PAM/8:
A Ne

Gordon Letwin
Heath Company
Benton Harbor MI 49022

70

October 1978 © BYTE Publications Inc

w Approach

to Front Panel Design

Since the first personal computers
appeared about three years ago, the field
has been growing and advancing at an ever
increasing rate. The variety and complexity
of products increases even while the cost
decreases. Indeed, the field has evolved so
rapidly that it has gone through two genera-
tions (using the term somewhat loosely)
in those three years. The first generation
machines were typified by the first 8800
system sold by MITS, a bare bones machine
festooned with switches and lights. It took a
fair amount of technical know how to build
one of these to get it operational. Before
long, however, a new generation of machines
was available. These, such as the SwTPC
6800, were usually cheaper and simpler to
build, using fewer but more powerful inte-
grated circuits.

And in July 1977, the Heath Company
announced its two versions of the home
computer idea, the H8 and H11 systems. |
write as one of the persons who took part in
the design of the H8's front panel firmware,
an 8080 program called “PAM/8" which
shows how software and hardware are often
intimately related.

Microprocessor Front Panels

The ideal front panel for a microcom-
puter should allow its user total control and
access to the processor’s workings. A good
panel system should allow an instantaneous
display of the processor’s states, register
contents, memory contents, and other
operating flags. An operator should be able
to force a new state, register value, or
memory value upon the processor with ease
at any time without otherwise interfering
with the executing program. In other words,
it should be possible to examine any mem-
ory location or any register at any time with-
out disturbing the program.

Ten years ago the implementation of such
a front panel was obvious. The processor
was built up from components such as
integrated circuits, and the flags and registers
were directly available on the circuit cards.
In the remainder of this article, | will refer
to this type of machine as a discrete proces-
sor, although it may be built out of high
tevel integrated circuits. To build a suitable
front panel for such a discrete processor, it
is merely necessary to run a wire to a front
panel indicator. Likewise, special logic can
be built to allow flags and registers to be
set from the front panel switches, usually
when the machine is in a halted condition.
Readers may have had experience with some
of these minicomputer systems, such as the
CDC 1700 or the 1BM 1130 and 1620. This
design works reasonably well, but the binary
format is inconvenient and the cost of the
front panel hardware and logic can be pro-
hibitive for use in a personal computing
system.

The situation was considerably changed
with the advent of microprocessors. Now,
for the first time, a fullfledged computer is
within the financial reach of the general
public. Unfortunately, the very development
which brought this exciting possibility also
brought problems. With a 1 integrated cir-
cuit microprocessor, the processor flags and
register contents were no longer available
for a front panel system, being buried out
of reach of any possible hardware hookups.
A typical microprocessor integrated circuit
only has 40 connection pins (or pinouts).
These are partly taken up with power
supply and clocking signals, as well as the
data and address buses. The remaining
pins are allocated to receiving and providing
signals to interface the processor to the
rest of the computer system, As a result,
there is no direct way to determine the
contents of the processor’s registers.



72

October 1978 © BY TE Publications Inc

Previous Front Panel Systems

Attempts to solve this fundamental prob-
lem of control over the microprocessor have
been responsible for the major differences
between competing machines. The first
widely available machine, the MITS 8800,
used a direct approach to front panel design:
it simply had LED readouts for each pinout
on the microprocessor chip and a bank of
switches hooked across the data and address
busses. Some additional logic was incor-
porated to control the running state of the
microprocessor and to allow memory loca-
tions to be read to and written from via the
front panel. This scheme is a straightforward
adaptation of traditional panel design;
unfortunately, there wasn’t a great deal of
correspondence between the useful items a
programmer might want and the data
available on the processor pinouts.

The difficulties of using such a panel sys-
tem are by now nearly legendary: it is very
awkward and time consuming to get infor-
mation in and out of the processor. For
example, to simply determine the contents
of a register, it is necessary to stop the
processor, write a small program to store
the register in a memory location, key it
in to some unused portion of memory,
run it, read the stored value from memory,
and then restore control to the interrupted
program. Needless to say, this is a tedious
process with many opportunities for error.

