iTiling Fadks
*~|nto Pr)

Key INDEX

This indexed keyboard provides a quick page reference
to the description of each key.

m 2-14 23

27] $2 HiE [ce] = s
Xy %'°] 220 sin il cos Il o el
LRN] ;7 [x=t] 33 $12 ol Tois
I [;s i ;) 5% r
i STl 27 [rat] 33 UM 23 i
N 716 310 e Ts
H [EE] *10 s LI 24
;:éS 2-16
s, (3] [x] 24
m g:g 2-16
4 [4] [5] [6] [=] %4
Exl &5, IR 216
[RsT] ;7] 2] (3] 24
4 2 3 o &t
R/S| ;3 [0]] 24, [=] %

Reler to Appendix and back cover for service and warranty information.

IMPORTANT
Record the serial number from the bottom of the unit and
purchase data in the space below. The serial number is
identified by the words "SERIAL NO." on the bottom case.
Always reference this information in any correspondence.

TI PROGRAMMABLE-57
Model No. Serial No. Purchase Date

Copyright® 1977 Texas Instruments Incorporated

TI Part Number 1014828-2 LCB #1278

MAKING TRACKS
INTO

PROGRAMMING

A step-by-step learning guide
to the power, ease and fun
of using your TI Programmable 57

S T T

o L e B A s S E

A complete owner's manual
for the TI Programmable 57.

This book was developed by:

The Staff of the Texas Instruments Learning Center:
Dr. Ralph A. Oliva, Educational Software Director
Joe E. Poyner

M. Dean LaMont

With contributions by:
Danny J. Enzone
Thomas E. Merrow
Peter L. Bonfield
Arthur L. Norrington Jr.
Henry M. Meltzer
Johnny M. Barrett

and

The Staif of the University of Denver Mathematics Laboratory:

Dr. Ruth [. Hoftman, Director

Sr. Margaret Grace Elsey, Ph.D.
Lucille P. Grogan

Robert L. Kaes

Louis D. Kovari

James F. Reed

Michael R. Zastrocky

With contributions by:
Capt. John Warner, USAF

Artwork and layout were coordinated and executed by:
Schenck, Plunk & Deason

Cover design by:
Gaither & Davy Design Studio Inc.

ISBN 0-89512-004-6

Library ot Congress Catalog Number: 77-79825

Copyright ©1977 by Texas Instruments
Incorporated. All Rights Reserved. Printed in
United States of America. No part of this
publication may be reproduced, stored in
retrieval system, or transmitted, in any form or by
any means, electronic, mechanical,
photocopying, recording, or otherwise, without
the prior written permission of Texas Instruments
Incorporated.

MAKING TRACKS INTO PROGRAMMING

TABLE OF
CONTENTS

KeyIndex e inside front cover
Contents DIiagram. o e e e e iii

Chapter 1: Getting on Track

A First Look at the Tl Programmable 57 1-1
HowDoes It Work? e 1-2
APractical Case e 1-6
Aboutthe Restof ThisBook. 1-10
Chapter 2: Firing Up! A Tour of the Keys and Functions
Section 1: BasicKeysand Functions 2-2
Section 2: Advanced/"Slide Rule”" Keys, 2-10
Section 3: Statistical Functionsand Keys 2-22
Chapter 3: One Way Trips: The Basics on Getting into Programming
Infroduction. e 3-1
Travel Expenses BT [RAI 33
The Complete Vacation [570] Rt BuM 3-7
On Sdlel . . oo e e 3-11
PauseforaRestStop 2odl BB 3-12
Getting Around 3-15
Fill It Up: Leaving "Holes” inPrograms 3-18
Program Sign Posts [2d] BMn & 50 n 3-23
Example: Area/Volume e 3-25
Chapter 4: Round Trips
Introduction. e 4-1
Hellol Loops withthe BTl Key it i 42
Graph Watchl Loopswith BSTl 4-4
Count Off! Loops with €1 n & B ... 4-7
Cash in the Bank — Loops with €@ nand 2« Bl n 4-10
Controlled Round Trips: Loops with B GEOn. 4-13
Factorial! Loops with Bl GO n............ 4-17
Chapter 5: Fixing Tracks
Introduction. i e e 5-1
Finding program Steps: Key Codesand [ss71 [esl . . ., 5-2
Keyswithout Codes. e i 5-9
Making Changes and Corrections 5-10
Inserting or Deleting Steps [2d il & . 5-11
Going Right to the Problem G0l AN . e 5-16
“Writing Up"” Programs: Documentation. 5-18
Basic Troubleshooting e 5-20
Chapter 6: Switch Tracks
Introduction. e e 6-1
CountingupExactly: =0 & & E®64
The Same Birthday: [=t] & W] [2nd] BB 6-6
Rent-a-Car? Decisionswithr (2] BRY 6-8
Follow the Bouncing Balll Loops with [™] [zl E® 6-10
Short Hops: "Subroutines” and [™V] [s8Rl .,,, 6-12
Combinations: and [N] B8Rl, e 6-14
Counting Downl! Loops with 8] ... 6-16
Additional Features and Trickswith (=« I 6-19
Chapter 7: The Trackmakers: A Tour of the Programming Keys
—TheLeamnKey e 7-2
BT —The ResetKey o i e e e 7-2
—The Run/StopKey. e 7-3
(d| Ml —The Pause Key Sequence. it 7-3
Bl n-—ThelLabelKeySequence 7-4
€1 n — The "Goto" KeySequence 7-5
[GT0] nn — The "Go to a Step Number” Key Sequence 7-5

