DSTD-401

RS-422 SERIAL INTERFACE
with DMA

OPERATIONS MANUAL

DY00460

covering part numbers:
DSTD-401-2.5
DSTD-401-4.0
DSTD-401A-2.5
DSTD-401A-4.0

DY-4 SYSTEMS INC.
1475 S. Bascom Ave.,
Suite 202
Campbell, CA
95008
(408) 377-9822

DY-4 SYSTEMS INC.
888 Lady Ellen Place,
Ottawa, Ontario, Canada
K1Z 5M1
(613) 728-3711

DY-4 SYSTEMS INC.
Solbakken 48, DK-8450
Hammel, Denmark
(06) 96-3624

TLX 60938 (Dendy DK)

PREPARED BY: DY-4 Systems Inc.

DATED: AUGUST 31, 1984
REVISION NOTICE

<table>
<thead>
<tr>
<th>REVISION</th>
<th>CHANGES</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Original Release</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Update</td>
<td>Jan 26/83</td>
</tr>
<tr>
<td>C</td>
<td>Update Jumper Option</td>
<td>Aug 31/84</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION NUMBER</th>
<th>PARAGRAPH NUMBER</th>
<th>TITLE</th>
<th>PAGE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.1</td>
<td>DSTD Series description</td>
<td>1 - 1</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>DSTD-401 Features</td>
<td>1 - 1</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>Description by Part Number</td>
<td>1 - 2</td>
</tr>
<tr>
<td>2.0</td>
<td>2.1</td>
<td>Application</td>
<td>2 - 1</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>SIO Capabilities</td>
<td>2 - 1</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>RS-422 Interface</td>
<td>2 - 4</td>
</tr>
<tr>
<td></td>
<td>2.4</td>
<td>DMA Operation</td>
<td>2 - 4</td>
</tr>
<tr>
<td>3.0</td>
<td>3.1</td>
<td>Introduction</td>
<td>3 - 1</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>Address Selection</td>
<td>3 - 1</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>RS-422 Cable Interface Blocks</td>
<td>3 - 2</td>
</tr>
<tr>
<td></td>
<td>3.4</td>
<td>Baud Rate Selection</td>
<td>3 - 4</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>Clock Source Selection</td>
<td>3 - 6</td>
</tr>
<tr>
<td></td>
<td>3.6</td>
<td>DMA BUSRQ Buffering</td>
<td>3 - 7</td>
</tr>
<tr>
<td></td>
<td>3.7</td>
<td>DMA BUSAK Priority Chain</td>
<td>3 - 7</td>
</tr>
<tr>
<td>4.0</td>
<td>4.1</td>
<td>Functional Specifications</td>
<td>4 - 1</td>
</tr>
<tr>
<td></td>
<td>4.1.1</td>
<td>Word Size</td>
<td>4 - 1</td>
</tr>
<tr>
<td></td>
<td>4.1.2</td>
<td>Cycle Time</td>
<td>4 - 1</td>
</tr>
<tr>
<td></td>
<td>4.1.3</td>
<td>I/O Addressing</td>
<td>4 - 1</td>
</tr>
<tr>
<td></td>
<td>4.1.4</td>
<td>Serial Communication Ports</td>
<td>4 - 1</td>
</tr>
<tr>
<td></td>
<td>4.1.5</td>
<td>Interrupts</td>
<td>4 - 1</td>
</tr>
<tr>
<td></td>
<td>4.1.5.1</td>
<td>System Interrupt Units</td>
<td>4 - 1</td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td>Electrical Specifications</td>
<td>4 - 2</td>
</tr>
<tr>
<td></td>
<td>4.2.1</td>
<td>STD Bus Interface</td>
<td>4 - 2</td>
</tr>
<tr>
<td></td>
<td>4.2.2</td>
<td>Power Supply Requirements</td>
<td>4 - 2</td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td>Mechanical Specifications</td>
<td>4 - 2</td>
</tr>
<tr>
<td></td>
<td>4.3.1</td>
<td>Card Dimensions</td>
<td>4 - 2</td>
</tr>
<tr>
<td></td>
<td>4.3.2</td>
<td>STD Bus Edge Connector</td>
<td>4 - 2</td>
</tr>
<tr>
<td></td>
<td>4.3.2.1</td>
<td>Mating Bus Connector</td>
<td>4 - 2</td>
</tr>
<tr>
<td></td>
<td>4.3.3</td>
<td>Serial Channel Connectors</td>
<td>4 - 2</td>
</tr>
<tr>
<td></td>
<td>4.3.4</td>
<td>Operating Temperature</td>
<td>4 - 2</td>
</tr>
</tbody>
</table>
LIST OF TABLES

2 - 1 Synchronous Baud Rates 2 - 3
2 - 2 Asynchronous Baud Rates 2 - 3
3 - 1 Input/Output Address selection 3 - 1
3 - 2 Cable Interface Blocks 3 - 2
3 - 3 Programmable Divider Settings 3 - 4

LIST OF FIGURES

1 - 1 DSTD401 Module 1 - 3
2 - 1 DSTD401 Block Diagram 2 - 2
3 - 1 Base Address Selection 3 - 2
3 - 2 RS-422 Cable Data Interface 3 - 3
3 - 3 RS-422 Cable Clock Interface 3 - 3
3 - 4 Clear to Send Signal Conditioning 3 - 3
3 - 5 Programmable Divider Baud Rate Gen. 3 - 5
3 - 6 Binary Divider Baud Rate Generator 3 - 5
3 - 7 Clock Source Selection 3 - 6
3 - 8 Bus Request Arbitration 3 - 7
3 - 9 DMA BUSAK Priority Chain 3 - 7

APPENDICES

Appendix A Optional Jumper Summary
Appendix B Z80-STD Bus Pin Out & Description
Appendix C DSTD-401 Parts List
Appendix D Schematics

Acknowledgements

Z80 is a Trademark of Zilog, Inc.
SECTION 1

1.0 GENERAL INFORMATION

1.1 DSTD Series General Description

The DY-4 DSTD Series of Z80/STD-BUS compatible products was designed to satisfy the need for high performance microcomputer modules that could be quickly and inexpensively integrated into a variety of end-user applications. The popular STD-BUS motherboard interconnect system concept provides expandability as needs change. Support by numerous manufacturers provides the user with a choice from scores of compatible products.