The problems with this approach no
doubt influenced the designers of the second
generation machines. They used a different
approach wherein a console terminal was
used in conjunction with a monitor program
{usually in read only memory) to provide
the equivalent of front panel service. With
such a system, a programmer could display
desired information such as memory or
register contents directly in octal or hexa-
decimal. This represented a great step
forward: entry speed was increased, and
the clerical task of encoding and decoding
binary values was eliminated. Another
great benefit of this system was that most
of the monitors incorporated a bootstrap
loader so that the loader did not have to
be keyed in each time.

This technique has been rapidly gaining
popularity at the expense of the lights and
switches system, for obvious reasons. Several
companies are offering such monitors en-
coded in read only memory boards to allow
users to convert their old systems. However,
this new technique still has a few disad-
vantages: it requires a console terminal,
which adds considerably to the system cost,

and once a user program has started execu-
tion the services of the monitor system are
no longer available.

PAM/8 Design Goals

It was mentioned above that the front
panel system is the area in which many of
the differences between computer systems
are found; this holds true for the Heath H8
system as well, The H8 employs a new con-
cept in microprocessor front panels: it uses
a unique combination of software and
hardware to allow the emulation of a com-
plete real time front panel system which }
believe to be superior in performance to

even the discrete minicomputer panel
systems.
When the H8 project began, Heath

engineers studied the requirements for a
good front panel system closely and drew up
a list of the major features to be satisfied.
There were nine major requirements of a
good front panel:

® The front panel system must present
and accept data in a convenient
octal format. Encoding and decoding
binary is a job more suited to a com-
puter than a human being.

® The front panel system must incorpor-
ate facilities to load and dump mem-
ory to and from an external device
such as a cassette interface. A nearly
foolproof error detection scheme must
be used so that mysterious errors will
not be introduced by bad loads.

® The front panel system must allow
memory and register contents to be
conveniently displayed and changed.
In addition, data display has to be in
real time. That is, if the front panel is
displaying the contents of a register
and the running program changes
those contents, the change should
be immediately visible on the panel.

® The front panel system must be
capable of execution control. That is,
the programmer should be able to step
through a program one instruction
at a time, and be able to set break-
points within his code.

® The front panel system must provide
facilities for inputting and outputting
to 10 ports.

® The front panel system must be easy
to use, and (as much as possible)
should reduce the opportunity for
operator error. Whenever a front
panel operation is performed, the
programmer must be informed of
the operation’s success or failure.



Photo 1: Front panel of the Heath H8 computer. At left are nine 7 segment
LED displays and four single LED lamps, at right is the 16 key keypad. The
front panel is controlled by a novel firmware panel monitor (PAM/8) made
up of both hardware and software elements.

Photo 2: H8 16 key key-
pad, the sole input source
for the panel monitor
(PAM/[8). The keypad is
used to enter commands
and data. Some keys have
more than one function,
but the monitor provides
an indication of which
meaning will be taken for
these keys,

74 October 1978 © BYTE Publications Inc

7 8. gw +

CANCEL

REG VEM ALTER
@ . # /
ATM/2 RST /B

® The front panel system must be

transparent. In other words, it must
emulate a hardware panel system so
that no changes are necessary to any
program to allow it to be run under
the PAM/8 (PAnel Monitor) system.
Likewise, the front panel firmware
must present a light processor load
to the system so that program execu-
tion proceeds at a normal pace.
The front panel system must be
versatile, No system can be all things
to all people. Some sophisticated
users may have special requirements;

the system must be designed to
allow the sophisticated user to cir-
cumvent part or all of the system.

® The front panel system must be
inexpensive. Advanced design tech-
nigues must be used to keep the
cost of the panel system at or below
the cost of current front panel
systems.

Undoubtedly, this was a formidable list.
Happily, though, Heath was able to report
success with the creation of the PAM/S,
the panel monitor for the H8 computer.

PAM/8 Description

The front panel of the H8 computer is
shown in photo 1. Three features are
immediately obvious: a 16 key keypad,
nine 7 segment LED displays, and four
single LED lamps.

The 16 key keypad (see photo 2) is the
sole input device to the PAM/8 system. It
is used for commands for PAM/8, to enter
data into memory and registers, and as a
bank of sense switches. Some keys have
more than one function; however, no
confusion results because PAM/8 provides
a clear indication at all times of which
meaning will be taken for such keys.

