L. Oliver

110 REM demonstrates 4K SIN(X) subroutine
200 Let T = 50000 - INT (RND (0) *45000)
205 REM T is distance to target

215 REM A is shot count

230 If X<90 then go to 260
240 Print ‘‘Bad Angle”’

260 If X<1 then go to 240

300 Let H =T - INT (50000*X)
310 If H<100 then go to 350
320 Print *‘Over By'"; H; “Yards”’

350 If H<-100 then go to 400

360 Print ““Under By’’; H; ‘““Yards”’
370 If A<S then go to 220

380 Print ““You Got Hit!”’

400 Print *“Got Him In”’; A; ‘‘Shots”’
410 Print H; “Yards”’
500 Print ““Try Again? (1 = Yes; 0 = No)’’;

520 If A = 1 then go to 200

Program B.

4K version. They weren't called
often, but used up lots of pro-
gramming space whether need-
ed or not. So, why not just have
subroutines to add only when
necessary?

| recalled from calculus
classes that any function can
be approximated by a series
equation, a method using suc-
cessive iterations—ideal for a
computer. After a lot of
research and some trial and er-
ror, | had subroutines to
calculate SIN(X), COS(X),
TAN(X), EXP(X} and LOG(X).
Since they're all based on the
same principle, let's use SIN(X)
to demonstrate.

In 4K BASIC, you can approx-
imate the sine of X by following
the function in Example
1—provided that X is in ra-
dians, and XN/n! is less than
some predetermined value,
such as 1E-7.

| chose this value to compare
with the 8K version. Actually,
you could speed things up by

stopping at 1E-4. This is more
than enough accuracy for most
games. For those of you un-
familiar with the term n! (called
factorial), it is defined as the
multiplication of all integers
(whole numbers) from one to n.
3! equals 6, 5! equals 120and 7!
equals 5040.

You can see that XP/n! very
quickly becomes smaller and
smaller. This is calied converg-
ing, because the more terms
you add, the closer you get to
the actual answer.

Here’s the procedure for find-

ing SIN(X):

1. Convert X in degrees to R in
radians.

. Set X equal to R.

. Set S equal tc R.

. Set counter N equal to 1.

. Add 2 to N.

. Convert term Rto (- R)*(S *
SY[-N*(N - 1.

. Add R to X.

8. If the absolute value of R is

OO hs WN

-~

SINOG = X - X3+ X5_ X7, 4 xn
3! 51 7

Example 1.

n!

Reprinted with permission of Kilobaud Magazine.

94

less than 1 x 10— 7, you are
done and should return with
X equal to SIN (X).

9. Otherwise, go back to step 5.

Fig. 1 is the flowchart for this
procedure, and Program A
shows the completed
subroutine. As to application, |
freely changed and simplified
the Gunner program to
demonstrate my subroutine
(see Program 2).

Now that we have SIN(X),
how about COS(X)? All you
need to do is add 90 degrees to
the angle, and then use the
same subroutine you use for
SIN(X). Believe me. So, that
gives us SIN(X) and COS(X).

INITIALIZE VARIABLES
R:% IN RADIANS

PERFORM ITERATION
N:he2
R =(-Rla(X*x]/[N=WN-D]

{ RETURN
N /)

Fig. 1. Flowchart.

TAN(X) is just SIN(X) divided by
COS(X). It may take a bit longer
to calculate since you have to

1010 Let X =R
1020 Let S=R
1030 Let N =1
1040 Let N =
1050 Let R =

1080 Go to 1040

1000 Let R = X *.01754293

N + 2
_R*S*S/[IN*(N -1)]
1060 LetS = X + R

1070 If ABS (R) <1E-7 then return

Program A.

call the same subroutine twice
and juggle a few numbers; but
look at the space you save!
That was the reason for using
4K to begin with.

You save a lot of space—as |
stated earlier—but what are

you giving up? Time, of course.
It takes about a second for
angles less than 90 degrees,
and maybe two seconds when
you are up to 360 degrees. So
what! You now have 4K extra of
programmable memory.#

| 95

INDEX

Appendix D, Excerpts from Kilobaud, 75
Appendix A, Memory Map, 40
Appendix B, Error MSG Summary, 41
Appendix C, Monitor Listing, 43

Block Memory Transfer, 12

Display Memory, 9

Display Program Instructions, 11
Display Registers, 7

Display/Alter Memory, 9
Display/Alter Memory Contents, 9
Display/Alter Register Contents, 7
Display/Alter Registers, 7