The modules for the Z80/STD-BUS are a compact 4.5 x 6.5 inches (11.45 x 16.50 cm) which provides for system partitioning by function, i.e. CPU, Memory, I/O, etc. DY-4 SYSTEMS has been able to combine most popular functions on single cards to reduce system card count and cost.

1.2 DSTD-401 Features

The DSTD-401 is a dual channel general purpose RS-422 Serial Interface Module (using the powerful Z80-SIO controller) for applications requiring high speed, long distance serial communications. The SIO provides both asynchronous and synchronous message packaging protocols including SDLC, HDLC and IBM Bisync, and can automatically calculate and check message CRC's for increased reliability.

The DSTD-401 incorporates one Z80 DMA for each channel in order to achieve data throughput up to 800 Kbits/second. It supports the powerful Mode 2 Z80 vectored interrupt technique with built in daisy-chain priority. In most synchronous applications, half duplex operation is recommended due to the way the RS-422 receiver/drivers are used.

The RS-422 receiver/driver circuitry uses a differential signal detection technique which results in common mode induced voltage noise rejection up to 7 volts. Input protection circuitry is provided to minimize damage from line transients. The RS-422 drivers, which can drive up to 4000ft of twisted pair cable, are not in themselves short circuit protected. It is possible to install series resistors to provide some protection when appropriate.

Provision has been made to install shunt resistors across the inputs of the RS-422 receivers to minimize transmission line effects.
It is possible to cross-connect the transmit and receive lines. This is typically used in synchronous half duplex systems and because the transmitters can be disabled under software control, allows bidirectional data transfers over the same twisted pair.

1.3 DSTD-401 Description By Part Number

Two Versions of the DSTD-401 are available, each capable of either 2.5 or 4.0 Mhz operation. Part numbers incorporating a trailing 'A' are single channel devices with only one DMA and components stuffed for operation of only the 'A' channel of the S10. The '-2.5' and '-4.0' suffixes indicate modules intended for use in 2.5 and 4.0 Mhz systems respectively.
SECTION 2

2.0 FUNCTIONAL DESCRIPTION

2.1 Application

The DSTD-401 may be used where high speed, noise immune serial communication is required over long distances. Typical applications include remote data acquisition devices, remote terminals, and as a networking communications controller. The block diagram shown in Figure 2-1 illustrates the major components of the module.

2.2 SIO Capabilities

The Z80 SIO is responsible for converting eight bit parallel data provided by the host CPU on the data bus into packaged serial data conforming to a variety of established protocols. For a complete description and programming details of features available with the SIO, please refer to the Zilog/Mostek Technical Manual.

Asynchronous protocols may be configured for 5, 6, 7 or 8 data bits per character; 1, 1-1/2, and 2 start/stop bits; even and odd parity generation and checking; and overrun/framing error detection.

Synchronous protocols available include bit and byte oriented messages conforming to establish standards such as SDLC, HDLC and IBM Bisync, or user defined protocols.

Each channel has a very flexible baud rate generator consisting of a programmable four bit counter and a nine bit binary divider driven from a 19.6608Mhz base clock. Table 2-1 shows the possible clock rates when the SIO is used in 'x1' mode. Table 2-2 shows the clock rates possible when using the SIO in 'x16' mode, the most common asynchronous mode.

The SIO may be programmed to interrupt on any of several possible conditions, utilizing the powerful Mode 2 interrupt response mechanism of the Z80 to vector program control to the appropriate user defined routine.
TABLE 2-1
Synchronous Baud Rates

<table>
<thead>
<tr>
<th>DIVIDER</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>(614400)</td>
<td>307200</td>
<td>153600</td>
<td>76800</td>
<td>38400</td>
</tr>
<tr>
<td>2</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>(614400)</td>
<td>307200</td>
<td>153600</td>
<td>76800</td>
<td>38400</td>
<td>19200</td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>*</td>
<td></td>
<td>(614400)</td>
<td>307200</td>
<td>153600</td>
<td>76800</td>
<td>38400</td>
<td>19200</td>
</tr>
<tr>
<td>4</td>
<td>*</td>
<td></td>
<td></td>
<td>(614400)</td>
<td>307200</td>
<td>153600</td>
<td>76800</td>
<td>38400</td>
<td>19200</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>491520</td>
<td>245760</td>
<td>122880</td>
<td>61440</td>
<td>30720</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>409600</td>
<td>204800</td>
<td>102400</td>
<td>51200</td>
<td>25600</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(702171)</td>
<td>351086</td>
<td>175543</td>
<td>87771</td>
<td>43886</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(614400)</td>
<td>307200</td>
<td>153600</td>
<td>76800</td>
<td>38400</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(546133)</td>
<td>273067</td>
<td>136533</td>
<td>68267</td>
<td>34133</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>491520</td>
<td>245760</td>
<td>122880</td>
<td>61440</td>
<td>30720</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>446836</td>
<td>223418</td>
<td>111709</td>
<td>55855</td>
<td>27927</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>409600</td>
<td>204800</td>
<td>102400</td>
<td>51200</td>
<td>25600</td>
</tr>
<tr>
<td>13</td>
<td>(756185)</td>
<td>378092</td>
<td>189046</td>
<td>94523</td>
<td>47262</td>
<td>23631</td>
<td>11815</td>
<td>5908</td>
<td>2954</td>
</tr>
<tr>
<td>14</td>
<td>(702171)</td>
<td>351086</td>
<td>175543</td>
<td>87771</td>
<td>43886</td>
<td>21943</td>
<td>10971</td>
<td>5486</td>
<td>2743</td>
</tr>
<tr>
<td>15</td>
<td>(655360)</td>
<td>327680</td>
<td>163840</td>
<td>81920</td>
<td>40960</td>
<td>20480</td>
<td>10240</td>
<td>5120</td>
<td>2560</td>
</tr>
<tr>
<td>16</td>
<td>(614400)</td>
<td>307200</td>
<td>153600</td>
<td>76800</td>
<td>38400</td>
<td>19200</td>
<td>9600</td>
<td>4800</td>
<td>2400</td>
</tr>
</tbody>
</table>

NOTE: An '*' indicates an illegal combination. The maximum input clock rate is one-fifth of the CPU clock. The entries enclosed in parentheses are legal for 4.0MHZ version boards.