The second visible feature is the group
of nine 7 segment LED displays. These are
used to display addresses, data, and register
names. 16 bit values are displayed in “split
octal” notation. Each byte is represented
as three octal digits; therefore, a 16 bit
value is simply presented as two such byte
groups together. Thus, in split octal nota-
tion, 377 + 001 = 001 000.

The third visible feature consists of
four LED lamps (see photo 3). Three of
these lamps display true hardware condi-
tions: power on (PWR), processor running
(RUN), and interrupts enabled (1E). In fact,
these are the only hardware indicators in
the PAM/8 system. All other displays,
indicators, and keypads are under firmware
control. The remaining LED, MTR, is lit
when the computer is in monitor mode.
Monitor mode means tha: the user program
is not running, and the keypad is available
for PAM/8 commands. When the user pro-
gram is running, PAM/8 ignores most keypad
commands so that the user program can use
it as an input (sense switch) device.

The best way to describe the operation
of the PAM/8 monitor is to go through the
list of design goals again, describing how it
fulfills each objective. In the process, | will
touch upon some other pieces of PAM/8
hardware not visible on the front panel.



Memory Display

High Order

Address Location

Register Display

High Order

Contents

1/0 Port Display

Data

DATA REGISTER

Data at
Location 040 100

Low Order
Address Location

— DATA RECHOTEHE ——

Low Order
Contents

Register
Identification

mm
(U

—— —— OATA REGISTER —=m

Port Number

Photo 3: Three examples of the H8 LED readout format for memory dis-
play, register display and 10 port display.

76

October 1978 © BYTE Publications Inc

“The front panel system must present
and accept data in a convenient octal
format.” This has already been discussed:
PAM/8 displays and accepts octal values.
16 bit values are represented in a convenient
byte octal notation.

“The front panel must incorporate
facilities to both load and dump memory.”
The 8 and 9 keys are used for loading and
dumping memory. In order to dump a
block of memory to an output device
(usually magnetic or paper tape), one must
supply PAM/8 with the starting dump
address, the ending dump address, and the
entry point address. When the DUMP key
is struck, PAM/8 writes a formatted record
containing the memory contents. The dump
record produced contains the starting
address, the entry point address, and the
memory data. The record is followed with a
16 bit cyclic redundancy check (CRC-16).

To reload a memory dump tape, place
the tape in the transport {cassette or paper
tape) and strike the LOAD (8) key. PAM-8
will read the tape and discard any informa-
tion until the beginning of record sequence
is found. The load operation then begins.
When the load is complete, the computed
CRC-16 is compared to the one on the tape.

If the load is correct, PAM/8 gives a single
beep. Since the program counter (PC)
register was loaded with the entry point
address, striking the GO key will begin
execution, If the load is incorrect, PAM/8
displays the error code 001 (CRC error)
and repeatedly beeps the horn. Pressing
CANCEL (*) silences the horn.

During the load and dump operations,
the six leftmost LEDs display the address
being loaded or dumped, while the three
remaining LEDs display the data value
going into or out of that location, This
allows the operator to see if the load is
progressing, and gives an idea of how much
is left. The H8 cassette system runs at
1200 bps, allowing the loading of 8 K
BASIC in about 60 seconds.

The CRC-16 check value used in PAM/8
is nearly foolproof: single bit errors, double
bit errors, and error bursts of less than 16
bits are always detected. The chance of a
larger error escaping undetected is less than
0.0002%.

“The front panel system must be capable
of displaying and altering both memory
and registers conveniently,” To display the
contents of a memory location or register,
strike the MEM (#) or REG (.} key followed
by a 6 digit address (for MEM) or a 1 key
register select (for REG). In the case of
memory display, the address will appear
in the left six digits, the value in the right
three. In the case of a register, the value
of the register (if 16 bits) or the register
pair (for 8 bit registers) is displayed in the
left six digits, and the register name(s)
is displayed in the right two digits. See
photo 3 for examples.

To change the contents of a register
or memory location, first display the old
contents as described above. Next strike
the ALTER {/) key. You can then alter
the register or location by entering six (or
three) octal digits. As each 3 digit group
is entered, the PAM/8 monitor provides
a beep in acknowledgement. In the case
of memory alteration, the memory address
is automatically incremented by one. This
allows you to enter a series of memory
locations by entering a steady stream of
values.