MAKING TRACKS INTO PROGRAMMING

TABLE OF CONTENTS

— "Decrement and Skip on Zero” Key Sequence 7-6
[NV] — "Decrement and Skip if not Zero” 7-7
Conditional Transters 7-8
Subroutines. 7-11
Program Editing: Key Codes TSP 7-13
Stepsin WritingaProgram 7-16
Development of Programming Style 7-17
Chapter 8: Cash Tracks
Introduction. 8-1
Comparative Shopping e 8-3
Bank Book Balance 8-5
Bit by Bit: Building a SavingsPlan 8-8
Kilowatt Cost e 8-11
Car Fever: Evaluating Payment Alternatives 8-13
Interesting Pointson Interest 8-16
Chapter 9: Tracking Mathematics
Introduction. e 9-1
Polar Plots.o e 9-2
Evaluating Integrals: Simpson'sRule, 9-6
Triangle Tracking e 9-10
The Limit . . . o o e e 9-12
Linear Regression. e 9-14
Chapter 10: Science Tracks :
Introduction. 10-1
Projectile Motion e 10-2
The Simple Pendulumo 10-5
Mass and Relativity 10-7
Exponential GrowthandDecay 10-10
Resonance e 10-15
Chapter 11: Games Excursion
Introduction. e 11-1
Daysof Your Life/Biorthythm 11-2
Dice TOSS . . v i e e 11-5
OnTarget.o e 11-7
Dayofthe Week. 11-9
HiLo . o e 11-11
GhostShip 11-13
Chapter 12: A Look inside — The History and Technology of Your Calculator
Introduction. e 12-1
Early Calculating Devices 12-1
Development of Computers: the Punched Card 12-3
“All Electronic” Computers e 124
The Integrated Circuit 12-4
The "SOAP" Bar. e e 12-6
What Goesonlnside 12-7
The Display. e 12-8
A Simple Calculation 12-10
Appendix A: Battery and AC Operation. i A-1
Appendix B:InCase of Difficulty A-4
Appendix C: Error Conditions A6
Appendix D: Displayed Results Versus Accuracy oo v i oo A-8
Appendix E: Typical Answers to "Next Stop” Programs A-9
Appendix F:KeyCodes A-11
Index I-1
Warranty Information inside back cover
ii MAKING TRACKS INTO PROGRAMMING

CONTENTS
DIAGRAM

“"MaKING TRACKS CONTENTS DIAGRAM:

How to use this book to learn about your calculator.

Get right on the machine (quickly) with Chapter 1.

— -—- General Purpose
=2, & Keys & Functions
Programming [[[:"::l % ﬁ
Keys and Functions ﬁ-@- Reviewed and
Pauso n: | Exc Prd m . .
‘@ described in
Introduced and ,-""' r.. 'm x| "Key Tour” —
discussed in E @ Chapter 2
Chapters 3,4, 5& 6. - A D—ZI] (Firing Up). i
x=1 | Rad
Revi 4 and - III 1 I =] ,
eviewed an Grad
described in IE' :I E E -
Chapter 7 E m E H E e

Examples taken from everyday life/career/academic areas:
Chapter 8 Cash Tracks
9 Tracking Math
10 Science Tracks
11 Games Excursion
12 A Look Inside
Appendices

MAKING TRACKS INTO PROGRAMMING iii

GETTING ON TRACK

A FIRST LOOK AT THE
TI PROGRAMMABLE 57

The calculator you're about to begin using is really straight out of the
“world of science fiction” of just a few months ago. Only the most recent
advancements in solid-state technology have made it possible to put
such an easy and tun-to-use bundle of power right in the palm of your
hand.

Easy To Use

A quick look at your calculator will tell you that it's packed with lots of
keys and features. Introducing you, step-by-step, to each of these keys
and features is one primary purpose of this book. Above and beyond all
these features, however, is one overriding characteristic that was
designed into your TI Programmable 57 right from the start: It's easy to
use. [t's easy to make it do many things that can be enormously helptul in
your schoolwork, extremely powerful in your career, and a lot of fun in
your everyday life. It's designed to be a working tool that, working
together with the information contained in this book, becomes a system
for problem-solving and a key to discovery. We hope you'll enjoy using
and exploring with it.