TABLE 2-2
Asynchronous Baud Rates

<table>
<thead>
<tr>
<th>DIVIDER</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*</td>
<td>76800</td>
<td>38400</td>
<td>19200</td>
<td>9600</td>
<td>4800</td>
<td>2400</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>*</td>
<td>76800</td>
<td>34800</td>
<td>19200</td>
<td>9600</td>
<td>4800</td>
<td>2400</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>102400</td>
<td>51200</td>
<td>25600</td>
<td>12800</td>
<td>6400</td>
<td>3200</td>
<td>1600</td>
<td>800</td>
<td>400</td>
</tr>
<tr>
<td>4</td>
<td>76800</td>
<td>34800</td>
<td>19200</td>
<td>9600</td>
<td>4800</td>
<td>2400</td>
<td>1200</td>
<td>600</td>
<td>300</td>
</tr>
<tr>
<td>5</td>
<td>61440</td>
<td>30720</td>
<td>15360</td>
<td>7680</td>
<td>3840</td>
<td>1920</td>
<td>960</td>
<td>480</td>
<td>240</td>
</tr>
<tr>
<td>6</td>
<td>51200</td>
<td>25600</td>
<td>12800</td>
<td>6400</td>
<td>3200</td>
<td>1600</td>
<td>800</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td>7</td>
<td>43886</td>
<td>21943</td>
<td>10971</td>
<td>5486</td>
<td>2743</td>
<td>1371</td>
<td>686</td>
<td>343</td>
<td>171</td>
</tr>
<tr>
<td>8</td>
<td>38400</td>
<td>19200</td>
<td>9600</td>
<td>4800</td>
<td>2400</td>
<td>1200</td>
<td>600</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td>9</td>
<td>34133</td>
<td>17067</td>
<td>8533</td>
<td>4267</td>
<td>2133</td>
<td>1067</td>
<td>533</td>
<td>267</td>
<td>133</td>
</tr>
<tr>
<td>10</td>
<td>30720</td>
<td>15360</td>
<td>7680</td>
<td>3840</td>
<td>1920</td>
<td>960</td>
<td>480</td>
<td>240</td>
<td>120</td>
</tr>
<tr>
<td>11</td>
<td>27927</td>
<td>13964</td>
<td>6982</td>
<td>3491</td>
<td>1745</td>
<td>873</td>
<td>436</td>
<td>216</td>
<td>109</td>
</tr>
<tr>
<td>12</td>
<td>25600</td>
<td>12800</td>
<td>6400</td>
<td>3200</td>
<td>1600</td>
<td>800</td>
<td>400</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>13</td>
<td>23631</td>
<td>11815</td>
<td>5908</td>
<td>2954</td>
<td>1477</td>
<td>738</td>
<td>369</td>
<td>185</td>
<td>92</td>
</tr>
<tr>
<td>14</td>
<td>21943</td>
<td>10971</td>
<td>5486</td>
<td>2743</td>
<td>1371</td>
<td>686</td>
<td>343</td>
<td>171</td>
<td>86</td>
</tr>
<tr>
<td>15</td>
<td>20480</td>
<td>10240</td>
<td>5120</td>
<td>2560</td>
<td>1280</td>
<td>640</td>
<td>320</td>
<td>160</td>
<td>80</td>
</tr>
<tr>
<td>16</td>
<td>19200</td>
<td>9600</td>
<td>480</td>
<td>2400</td>
<td>1200</td>
<td>600</td>
<td>300</td>
<td>150</td>
<td>75</td>
</tr>
</tbody>
</table>

NOTE: An '*' indicates an illegal combination.
2.3 RS-422 Interface

The RS-422 interface provides differential voltage level type line drivers which can be used over long distances (up to 4000'). The circuitry provided allows user configuration of line shunting to minimize reflections. Refer to the RS-422 Electrical Specifications for the relationship between distance and maximum transmission rates.

2.4 DMA Operation

The two DMA Controllers designed into the DSTD-401 provide the ability to transfer data between the SIO and memory at maximum speed.

As with most DSTD Series products, the DSTD-401 can be configured for standard backplanes for single DMA device systems or for the DY-4 SYSTEMS backplane for multiple DMA device systems.
3.0 User Selectable Options

3.1 Introduction

The following sections discuss the user selectable or user programmable options. The manual concentrates on the hardware selectable options with only a brief discussion of the system and software options. The user is referred to the operation manuals for the serial controller and the direct memory access chips published by the chip manufacturers (Zilog/Mostek).

3.2 Address Selections

The DSTD-401 occupies eight ports in the processor's I/O address space. The ports may be located anywhere in the address space on an eight port boundary. Only six of the eight ports are actually used. Table 3-1 shows the ports assignments.

<table>
<thead>
<tr>
<th>Port Address</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>SIO Channel A</td>
</tr>
<tr>
<td>01</td>
<td>SIO Channel A</td>
</tr>
<tr>
<td>02</td>
<td>SIO Channel B</td>
</tr>
<tr>
<td>03</td>
<td>SIO Channel B</td>
</tr>
<tr>
<td>04</td>
<td>DMA Channel A</td>
</tr>
<tr>
<td>05</td>
<td>DMA Channel B</td>
</tr>
<tr>
<td>06</td>
<td>not used</td>
</tr>
<tr>
<td>07</td>
<td>not used</td>
</tr>
</tbody>
</table>

NOTE: Accessing port 6 will select DMA channel A and accessing port 7 will select DMA channel B. As a general practice this should be avoided.