When the altering is complete, restriking
the ALTER key clears the alter mode
and restores the O through 7 keys to their
usual function.

It is important to note that the register
and memory displays are real time: if the
contents of that register or [ocation change,
the display will immediately show the new
value. Thus, to watch the PC register in a



78

October 1978 © BYTE Publications inc

running program, merely select it for display
and type GO. Should you now decide to
watch the contents of a memory byte,
press RTM/O (# and 0O simultaneously)
to halt the program, select the memory
location, then press GO to resume execu-
tion from where it halted.

“The front panel system must be capable
of execution control.” PAM/8 provides
five types of execution control ;

Run

Halt

Jump
Breakpoints
Single Instruction

Pressing the GO key starts a program run-
ning at the current value of the PC register.
The desired start address can be entered into
the program counter beforehand. To stop a
running program, press RTM (return to
monitor, keys 0 and # simultaneously).
Execution of the program will immediately
halt, and the MTR light will come on. The
operator can now examine registers and
memory locations and may alter them if
desired. Pressing GO causes execution to
resume where it left off. To jump the
processor to a section of code, press RTM,
alter the PC register and press GO.

When a HLT instruction is encountered
by a user program, the PAM/8 gives a single
alarm beep and execution of the user pro-
gram is halted. The PC register points to the
byte following the HLT operation. Pressing
GO causes execution to resume following
the HLT opcode. The user can make use of
breakpoints to debug programs by assem-
bling or patching in HLT operations.

PAM/8 also includes a single instruction
facility. Each time the Sl key is struck, the
instruction pointed to by the program
counter is executed and the user program
is immediately halted. This works for all
8080A instructions except DI (disable
interrupts) including jumps, subroutine
calls, and other control-transfer instruc-
tions. Holding down the SI key causes the
execution of an instruction every 400 ms. It
is especially instructive to display a register
and use the S| key to execute instructions
one by one while watching the effect these
instructions have on the registers being
displayed.

“The front panel system must provide
facilities for communicating with 10 ports.”
To communicate with an 1O port, use
the MEM key to enter the 3 digit data
value and the 3 digit port address as a 6 digit
memory address. Striking the OUT key
causes the data value to be output to the

port. Striking the IN key causes the value
read from the port to be displayed in the
leftmost three digits.

“The front panel system must be easy
to use and should reduce the possibility
for error.” In order to increase convenience
and minimize operator errors, PAM/8 is
designed to maximize the bandwidth of
the operator-machine communication chan-
nel. Thus, PAM/8 communicates in three
different ways: by the digit displays, by the
alarm horn, and by the display decimal
points. The use of the digit displays in
communication is obvious. Many panel
operations, such as entering addresses
and values, cause the display to change.
For instance, when altering memory, the
value of each key struck is shown in the
displays. The front panel horn actually
serves three purposes:

® Verify keystrokes.

® Provide information (such as the beep
when entering byte values).

® Provide alarm indications (such as a
CRC error when loading).

The PAM/8 uses the digit decimal points
independently of the values on the digits
themselves. As can be seen from photo 1,
some keys have multiple uses. PAM/8 uses
the decimal points to indicate which use of
the key is currently agctive. When the REG
or the MEM key is struck, PAM/8 expects
an address (or register number). The decimal
points are lit continuously, indicating that
the address must be entered and that the
keys O through 7 will be taken as address
values. When the ALTER key is struck,
PAM/8 displays a rotating pattern on the
decimal points, indicating that a value must
be entered, and the keys 0 through 7 will be
taken as data values.

“The front panel system must be trans-
parent.” In operation, PAM/8 is totally
transparent to a task program; ie: the pro-
gram need not take any notice of the pres-
ence of the PAM/8 system; any existing
8080A program can run on the H8 without
change (assuming it is ORGed correctly, and
the 10 is compatible). Since PAM/8 is imple-
mented partially in system software, it does
require processor service for operation.
Normally, PAM/8 uses about 15 percent of
the processor’s capacity, leaving 85 percent
for task programs. Most programs are com-
pute bound for very short periods of time,
and this presents no difficulties. Programs
which must run at full speed can set a flag
bit in the PAM/8 programmable memory
area to turn off the front panel, which then
gives the task program 100 percent of the



80

October 1978 © BYTE Publications Inc

processor’s capacity. The task program can
then reenable PAM/8 when it desires.