Editing Commands, 27

ET-3400 Cassette Usage, 19
Executing a Program, 13
Executing a Program Segment, 15

FANTOM II Monitor, 4
Functions, 34

HEATH/PITTMAN Tiny BASIC, 26

Introduction — FANTOM 11, 3

Mathematical Expressions, 32
Modes of Operation, 29

Numerical Constants, 32
Operators, 32

Power Up and Master Reset, 6
Program Execution Control, 13
Program Storage and Retrieval, 18

Sample Program, 22
Symbols, 5

The RND Function, 34

The USR Function, 34

Tiny BASIC Instructions, 30

Tiny BASIC Re-Initialization (Warm Start), 33

Using an ASR 33, 21
Using the MONITOR, 6
Using Tiny BASIC, 28

Variables, 32

CUSTOMER SERVICE

REPLACEMENT PARTS

Please provide complete information when you request re-
placements from either the factory or Heath Electronic Cen-
ters. Be certain to inciude the HEATH part number exactly asiit
appears in the parts list.

ORDERING FROM THE FACTORY

Print all of the information requested on the parts order form
furnished with this product and mail it to Heath. For telephone
orders (parts only) dial 616 982-3571. If you are unable to
locate an order form, write us a letter or card including:

® Heath part number.

® Model number.

® Date of purchase.

® | ocation purchased or invoice number.

® Nature of the defect.

® Your payment or authorization for COD shipment of parts
not covered by warranty.

Mail letters to: Heath Company

Benton Harbor

MI 49022

Atin: Parts Replacement

Retain original parts until you receive replacements.
Parts that should be returned to the factory will be listed
on your packing slip.

OBTAINING REPLACEMENTS FROM
HEATH ELECTRONIC CENTERS

For your convenience, “over the counter” replacement parts
are available from the Heath Electronic Centers listed in your
catalog. Be sure to bring in the original part and purchase
invoice when you request a warranty replacement from a
Heath Electronic Center.

TECHNICAL CONSULTATION

Need help with your kit? — Self-Service? — Construction? —
Operation? — Call or write for assistance. you'll find our Tech-
nical Consultants eager to help with just about any technical
problem except “customizing” for unique applications.

The effectiveness of our consultation service depends on the
information you furnish. Be sure to tell us:

® The Model number and Series number from the blue and
white label.

® The date of purchase.

® An exact description of the difficulty.

® Everything you have done in attempting to correct the prob-
lem.

Also include switch positions, connections to other units,
operating procedures, voltage readings, and any other infor-
mation you think might be helpful.

Please do not send parts for iesting, unless this is specifi-
cally requested by our Consultants.

Hints: Telephone traffic is lightest at midweek — please be
sure your Manual and notes are on hand when you call.

Heathkit Electronic Center facilities are also available for tele-
phone or “walk-in” personal assistance.

REPAIR SERVICE

Service facilities are available, if they are needed, to repair
your completed kit. (Kits that have been modified, soldered
with paste flux or acid core solder, cannot be accepted for
repair.)

If it is convenient, personally deliver your kit to a Heathkit
Electronic Center. For warranty parts replacement, sup-
ply a copy of the invoice or sales slip.

If you prefer to ship your kit to the factory, attach a letter
containing the following information directly to the unit:

® ‘Your name and address.

® Date of purchase and invoice number.

® Copies of all correspondence relevant to the service of the
kit.

® A brief description of the difficulty.

® Authorization to return your kit COD for the service and
shipping charges. (This will reduce the possibility of delay.)

Check the equipment to see that all screws and parts are
secured. (Do not include any wooden cabinets or color televi-
sion picture tubes, as these are easily damaged in shipment.
Do not include the kit Manual.) Place the equipmentin a strong
carton with at least THREE INCHES of resilient packing mate-
rial (shredded paper, excelsior, etc.) on all sides. Use addi-
tional packing material where there are protrusions (contro!
sticks, large knobs, etc.). If the unit weighs over 15 Ibs., place
this carton in another one with 3/4" of packing material bet-
ween the two.

Seal the carton with reinforced gummed tape, tie it with a
strong cord, and mark it “Fragile” on at least two sides. Re-
member, the carrier will not accept liability for shipping dam-
age if the unit is insufficiently packed. Ship by prepaid express,
United Parcel Service, or insured Parcel Post to:

Heath Company
Service Department
Benton Harbor, Michigan 49022

R Wik

MEATH COMPANY . BENTON HARBOR, MICHIGAN
THE WORLD'S FINEST ELECTRONIC EQUIPMENT IN KIT FORM

LITHO IN U.S.A.