Figure 3-1 illustrates how the base address is set up.
A short between adjacent pins, (e.g. 1A-1B), produces a binary '0'. Leaving an open produces a '1'. For the strapping shown, the binary value would equal OCOH (the remaining three bits are decoded internally on the DSTD-401.) The Factory Setting is as shown: OCOH.

3.3 RS-422 Cable Interface Blocks (JB1, 2, 3, 4, 5, 6)

Each channel has five differential signal pairs.

1) Transmit Data pins 1(+) and 2(-)
2) Transmit Clock pins 7(+) and 8(-)
3) Receive Data pins 4(+) and 5(-)
4) Receive Clock pins 10(+) and 11(-)
5) Clear to Send pins 13(+) and 14(-)

Provision is made to allow for the termination of the receiver lines i.e. Receive Data, Receive Clock and Clear to Send. By installing the appropriate jumper a 100 ohm shunt resistor can be connected across the differential lines (refer to the schematic Appendix D).

Provision is also made to cross-connect the transmit drivers and the receivers for both the data lines and the clock lines. This is used in systems requiring bidirectional data paths (e.g. multi-drop network systems). Table 3-2 shows which jumper blocks serve which lines

```
| JB1   | Channel A Transmit and Receive Data |
| JB2   | Channel A Transmit and Receive Clock |
| JB3   | Channel A Clear to Send             |
| JB4   | Channel B Transmit and Receive Data |
| JB5   | Channel B Transmit and Receive Clock |
| JB6   | Channel B Clear to Send             |
```
Jumper blocks JB1, 2, 4 and 5 consist of two rows of three pins and are arranged as shown in figures 3-2 and 3-3. JB3 and 6 are each simply two pins as shown in figure 3-4.

Figure 3-2

RS-422 CABLE DATA INTERFACE JUMPER BLOCK (JB1, JB4)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rx(-)</td>
<td>1 o-o-o</td>
<td>through 100 ohm resistor to Rx+</td>
</tr>
<tr>
<td>Rx(-)</td>
<td>2 o-o-o</td>
<td>to Tx-</td>
</tr>
<tr>
<td>Rx(+)</td>
<td>3 o-o-o</td>
<td>to Tx+</td>
</tr>
</tbody>
</table>

*Where: Rx +/- are the receive data differential input signals
 Tx +/- are the transmit data differential output signals*

Factory Setting: as shown, fully shunted

Figure 3-3

RS-422 CABLE CLOCK INTERFACE JUMPER BLOCKS (JB2, JB5)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rclk(-)</td>
<td>1 o-o-o 1</td>
<td>through 100 ohm resistor to Rclk+</td>
</tr>
<tr>
<td>Rclk(-)</td>
<td>2 o-o-o 2</td>
<td>to Tclk(-)</td>
</tr>
<tr>
<td>Rclk(+)</td>
<td>3 o-o-o 3</td>
<td>to Tclk(+)</td>
</tr>
</tbody>
</table>

*Where: Rclk +/- are the externally supplied differential input clock signals
 Tclk +/- are the differential output Tclk signals*

Factory Setting: as shown, fully shunted

Figure 3-4

CLEAR TO SEND SIGNAL CONDITIONING (JB3, JB6)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CTS(-)</td>
<td>o o o</td>
<td>through 100 ohm resistor to CTS(+)</td>
</tr>
</tbody>
</table>

Where: CTS +/- are the externally supplied differential input CTS signals

Factory Setting: as shown, open
3.4 Baud Rate Selection (JB 7, 8, 9, 12)

If the DSTD-401 module is to supply the clock for the system, then the Baud Rate Options at Jumper Blocks JB 7, 8, 9 and 12 must be configured for the appropriate Baud Rate. The baud rate generator has two sections - a programmable 4 bit counter driven by a 19.6608 MHz clock oscillator, followed by a nine bit binary divider chain. Use Tables 2-1,2-2 and 3-3 to select the desired rates. Figures 3-5 and 3-6 illustrate jumper blocks JB 7/8 and 9/12 for Channels A and B respectively.

<table>
<thead>
<tr>
<th>DIVIDER</th>
<th>D</th>
<th>C</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
OPTION PROGRAMMING

Figure 3-5 shows the jumper blocks for the programmable divider.

Figure 3-5

PROGRAMMABLE DIVIDER - BAUD RATE GENERATOR (JB7, JB12)

a row: common VCC
 c row: common ground
 1a o---o o 1c
 2a o---o o 2c
 3a o o---o 3c
 4a o---o o 4c

b row: data input to counter
1 - bit 0 'A'
2 - bit 1 'B'
3 - bit 2 'C'
4 - bit 3 'D'

Where: Connections between the A row and B row produce a high '1' logic level.
Connections between the C row and B row produce a low '0' logic level.

Figure 3-6

BINARY DIVIDER - BAUD RATE GENERATOR (JB9, JB12)

<table>
<thead>
<tr>
<th></th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>o</td>
</tr>
<tr>
<td>2</td>
<td>o</td>
</tr>
<tr>
<td>3</td>
<td>o-o</td>
</tr>
<tr>
<td>4</td>
<td>o</td>
</tr>
<tr>
<td>5</td>
<td>o</td>
</tr>
<tr>
<td>6</td>
<td>o</td>
</tr>
<tr>
<td>7</td>
<td>o</td>
</tr>
<tr>
<td>8</td>
<td>o</td>
</tr>
<tr>
<td>9</td>
<td>o</td>
</tr>
</tbody>
</table>

Where: Only one pair of pins may be shorted.