“The front panel system must be ver-
satile.” Although a user program need not
communicate directly with PAM/8, such
communication is possible. In general,
there is a set of special control bytes in
the PAM/8’s programmable memory area
which can be used to control system opera-
tion. For example, a user program can cause
PAM/8 to display any arbitrary segment
pattern on the LED displays. Likewise, the
user program can cause PAM/8 to stop
refreshing the displays so that the program
can refresh them itself. In general, it is
possible to totally close down PAM/8
operations and to have a user program take
them over, thus totally replacing the PAM/8
monitor with a homebrew system. Of
course, user programs can make use of
the PAM/8 utility subroutines to com-
municate with the tape system, read the
keypad (with audio feedback and auto
repeat), sound the horn, and so forth.

“The front panel system must be inex-
pensive.” PAM/8 provides powerful features
at a low cost due to its firmware design.
The read only memory software handles
display decoding and refreshing, keypad
debouncing, and all high level functions.
The necessary hardware consists of the
keys, the LED displays, and a few SSI
and MSI logic gates. In general, the PAM/8
design costs less than a good toggle switch
and lamp panel.

How It Works

As mentioned above, PAM/8 is a firm-
ware system, meaning that its functions are
implemented by a closely integrated com-
bination of hardware and software. The
hardware resides on the front panel circuit
board itself, and the software resides in a
1 K read only memory on the processor
board. This read only memory contains a
program which does most of the work for
the PAM/8 system. Actual hardware was
used only when the function could not be
implemented by the program.

The central concept in the PAM/8 system
is its built-in clock interrupt. When the sys-
tem is powered on (or master cleared)
PAM/8 sends a command to the panel
control port requesting an interrupt every
2 ms. This interrupt interval is derived
from the system’s crystal clock and is
therefore called the clock interrupt. The
presence of this interrupt allows PAM/8
to perform two processes, or tasks, simul-
taneously . Of course, they are not actually
performed simultaneously, since the com-

puter has only one processor, but to a
being as slow as a human the operations
appear simultaneous.

This division of the work load between
two independent tasks, the task time and the
interrupt time processes gives PAM/8 its
power. For the sake of clarity, the functions
of these two tasks will be discussed sepa-
rately and it will be assumed that they are
truly simultaneous.

Interrupt Time

The interrupt time task is always running
(unless shut off by the user program) and
has three main jobs:

® Process display refreshing and
updating.
® Maintain system clock.

® Allow user program clock servicing.

The most important job of the interrupt
time process is to refresh the front panel
displays. The displays are not latched
and decoded; the display hardware consists
of a 4 bit digit select field and an 8 bit
pattern select field. Every interrupt cycle
(2 ms), a segment pattern and digit number
are output by the code. The digits are
refreshed round robin so that each digit
is lit every 18 ms (nine digits at 2 ms each).
This gives an overall refresh rate of 55 times
a second, which is sufficient to eliminate
flicker. The segment patterns being refreshed
are obtained from a 9 byte programmable
memory area. Each 8 bit byte contains the
pattern for a digit (seven segments, one
decimal point). Every 32 clock interrupts,
or about 16 times a second, the 9 byte
pattern being displayed is updated. The
PAM/8 monitor examines flag locations to
determine which memory location or
register is being displayed and decodes
its value into nine bytes of display bar code.
If a register is being displayed, the program
finds its value on the stack where it was
pushed when the clock interrupt occurred.
It should be noted that both of these proc-
esses, refreshing and updating, may be con-
trolled by a user program. There is a bit
for each function allocated in a PAM/8
control byte; setting the bit causes the
function to be discontinued. Most pro-
grams which make use of this feature turn
off display updating, but they leave display
refreshing turned on. Then the program
can display any arbitrary pattern by simply
placing segment bar patterns into the 9 byte
area in memory.

