Always refer to *Making Tracks into Programming* for complete details of calculator operation.

AOS™ ENTRY METHOD

Lets you enter problems directly as they’re usually written, left to right. Calculator will execute operations in the following order: 1) single variable functions 2) powers/roots 3) multiplication/division 4) add/subtract. (Equals Key) completes all pending operations. This order of operations is also followed inside parentheses.

CLEARING:

Turning your calculator OFF and ON clears it completely.

- **CE** — clears last number entered (if not followed by an operation).
- **2nd CT** — clears the "t" register (memory 7) only.
- **CLR** — clears machine, except for memories and program steps.
- **INV 2nd CT** — clears the display, and all memories, but not program steps.

POWERS AND ROOTS:

To raise a number \(y \) to any power \(x \):
- Enter the number \(y \).
- Press \(y^x \).
- Enter the power \(x \).
- Press \(\equiv \) (or other function key).

To take the \(x \)th root of a number \(y \): \(x \sqrt{y} \)
- Enter the number \(y \).
- Press \(\text{INV} \ y^x \).
- Enter the root \(x \).
- Press \(\equiv \) (or other function key).

MEMORIES:

8 memories (numbered 0 through 7) are available for your use:

- **STO n** (n from 0 to 7) stores the number in the display in the memory you select (0 to 7).
- **RCL n** recalls the number from memory \(n \) into the display.
- **2nd EQU n** — swaps the display value with what’s in memory \(n \).
- **SUM n** — sums the number in the display into memory \(n \) (the result stays in the memory).
- **INV SUM n** — subtracts the number in the display from what’s in memory \(n \) (the result stays in memory).
- **2nd PRD n** — multiplies what’s in memory \(n \) by the number in the display (result stays in memory).
- **INV 2nd PRD n** — divides what’s in memory \(n \) by the number in the display (result stays in memory).

FIX DECIMAL:

To Set the Number of Decimal Places in the Display, press **2nd Fix n**, where \(n \) is the desired number of digits to the right of the decimal point (0 to 8).

Pressing **INV 2nd Fix** or **2nd Fix 9** removes the fix on the decimal point.

ANGLE MODE:

Your calculator is equipped to accept angle inputs, and to return angle calculation results, in 3 systems of units: Degrees, Radians, and Grads. When first turned on, the calculator is always in Degree mode.

- Press **2nd Rad** to change to Radian mode.
- Press **2nd Grad** to change to Grad mode.
- Press **2nd Deg** to change to Degree mode.

Be certain that your calculator is in the correct mode for the angular units you desire when performing any calculations involving angles, including:

- Trigonometric functions: \(\text{2nd Sin} \), \(\text{2nd Cos} \), \(\text{2nd Tan} \), and their inverses.
- Polar to Rectangular Conversion: \(\text{2nd P+R} \), and its inverse.
CONVERSIONS:

Polar to Rectangular
- Enter R, Press: $\text{z} \div$
- Enter Θ
- Press 2nd $\text{P-} \rightarrow \text{y}$ is displayed.
- Press $\text{z} \div$ to read x.

Rectangular to Polar
- Enter x
- Press π π
- Enter y
- Press INV 2nd π
- Θ is displayed.
- Press INV 2nd 6 to read R.

Degrees, Min, sec to Decimal Degrees
- Enter degrees, Press d
- Enter minutes (2 digits)
- and seconds (2 digits).
- Press 2nd D.MS for decimal value.

Decimal Degrees to Degrees, Min, Sec
- Enter decimal degrees.
- Press INV 2nd D.MS
- (Degrees, minutes, seconds) now displayed.

STATISTICAL KEYS AND FUNCTIONS:

Begin statistical calculations by turning calculator OFF and ON; or by pressing INV 2nd \sqrt{x}.

If you have only one set of data to analyze:
- Enter each data point.
- Press 2nd $\Sigma+$.
- Repeat for all points.
- Press 2nd σ^2 to calculate the mean.
- Press 2nd σ^2 \sqrt{x} to calculate the variance (with N weighting).
- Press 2nd σ^2 \sqrt{x} to calculate the standard deviation of the data (with N weighting).

If you have two sets of data to analyze simultaneously:
- Call the two sets of data "x" and "y" arrays.
- Enter an "x" data point.
- Press $\text{x} \div$
- Enter a "y" data point.
- Press 2nd $\Sigma+$
- Repeat for all points.
- Press INV 2nd \bar{x} to calculate the mean of the "x" data points.
- Press 2nd \bar{x} to calculate the mean of the "y" data points.
- Press INV 2nd σ^2 to calculate the variance of the "x" data points.
- Press 2nd σ^2 to calculate the variance of the "y" data points.