Factory setting: 3a - 3b, divide by 8, as shown

BAUD RATE PROGRAMMING EXAMPLE

Using the figures above and the Tables 2-1 and 2-2, the following baud rates may be configured for synchronous and asynchronous operation when the DSTD-401 is supplying the baud rate timing.
Example 1: Asynchronous - 9600 baud
JB7 (or JB8): 1A - 1B, 2A - 2B, 3A - 3B, 4A - 4B
JB9 (or JB12): 6A - 6B

Example 2: Synchronous - 38.4K baud
JB7 (or JB8): 1B - 1C, 2B - 2C, 3A - 3B, 4A - 4B
JB9 (or JB12): 2A - 2B

Example 3: Synchronous - 756K baud
JB7 (or JB8): 1A - 1B, 2A - 2B, 3B - 3C, 4B - 4C
JB9 (or JB12): 1A - 1B

3.5 Clock Source Selection (JB10, 11)

The DSTD-401 may be configured to generate the clock for use by other modules or may receive a clock input as one of the signals exchanged received. Figure 3-7 describes how this selection is made at Jumper Block JB 10 and 11 for Channels A and B respectively.

Figure 3-7
CLOCK SOURCE SELECTION
JB 10 and 11

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SIO Tclk</td>
<td>1</td>
<td>o---o</td>
<td>to RS-422 Tclk driver</td>
<td></td>
</tr>
<tr>
<td>SIO Tclk</td>
<td>2</td>
<td>o</td>
<td>o</td>
<td>from RS-422 Rclk receiver</td>
</tr>
<tr>
<td>Baud Rate</td>
<td>3</td>
<td>o</td>
<td>o</td>
<td>Baud rate generator</td>
</tr>
<tr>
<td>from RS-422</td>
<td>4</td>
<td>o---o</td>
<td>SIO Rclk</td>
<td></td>
</tr>
<tr>
<td>Rclk receiver</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Where: SIO Tclk/Rclk refer to the SIO input connections for separate clock frequencies for transmit and receive baud rates.

Baud Rate Generator refers the output of the counter/divider chains.

Factory Setting: As shown, the module is supplying the transmit clock as determined by the baud rate generator. The receive clock is taken from the network i.e. the RS-422 receivers.

3 - 6
3.6 DMA BUS-Request Buffering (JB13)

The /BUSRQ signal is generated by the DMA controllers. This signal may be buffered onto the backplane by installing JB13-1A to JB13-2A. Note, however there are circumstances when this signal cannot be buffered. This signal is also an input to the DMA chips. A DMA chip will not generate a BUSRQ (Bus request) if DMA cycle is already in progress under the a control of another DMA device. This is so that it will not upset the DMA priority chain. Therefore in a multiple DMA device system this signal cannot be buffered onto the backplane — install JB13-1B to JB13-2B instead.

Figure 3-8
BUS REQUEST ARBITRATION

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>to /BUSRQ at STD BUS</td>
<td>A</td>
<td>o</td>
</tr>
<tr>
<td>to /BUSRQ at STD BUS</td>
<td>B</td>
<td>o---</td>
</tr>
</tbody>
</table>

from BUSRQ buffer from DMA Chips BUSRQ

Factory Setting: 1b - 2b as shown

3.7 DMA BUS-Acknowledge Priority Chain (JB14)

The DY-4 SYSTEMS implementation of the STD BUS allows for multiple interrupting devices to be used by virtue of DMA Bus-Acknowledge signal arbitration. This creates a DMA device priority scheme similar to the way PCI/PCO is used to prioritize interrupt requests. To do this the DY-4 SYSTEMS backplane implementation uses pins 40 and 41 to create a DMA priority chain. Pin 41 is the output and pin 40 is the DMA priority chain input. However to be compatible with STD bus backplanes from other manufacturers the DSTD-401 can be configured to accept the BUSAK input signal from pin 41.

Jumper Block JB14 is used to select whether the module will be used in a DY-4 backplane or an alternate manufacturer. This feature is described in Figure 3-9.

Figure 3-9
DMA-/BUSAK PRIORITY CHAIN (JB14)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>/BAO signal</td>
<td>1</td>
<td>o---</td>
</tr>
<tr>
<td>BAO signal</td>
<td>2</td>
<td>o---</td>
</tr>
<tr>
<td>Pin 41-BAO</td>
<td></td>
<td>Pin 40-BAI</td>
</tr>
<tr>
<td>BUSAK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Where: 1a - 2a allows module to pass through DMA priority chain
1b - 2b allows module to arbitrate DMA priority chain

Factory Setting: Both jumpers installed, as shown

3 - 7
4.0 SPECIFICATIONS

4.1 Functional Specifications

4.1.1 Word Size
- Data: 8 bits
- I/O Addressing: 8 bits

4.1.2 Cycle Time

<table>
<thead>
<tr>
<th>MIN.</th>
<th>MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSTD-401-2.5</td>
<td>250 KHz</td>
</tr>
<tr>
<td>DSTD-401-4.0</td>
<td>250 KHz</td>
</tr>
</tbody>
</table>

4.1.3 I/O Addressing
On-board user-programmable, refer to paragraph 3.2 for programming details.

4.1.4 Serial Communication Ports
Each serial channel has its own baud rate generator which may be user programmed for the desired baud rate via hardware jumpers. For programming details refer to paragraph 3.4.

4.1.5 Interrupts
The DSTD-401 supports vectored interrupt generation via both the SIO and DMA controller chips. Each device is interrupt vector programmable upon initialization. Also, the DSTD-401 supports full daisy-chain interrupt priority.