The second main job performed by the
interrupt time task is the maintenance of
the system clock. The PAM/8 monitor



maintains a 16 bit count of the clock inter-
rupts received. Since this count is updated
during the clock interrupts, it appears to
task time programs that the location
“magically” increments itself. Many pro-
grams, including the task time portion of
PAM/8, make use of this counter,

The third major job of the interrupt
time task is the handling of user clock
processing.  Normally, PAM/8 returns
directly from the clock interrupt so that
the operation will be transparent to the user
program. However, a user program can set
a bit in a PAM/8 control byte requesting
that a user subroutine be called during
every clock interrupt. This allows the user
to also write task time and interrupt time
systems, as well as giving multitasking
capability.

Task Time Task

While all this clock interrupt processing
is taking place, the H8 is also running a
task time program. Task time refers to
the “problem solving” program which runs
when interrupts are not being serviced.
Under the PAM/8 system, the task time

82

P.E.T."™ PRODUCTS

SOFTWARE/ACCESSORIES/HARDWARE

Memory Expansion!!-31,743 Bytes Free!-NEECO now has internal memory
Expansion Boards Available for your PET! 16K, 24K and 32K Memory
Contigurations. Calt or write NEECO and ask for our *Free* Software and
Hardware Directory. Power up to 32K Bytes! Call NEECO for more info.

Sottware-NEECO has too many programs to list them ail here! Call or
write and ask for our *Free*® Directory! **Software Authors!-NEECO
offers 25% Royalties on Pet programs with nationwide distribution!--Call
NEECO for additional information on our 25% Royalty Program.

PET & Peripherals-NEECO ofters tast (off the shelt?) delivery schedules
for the Pet Computer and Peripheral 2020 Printer. NEECO also offers
excellent personal & Warranty service!!! Interested in a Pet? Call and
request our P.E.T. Info Pak. Feel free to call and ask questions.

The Music Box- Music Composer and sound effects generator allows you
to compose and hear music on your Pet! -Program & Hardware allows
you to display notes, hear the notes, save pages of music on tape for later
playback or modification! The Music Box actually displays the notes as a
song or tune is played!-Allows you to add sound effects to your own Pet
Programs -Endless Possibilities!-All Cassette Software, plug-in Hardware.
and Music Box instructions for only $49.95! Music Box Fits right inside
your Pet -No assembly required! Music Box even plays random tunes!

NEECO Dust Cover- Protect your Pet! Cover your Pet’s delicate circuitry
and keyboard from dust that can, over time, cause intermittent chip
failures! Heavy, clear Plastic Dust Cover shows off your Pet while
protecting it from dust, spills, and those inevitable ‘Unwanted Sticky
fingers*! Manufactured to last as long as your Pet!--only $17.95

VISA OR MC Phone orders Accepted-(4% Surcharge on Hardware)

w mu E_Emm m. “Authorized PET Sates & Service
248 Bridge Street

“"Guaranteed Delivery’”
Scheduies for all of our
PET Customers. Call
for our PET Package.

Area Code (413)

739-9626

Springfield, Mass.

October 1978 © BY TE Publications Inc

Circle 281 on inquiry card.

program may be the user program itself, or it
may be the PAM/8 command processing
program.

When the system is initialized after power
up, the task program is the PAM/8 command
processor, which continually reads the
keypad for operator commands. Keypad
debouncing, key strike verification (beeps)
and auto repeat on the keypad are all time
dependent functions; PAM/8 makes use of
the system clock to implement them.
When a command is recognized, it is exe-
cuted immediately. Having the interrupt
time task running simuitaneously with the
command loop greatly simplifies command
processing. For example, pressing the + key
(when displaying memory) is supposed to
cause the next location to be displayed.
All the command processor needs to do is
to increment the “address being displayed”
word in memory. Sometime during the
next 32 clock interrupts the interrupt task
will decode this new address and its con-
tents, causing the new address and value
to be “magically” displayed (after a maxi-
mum wait of 1/6 of a second). In a similar
manner, the routines to handle the LOAD
and DUMP functions merely update the
address being displayed word after every
byte is loaded or dumped; the interrupt
time task sees to it that the address being
loaded is continuously displayed on the
panel LEDs.

After reading this discussion, you can
probably guess how the GO command is
implemented: the PAM/8 monitor merely
restores the user registers from the stack.
The PC register is restored last, which
causes execution to begin at the specified
location. The interrupt time task proceeds
as before, decoding and displaying the
selected memory or register contents.
Should the location or register be altered
by the running program, the front panel
will very quickly (typically in 32 ms) show
the change.