(Use \sqrt{x} key to calculate standard deviation.)

CALCULATOR KEY CODES IN NUMERICAL ORDER

<table>
<thead>
<tr>
<th>Key</th>
<th>Code</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>42</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>42</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>43</td>
</tr>
<tr>
<td>13</td>
<td>Inv</td>
<td>44</td>
</tr>
<tr>
<td>13</td>
<td>Inv</td>
<td>45</td>
</tr>
<tr>
<td>14</td>
<td>CE</td>
<td>46</td>
</tr>
<tr>
<td>15</td>
<td>CLR</td>
<td>48</td>
</tr>
<tr>
<td>18</td>
<td>2nd Log</td>
<td>49</td>
</tr>
<tr>
<td>18</td>
<td>2nd Log</td>
<td>49</td>
</tr>
<tr>
<td>19</td>
<td>2nd C.t</td>
<td>50</td>
</tr>
<tr>
<td>19</td>
<td>2nd C.t</td>
<td>51</td>
</tr>
<tr>
<td>20</td>
<td>2nd tan</td>
<td>55</td>
</tr>
<tr>
<td>20</td>
<td>2nd tan</td>
<td>56</td>
</tr>
<tr>
<td>22</td>
<td>2nd \sqrt{x}</td>
<td>56</td>
</tr>
<tr>
<td>23</td>
<td>\sqrt{x}</td>
<td>60</td>
</tr>
<tr>
<td>24</td>
<td>\sqrt{x}</td>
<td>61</td>
</tr>
<tr>
<td>25</td>
<td>1/π</td>
<td>61</td>
</tr>
<tr>
<td>26</td>
<td>2nd D.MS</td>
<td>65</td>
</tr>
<tr>
<td>26</td>
<td>2nd D.MS</td>
<td>66</td>
</tr>
<tr>
<td>27</td>
<td>2nd P-R</td>
<td>66</td>
</tr>
<tr>
<td>27</td>
<td>2nd P-R</td>
<td>70</td>
</tr>
<tr>
<td>28</td>
<td>2nd sin</td>
<td>71</td>
</tr>
<tr>
<td>28</td>
<td>2nd sin</td>
<td>75</td>
</tr>
<tr>
<td>29</td>
<td>2nd cos</td>
<td>76</td>
</tr>
<tr>
<td>29</td>
<td>2nd cos</td>
<td>76</td>
</tr>
<tr>
<td>30</td>
<td>2nd π</td>
<td>80</td>
</tr>
<tr>
<td>32</td>
<td>STO</td>
<td>80</td>
</tr>
<tr>
<td>33</td>
<td>RCL</td>
<td>81</td>
</tr>
<tr>
<td>34</td>
<td>SUM</td>
<td>83</td>
</tr>
<tr>
<td>34</td>
<td>SUM</td>
<td>84</td>
</tr>
<tr>
<td>35</td>
<td>Inv</td>
<td>85</td>
</tr>
<tr>
<td>35</td>
<td>Inv</td>
<td>85</td>
</tr>
<tr>
<td>36</td>
<td>2nd Pause</td>
<td>86</td>
</tr>
<tr>
<td>38</td>
<td>2nd Exc</td>
<td>88</td>
</tr>
<tr>
<td>39</td>
<td>2nd Prd</td>
<td>88</td>
</tr>
<tr>
<td>39</td>
<td>2nd Prd</td>
<td>89</td>
</tr>
<tr>
<td>40</td>
<td>2nd \bar{x}</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89</td>
</tr>
</tbody>
</table>
Basic Programming Keys

LRN – “Learn” Key
- Pressing this key once, puts calculator in “learn” mode – ready to remember up to 50 program steps (numbered 00 to 49). Display switches to special format: 00 00.
- Pressing this key once again takes calculator out of learn mode, calculator retains program steps. (Display reverts to the standard format).

RST – Reset Key
Resets program pointer to first step (step 00); whether entered from the keyboard or encountered as part of a program. (Also, clears Subroutine Return register.)

R/S – Run/Stop Key
When out of learn mode, this is the start/stop key for your program. If the program is stopped, pressing R/S starts it; if it’s running, pressing R/S stops it. When R/S is inserted as part of a program (in learn mode) it will stop the program at that point.

2nd Pause
While a program is running, encountering a 2nd Pause instruction causes the program to halt and display contents of the display register for about ¾ of a second.

2nd label n – Label Key Sequence
Allows you to label up to 10 points in a program – n is from 0 to 9. (Labels cannot be used more than once within the same program.)