4.1.5.1 System Interrupt Units
SIU - 3
4.2 Electrical Specifications

4.2.1 STD Bus Interface

Bus Inputs

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{OL}</td>
<td>24 mA min. @ VOL = 0.5 VDC</td>
</tr>
</tbody>
</table>

Bus Outputs

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{OH}</td>
<td>15 mA min. @ VOH = 2.4 VDC</td>
</tr>
</tbody>
</table>

4.2.2 Power Supply Requirements

+5 VDC ± 5% @ 1.1 Amps Max

4.3 Mechanical Specifications

4.3.1 Card Dimensions

4.5 Inches (11.43 cm.) wide by 6.50 Inches (16.51 cm.) long

0.48 Inches (1.22 cm.) maximum height

0.062 Inches (0.16 cm.) printed circuit board thickness

4.3.2 STD BUS EDGE Connector

56 Pin dual readout; 0.125 inch centers

4.3.2.1 Mating Bus Connector

VIKING 3VH28/1CE5 (PCB)

VIKING 3VH28/1CND5 (Wirewrap)

VIKING 3VH28/1CN5 (Solder Lug)

4.3.3 Serial Channel Connectors

2 - 26 Pin Dual 0.100 inch grid 1-87230-3 AMP

Mating Connector AMP 88378-3 or equivalent

4.3.4 Operating temperature

0 to 60 degrees celsius.
SECTION 5

5.0 FACTORY NOTICES

5.1 FACTORY REPAIR SERVICE

In the event that difficulty is encountered with this unit, it may be returned directly to DY-4 for repair. This service will be provided free of charge if the unit is returned within the warranty period. However, units which have been modified or abused in any way will not be accepted for service, or will be repaired at the owner's expense.

When returning a circuit board, place it inside the conductive plastic bag in which it was delivered to protect the MOS devices from electrostatic discharge. THE CIRCUIT BOARD MUST NEVER BE PLACED IN CONTACT WITH STYROFOAM MATERIAL. Enclose a letter containing the following information with the returned circuit board:

- Name, address and phone number of purchaser
- Date and place of purchase
- Brief description of the difficulty

Mail a copy of this letter SEPARATELY to:

SERVICE DEPARTMENT
DY-4 SYSTEMS INC.
888 Lady Ellen Place, -or-
Ottawa, Ontario
K1Z 5M1, Canada

SERVICE DEPARTMENT
DY-4 SYSTEMS INC.
3582 Dubarry Rd.
Indianapolis, IN 46226

Securely package and mail the circuit board, prepaid and insured, to the same address.

5.2 LIMITED WARRANTY

DY-4 warrants this product against defective materials and workmanship for a period of 90 days. This warranty does not apply to any product that has been subjected to misuse, accident, improper installation, improper application, or improper operation, nor does it apply to any product that has been repaired or altered by other than an authorized factory representative.

There are no warranties which extend beyond those herein specifically given.

NOTICE

The antistatic bag is provided for shipment of the DY-4 PC boards to prevent damage to the components due to electrostatic discharge.

Failure to use this bag in shipment will VOID the warranty.
APPENDIX A

JUMPER OPTION SUMMARY
APPENDIX A

JUMPER OPTION SUMMARY

A - 1 The following is a list of the DSTD-401 jumper option blocks.

- JB1 Channel A Transmit and Receive Data
- JB2 Channel A Transmit and Receive Clock
- JB3 Channel A Clear to Send
- JB4 Channel B Transmit and Receive Data
- JB5 Channel B Transmit and Receive Clock
- JB6 Channel B Clear to Send
- JB7 Channel A Programmable Divider
- JB8 Channel B Programmable Divider
- JB9 Channel A Binary Divider
- JB10 Channel A Clock Source Selection
- JB11 Channel B Clock Source Selection
- JB12 Channel B Binary Divider
- JB13 DMA BUSRQ
- JB14 DMA Priority Chain
- JB15 Module I/O Address Selection

A - 2 Transmit and Receive Data/Clock Blocks (JB1,2,4,5)

1 2 3

B o o o
! ! !
A o o o

1A,2A RX/RCLK (-)
3A RX/RCLK (+)
1B Thru 100 ohms to RX/RCLK (+)
2B TX/TCLK (-)
3B TX/TCLK (+)

A - 3 Clear to Send Blocks (JB3,6)

A B

CTS (-) 1 o--o thru 100 ohms to CTS (+)
A - 4 Programmable Divider (JB7,8)
 1 2 3 4
 C o o o o
 |
 B o o o o Set to divide by 5

 A o o o o

1A - 4A VCC logic '1'
1C - 4C Ground logic '0'

1B Counter Bit 0 'A'
2B Counter Bit 1 'B'
3B Counter Bit 2 'C'
4B Counter Bit 3 'D'

A - 5 Binary Divider (JB9,12)
 1 2 3 4 5 6 7 8 9
 B o o o o o o o o o

 A o o o o o o o o o

1A - 9A Common Output
1B divide by 2
2B divide by 4
3B divide by 8
4B divide by 16
5B divide by 32
6B divide by 64
7B divide by 128
8B divide by 256
9B divide by 512
A - 6 Clock Source Selection

1 2 3 4
B o o o o
 |
A o o--o o

1A,2A TCLK - SIO input
3A,3B Baud Rate Generator
4A,2B RCLK - from RS-422 receivers
1B TCLK - to RS-422 drivers
4B RCLK - SIO input

A - 7 DMA BUSRQ (JB13)

A B

-BUSRQ (pin 41) 1 o o -BUSRQ (pin 41)
 |
BUSRQ buffered 2 o o BUSRQ unbuffered

A - 8 DMA Priority Chain (JB14)

2 1

BUSAK o o B from BUSRQ buffer
 |
-BAI (pin 40) o o A -BAO (pin 41)

A - 9 Module Address Selection (JB15)

1 2 3 4 5

B o o o o o o
 |
A o o o o o o

1A,5A Ground

1B Address Bit 7
2B Address Bit 6
3B Address Bit 5
4B Address Bit 4
5B Address Bit 3
APPENDIX B