HLT and Return to Monitor

So far, we've seen that the interrupt
time and task time processes don’t inter-
mingle; each keeps to its own. The proc-
essing of the HLT instruction and the RTM
(return to monitor) command are exceptions
to this principle. When a HLT instruction
is encountered the processor waits with the
program counter pointing to the next byte.
When the next clock interrupt comes along,
the interrupt processing code takes a look
at the preceding instruction; if it is a HLT,
the code passes control directly to the
PAM/8 task time command loop, never



84

October 1978 © BYTE Publications Inc

returning to the user program. Naturally,
a little bit of cleaning up is performed to
smooth over the abrupt transition from
interrupt time to task time. This feature
allows the use of the HLT instruction as a
breakpoint and also provides transparent
support of the HLT operation. When a pro-
gram halts, the front panel comes alive,
and user program execution stops. Striking
the GO key causes execution to resume
following the HLT instruction.

The RTM command is a key command
executed by pressing the 0 and # keys
simultaneously. This command serves the
purpose of the RUN/HALT switch on
hardware front panels: striking RTM causes
execution of the user program to cease, and
it causes the front panel to become active.
The RTM command is implemented by a
joint hardware and software effort: on a
hardware level, the pressing of the two keys
causes a clock interrupt to be requested
immediately, without waiting through the 2
ms interval. On the software level, the clock
interrupt code in PAM/8 checks the keypad
for the special RTM key combination. If it is
present, the same process that was used for
the HLT operation is used: control passes
directly to the PAM/8 task time command
loop, not back to the interrupted user
program.

Using the PAM/8

The design of recent microcomputer sys-
tems has shown a trend away from front
panel designs toward the “no front panel”
monitor. This is being done for a very good
reason: a terminal monitor based on pro-
grammable memory or read only memory is
much easier to use and is more powerful
than hardware front panels. This fact also
applies to the PAM/8 system: a good console
oriented monitor and debugger, such as
Heath’s HBUG, is much more convenient for
debugging programs. This is not to say that
PAM/8 does not perform an indispensable
task, as | will try to show in the following
real life examples.

A typical experience in the life of a com-
puter experimenter is the debugging of some
peripheral interface. |'ve spent many a long
hour slaving over a processor, trying to make
some new device or interface talk to my
computer. A favorite technique | use for this
is to enter a 2 statement program into
memory:

L1 IN <port number>
JMP L1

This program simply inputs from the port
assigned to the recalcitrant device into the
accumulator, then loops back to do it again
and again. Then all | do is set the PC register
to the LT address, punch up the accumulator
for display, and press GO. The value read
from the port will be continuously displayed
in the A register, even while | adjust the
hardware. By watching the panel displays,
I can instantly see any results of my labors,
such as, “if 1 ground this line, will that bit
come on?”’

Another important use for PAM/8 is as an
aid to debugging software. Often [ find my-
self debugging a complex piece of software
that maintains various state flags in memory.
For example, a command completion sub-
routine, which examines characters as they
are entered for valid syntax, is a state de-
pendent program. As each character is
entered, the program sets flag bits indicating
various things such as “two alphabetic char-
acters entered,” or “have just seen a blank,”
etc. When debugging this code, | simply dis-
play the address (or register) containing the
state flags on the front panel. Then, as |
strike test keys one by one, | can immedi-
ately judge the program’s reaction by
examining the state flags. This technique can
be used to monitor working programs as
well. For example, | have a loader program
which | use to download programs from
other computers. It keeps the address cur-
rently being loaded in the HL register pair.
By simply displaying this register pair, | can
watch the load progress (or fail!).

A real time front panel can be used for
more than just debugging. The presence of
the displays and keypad provides another
channel of communication with the proces-
sor, independent of the console terminal.
The displays can be used to indicate any
desired status, and the keypad can be used
as a bank of “sense switches,” even while the
console is being used by the program. For
example, the BASIC interpreter supports
commands to control the displays and read
the keypad.

Conclusions

The PAM/8 front panel system provides
an inexpensive and effective “firmware front
panel” which emulates a complete hardware
front panel. Its design combines the capa-
bilities of a true hardware panel with the
flexibility of firmware and ultimately pro-
vides the user with a greater communications
bandwidth to a personal computer.m