GTO n – Go to Label n Key Sequence
Causes program pointer to immediately go to label n (n from 0 to 9), whether encountered as part of a program, or used from the keyboard.

GTO 2nd nn – Go to Step Number nn Key Sequence (nn from 00 to 49) – May be used when out of learn mode only. Positions program pointer at step number nn.

Program Decision-Making

2nd ⇒ c – Decrement and Skip on Zero Key Sequence
Works together with memory zero. When 2nd ⇒ c is encountered in a program:
- First, the contents of memory zero are decreased by one (increased by one if the contents are negative).
- If the result is NOT ZERO, the calculator proceeds to the step following 2nd ⇒ c.
- If the result IS ZERO, the calculator SKIPS the step following 2nd ⇒ c, and continues.

INV 2nd ⇒ c – Decrement and Skip if not Zero Key Sequence
When encountered in a program:
- First, the contents of memory zero are decreased by one (increased if the contents are negative).
- If the result is NOT ZERO, the calculator SKIPS the step following INV 2nd ⇒ c and continues.
- If the result IS ZERO, the calculator proceeds to the step following INV 2nd ⇒ c.

⇒ t – x exchange with t Key
Swaps what’s in the display register with what’s in the “t” or “test” register. (The t register is memory 7.)

The Conditional Transfer Test Key Sequences – cause the calculator to compare the contents of display (or “x”) register with what’s in the test (or “t”) register, and ask one of the 4 questions below:

2nd ⇒ t – Is x equal to t?
If the answer is YES, program goes directly to step that follows key sequence.

2nd x≠t? Is x not equal to t? (x≠t?)
If the answer is NO, program SKIPS step that follows key sequence, and continues.
Subroutines:

SBR n and **INV SBR** Key Sequences

To Create a Subroutine – just begin any series of program steps you need to use repetitively with a label. End the series of steps with an **INV SBR** key sequence.

To Use a Subroutine – Insert an **SBR n** Key sequence in your program where n is the label number of the subroutine.

Editing Keys:

SST – Single Step Key

Steps through program steps one at a time. When used in “learn” mode, displays program key codes sequentially. When used out of “learn” mode, executes program one step at a time.

BST – Back Step Key

When used in “learn” mode, steps backwards through a program one step at a time.

To Write Over a Program Step:

Just get to the exact step number of a step you need to change, and (while in “learn” mode) key in the new instruction. It will replace the old one.

2nd **Nex** – No Operation Key

Can be used while in learn mode to blank out any program step with a null step.

2nd **Ins** – Insert Key Sequence

To insert program steps, just get to the location at which you’d like to add steps and press **2nd** **Ins** (while in “learn” mode). That instruction, and all that follow it, will be moved down one step.

2nd **Del** – Delete Key Sequence

To delete program steps, just get to the location of any step you’d like to delete, and (while in “learn” mode) press **2nd** **Del**. The instruction at that location will be deleted, and all those after it will be “brought up” one location to fill the gap it leaves.

Calculator Key Program Codes

<table>
<thead>
<tr>
<th>Rows</th>
<th>Code</th>
<th>Key</th>
<th>Code</th>
<th>Key</th>
<th>Code</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2nd</td>
<td>Code</td>
<td>IN</td>
<td>18</td>
<td>CR</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>DMS</td>
<td>26</td>
<td>ENG</td>
<td>27</td>
<td>SIN</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>LRN</td>
<td></td>
<td></td>
<td></td>
<td>COS</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TAN</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ENG</td>
<td>31</td>
</tr>
<tr>
<td>3</td>
<td>SST</td>
<td>36</td>
<td>INS</td>
<td>37</td>
<td>EXC</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PID</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PI</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>BST</td>
<td>46</td>
<td>FIX</td>
<td>47</td>
<td>INT</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>49</td>
</tr>
<tr>
<td>5</td>
<td>GTO</td>
<td>56</td>
<td>DEG</td>
<td>57</td>
<td>07</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>SBR</td>
<td>51</td>
<td></td>
<td>41</td>
<td>08</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>42</td>
</tr>
<tr>
<td>7</td>
<td>RST</td>
<td>61</td>
<td></td>
<td>43</td>
<td>09</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>44</td>
</tr>
<tr>
<td>8</td>
<td>R/S</td>
<td>66</td>
<td></td>
<td>45</td>
<td></td>
<td>45</td>
</tr>
</tbody>
</table>

Columns

1 2 3 4 5
(for second functions)

6 7 8 9 0

Display in “Learn” Mode

46 -39 6

Program Location *Inverse Operation* *Address or Label*