Z80 - STD BUS PIN OUT AND DESCRIPTION
APPENDIX B

STD-Z80 BUS PIN OUT AND DESCRIPTION

<table>
<thead>
<tr>
<th>BUS</th>
<th>MNEMONIC</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5V</td>
<td>5Vdc system power</td>
</tr>
<tr>
<td>2</td>
<td>5V</td>
<td>5Vdc system power</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>Ground - System signal ground and DC return</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground - System signal ground and DC return</td>
</tr>
<tr>
<td>5</td>
<td>-5V</td>
<td>-5Vdc system power</td>
</tr>
<tr>
<td>6</td>
<td>-5V</td>
<td>-5Vdc system power</td>
</tr>
<tr>
<td>7</td>
<td>D3</td>
<td>Data Bus (Tri-state, input/output active high). D0-D7 constitute an 8-bit bidirectional data bus. The data bus is used for data exchange with memory and I/O devices</td>
</tr>
<tr>
<td>8</td>
<td>D7</td>
<td>Address Bus (Tri-state, output, active high).</td>
</tr>
<tr>
<td>9</td>
<td>D2</td>
<td>Address Bus (Tri-state, output, active high).</td>
</tr>
<tr>
<td>10</td>
<td>D6</td>
<td>Address Bus (Tri-state, output, active high).</td>
</tr>
<tr>
<td>11</td>
<td>D1</td>
<td>Address Bus (Tri-state, output, active high).</td>
</tr>
<tr>
<td>12</td>
<td>D5</td>
<td>Address Bus (Tri-state, output, active high).</td>
</tr>
<tr>
<td>13</td>
<td>D0</td>
<td>Address Bus (Tri-state, output, active high).</td>
</tr>
<tr>
<td>14</td>
<td>D4</td>
<td>Address Bus (Tri-state, output, active high).</td>
</tr>
<tr>
<td>15</td>
<td>A7</td>
<td>Address Bus (Tri-state, output, active high).</td>
</tr>
<tr>
<td>16</td>
<td>A15</td>
<td>Address Bus (Tri-state, output, active high).</td>
</tr>
<tr>
<td>17</td>
<td>A6</td>
<td>Address Bus (Tri-state, output, active high).</td>
</tr>
<tr>
<td>18</td>
<td>A14</td>
<td>Address Bus (Tri-state, output, active high).</td>
</tr>
</tbody>
</table>
A0-A15 make up a 16-bit address bus. The address bus provides the address for memory (up to 65k bytes) data exchanges and for I/O device data exchanges. I/O addressing uses the lower 8 address bits to allow the user to directly select up to 256 input or 256 output ports. A0 is the least significant address bit. During refresh time, the lower 7 bits contain a valid refresh address for dynamic memories in the system.

Memory Write (Tri-state, output, active low). /WR indicates that the CPU data bus holds valid data to be stored in the addressed memory or I/O device.

Memory Read (Tri-state, output, active low). /RD indicates that the CPU wants to read data from memory or an I/O device. The addressed I/O device or memory should use this signal to gate data onto the CPU data bus.

Input/Output Request (Tri-state, output, active low). The /IORQ signal indicates that the lower half of the address bus holds a valid I/O address for an I/O read or write operation. An /IORQ signal is also generated with an /M1 signal when an interrupt is being acknowledged to indicate than an interrupt response vector can be placed on the data bus. Interrupt Acknowledge operations occur during /M1 time, while I/O operations never occur during /M1 time.

Memory Request (Tri-State output, active low). The /MEMRQ signal indicates that the address bus holds a valid address for a memory read or write operation.

I/O expansion, not used on dy-4 Systems DSTD.
36 /MEMEX Memory expansion, not used on dy-4 Systems DSTD cards.

37 /REFRESH /REFRESH (Tri-state, output, active low). /REFRESH indicates that the lower 7 bits of the address bus contain a refresh address for dynamic memories and the /MEMREQ signal should be used to perform a refresh cycle for all dynamic RAMs in the system. During the refresh cycle A7 is a logic zero and the upper 8 bits of the address bus contains the I register.

38 /DEBUG /DEBUG (Input) used in conjunction with DDT-80 operating system and the MDX Single Step card for implementing a hardware single step. When pulled low, the /DEBUG line will set a latch that will force the upper three address lines to a logic 1. To reset this latch, an I/O operation must be performed.

39 /M1 Machine Cycle One (Tri-state, output, active low). /M1 indicates that the current machine cycle is in the opcode fetch cycle of an instruction. Note that during the execution of a 2-byte opcodes, /M1 will be generated as each opcode is fetched. These two-byte op-codes always begin with a CBH, DDH, EDH or FDH. /M1 also occurs with /IORQ to indicate an interrupt acknowledge cycle.

40 STATUS 0 DMA priority chain input.

41 /BUSAK Bus Acknowledge (Output, active low). Bus Acknowledge is used to indicate to the requesting device that the CPU address bus, data bus, and control bus signals have been set to their high impedance state and the external device can now control the bus.
Bus Request (Input, active low). The /BUSRQ signal is used to request the CPU address bus, data bus, and control signal bus to go to a high impedance state so that other devices can control those buses. When /BUSRQ is activated, the CPU will set these buses to a high impedance state as soon as the current CPU machine cycle is terminated, and the Bus Acknowledge (/BUSAK) signal is activated.

Interrupt Acknowledge (Tri-state output, active low). The /INTAK signal indicates that an interrupt acknowledge cycle is in progress, and the interrupting device should place its response vector on the data bus.

Interrupt Request (Input, active low). The Interrupt Request Signal is generated by I/O devices. A request will be honored at the end of the current instruction if the internal software controlled interrupt enable flip-flop (IFF) is enabled and if the /BUSRQ signal is not active. When the CPU accepts the interrupt, an acknowledge signal (/IORQ during an /M1) is sent out at the beginning of the next instruction cycle.

WAIT REQUEST (Input, active low). Wait request indicates to the CPU that the addressed memory or I/O devices are not ready for a data transfer. The CPU continues to enter wait states for as long as this signal is active. The signal allows memory or I/O devices of any speed to be synchronized to the CPU.
46 /NMIRQ
Non-Maskable Interrupt request (Input, negative edge triggered). The Non-Maskable Interrupt request has a high priority than /INTRQ and is always recognized at the end of the current instruction, independent of the status of the interrupt enable flip-flop. /NMIRQ automatically forces the CPU to restart to location 0066H. The program counter is automatically saved in the external stack so that the user can return to the program that was interrupted. Note that continuous WAIT cycle can prevent the current instruction from ending, and that a /BUSRQ will over-ride a /NMIRQ.

47 /SYSRESET
System Reset (Output, active low). The System Reset line indicates that a reset has been generated from either an external reset or the power-on reset circuit. The system reset will occur only once per reset request and will be approximately 2 microseconds in duration. The system reset will also force the CPU program counter to zero, disable interrupts, set the I register to 00H, set the R register to OOH and set Interrupt Mode 0.

48 /PBRESET
Pushbutton Reset (Input, active low). The Pushbutton reset will generate a debounced system reset.

49 /CLOCK
Processor Clock (Output, active low). Single phase system clock.

50 CNTRL
Auxiliary Timing

51 PCO
Priority Chain Output (Output, active high.) This signal is used to form a priority interrupt daisy chain when more than one interrupt driven device is being used. A high level on this pin indicates that no other devices of higher priority are being serviced by a CPU interrupt service routine.
STD-Z80 BUS PIN OUT

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>PCI Priority Chain In (Input, active high). This signal is used to form a priority interrupt daisy chain when more than one interrupt driven device is being used. A high level on this pin indicates that no other devices of higher priority are being serviced by a CPU interrupt service routine.</td>
</tr>
<tr>
<td>53</td>
<td>AUX GND Auxiliary Ground (Bussed)</td>
</tr>
<tr>
<td>54</td>
<td>AUX GND Auxiliary Ground (Bussed)</td>
</tr>
<tr>
<td>55</td>
<td>+12V +12Vdc system power</td>
</tr>
<tr>
<td>56</td>
<td>-12V -12Vdc system power</td>
</tr>
</tbody>
</table>

NOTES:

1. The reference to input and output of a given signal is made with respect to the CPU module.
APPENDIX C

DSTD-401 PARTS LIST
APPENDIX C

DSTD401 PARTS LIST

<table>
<thead>
<tr>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>INTEGRATED CIRCUITS</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>U10,15</td>
<td>74S04</td>
</tr>
<tr>
<td>1</td>
<td>U17</td>
<td>74LS00</td>
</tr>
<tr>
<td>1</td>
<td>U14</td>
<td>74LS08</td>
</tr>
<tr>
<td>1</td>
<td>U9</td>
<td>74LS112</td>
</tr>
<tr>
<td>2</td>
<td>U5,U6</td>
<td>74LS163</td>
</tr>
<tr>
<td>5</td>
<td>U18,19,20,22,23</td>
<td>74LS245</td>
</tr>
<tr>
<td>2</td>
<td>U7,8</td>
<td>74LS393</td>
</tr>
<tr>
<td>1</td>
<td>U21</td>
<td>74LS682</td>
</tr>
<tr>
<td>2</td>
<td>U2,4</td>
<td>26LS33</td>
</tr>
<tr>
<td>2</td>
<td>U1,3</td>
<td>75159</td>
</tr>
<tr>
<td>1</td>
<td>U16</td>
<td>PAL16L8</td>
</tr>
<tr>
<td>2</td>
<td>U11,12</td>
<td>Z80[A]-DMA</td>
</tr>
<tr>
<td>1</td>
<td>U13</td>
<td>Z80[A]-SIO/2</td>
</tr>
<tr>
<td></td>
<td>DISCRETE COMPONENTS</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>RN1,2</td>
<td>410A472</td>
</tr>
<tr>
<td>2</td>
<td>R18,R19</td>
<td>470 ohm 1/4 watt</td>
</tr>
<tr>
<td>1</td>
<td>R17</td>
<td>4.7K 1/4 watt</td>
</tr>
<tr>
<td>1</td>
<td>R16</td>
<td>10k 1/4 watt</td>
</tr>
<tr>
<td>6</td>
<td>R5,6,7,12,13,14</td>
<td>100 ohm 1/4 watt</td>
</tr>
<tr>
<td>8</td>
<td>R1-4,8-11</td>
<td>27 ohm 1/4 watt</td>
</tr>
<tr>
<td>1</td>
<td>R17</td>
<td>22 ohms 1/4 watt</td>
</tr>
<tr>
<td>1</td>
<td>R15</td>
<td>1.2K 1/4 watt</td>
</tr>
<tr>
<td>1</td>
<td>R16</td>
<td>220 ohms 1/4 watt</td>
</tr>
<tr>
<td>1</td>
<td>C14</td>
<td>TAG10M25</td>
</tr>
<tr>
<td>19</td>
<td>C1-12,15-20</td>
<td>8121-050-Z5U-104M</td>
</tr>
<tr>
<td>1</td>
<td>C21</td>
<td>CK05BX330K</td>
</tr>
<tr>
<td>1</td>
<td>Q1</td>
<td>2N3906</td>
</tr>
<tr>
<td>1</td>
<td>Y1</td>
<td>LOCO II 19.660MHz</td>
</tr>
</tbody>
</table>

JB1-15 CH6900W1S Headers

<p>| 2 | J2,3 | (Unshrouded CH6 6926 26 Pin RA Header) |</p>
<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Printed Circuit Board</td>
<td>DY00460-H-A1-3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>20 Pin Socket</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>40 Pin Socket</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Card Ejector</td>
</tr>
</tbody>
</table>
FIGURE C-1
DSTD-401 COMPONENT PLACEMENT
APPENDIX D

DSTD-401 SCHEMATIC
<table>
<thead>
<tr>
<th>IC POWER PINS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>150Ω</td>
</tr>
</tbody>
</table>

SERIAL NETWORK CONTROLLER

SCALE: 1:10

DRAWN BY: [Name]

DATE: [Date]

TITLE: DSTD401

DESIGNATION: [Designation]

DRAW NO: [Drawing Number]

SIZE: 4 of 4