STARTING AT THE Top
In learning about your machine, let’s start right off with the nameplate —
and a brief look at why we called it what we did:

TI — The calculator is built by Texas Instruments Incorporated.

PROGRAMMABLE — As you will be seeing in a few seconds, it is easy to
“teach” your machine to help in solving problems, evaluating formulas
and building "models” of your world. You can lay down a set of "Tracks”
that the machine will {ollow as it solves a problem. A word, recognizable
to some folks, that describes such a machine is already around:
"Programmable”. This machine, however, is a new thing — with a whole
new, easy approach. So it “programmable” is a word that scares you —
don't let it. Using your "57" is a cinch.

57 — This machine is the latest in a growing family of Texas Instruments
programmable calculators, and it's "{ollowing in the footsteps” of
another machine, our SR-56. The 57 is an even easier machine to use —
designed for especially straightforward use.

1-1 MaKING TRACKS INTO PROGRAMMING

i

AFIRST LOOK AT THE
TI PROGRAMMABLE 57

GETTING ON TRACK

How Doks It WoRk?

Simple! For starters, take out the calculator and check out the "heft” of
this little device. Light, isn't it? That's because most of the important
things inside this calculator are handled with a device that

the folks at TI call a "SOAP" bar. (More on that later.)

Now, turn it on! A zero in the display tells you that you're ready for action.
(If the zero doesn't come on, or the display seems to be doing "funny”
things, don't worry. The battery just needs charging. Turn the machine
off, plug in your charger and wait a few minutes; then you'll be set to go.)

Let's get right into it with a simple example.

Imagine this situation:

You've just won a rather weird award from a major radio station. You'll
be given 2¢! This money will be doubled every day for three weeks (21
days). OR — you can have $5000 in cash immediately. You have two
minutes to make « decision — the announcer is waiting. (This is actually
an “old and classic” problem. Watch how your calculator helps.)

Basically, you can have your machine read out for you just how your
money will "grow"’. Here's how:

Over on the upper left hand

corner of your machine, one row

down from the top, is a key that

is the real “jewel "

[it's labelled —

a
BHEOs D
- Junfnnfunfs)
leslesfusla)
Boood
o] el enYoz o)

This is the "learn” key, and when you press it one time, your calculator
begins to learn and remember whatever you put in next. When you press
again, you're telling the calculator that you've "taught’ it everything
you want it to know for now. The calculator stops learning at this point,
but remembers all the steps you taught it. (The key is like an
"ON/OFTF" button for teaching your calculator to do things.)

So press BN, (At this point your display changes to 00 00.) Now, if you
decide to take the "2¢ option’ on the contest, you'll be doubling your
money for 21 days, and you want to watch it grow. To do this, PRESs:

2 [=1.

MakinGg TRACKS INTO PROGRAMMING 1-2

GETTING ON TRACK

A FIRST LOOK AT THE
TIPROGRAMMABLE 57

Now another "little jewel” — right above the key labelled 85T you'll see
the word "Pause’’ written on the face of the machine. Whenever a word
or function is printed above a key — on the face of the machine instead of
right on the key — that's called a “"second tunction”.

Second tunctions allow us to pack all the power we can into your
calculator, without loading it with keys. To use a second function, just
push the [2d] key — in the upper leit hand corner, and then the key right
below the second function. In this book, we will use keys with a black
background Il to indicate second functions. So:

Press:[2nd] B (You'll press 2nd] and the key labelled "SST".)

The @@ key tells your machine:
"Stop for a moment and let's see what's going on”.

One more thing — we want to keep doubling our money again and
again. To let your machine know this, just find the R8Tl (reset) key (close
to the lower left corner). This key says, "go back and do it again, from the
top". Press:

You have taught your machine all it needs to know at this point, so press
again, and press again to be sure everything is back at the
beginning.

Now, to watch your 2¢ “"grow’' — first:
Enter 2¢ on your calculator: Press (=101 [2](The display should read 0.02.)

At this point, your calculator is ready to “grow your money’’ — each
display readout will be double the value before it. You'll start things
going and count the days as they go by. You'll have 0.04 for the first day,
etc. When you reach 21 days, the cash value in the display is what you
will win.

O K. — to start the machine, just press the RUN/STOP key — RAl— the
lower left key on the board. Keep your eye on the display, count out 21
days, then press the Rl key again and hold it down for @ moment.

On day 21 you'll have won $41,943.04! Tell the announcer you'll take the
“2¢ option”’.

1-3 MaKING TRACKS INTO PROGRAMMING

1 A FIRST LOOK AT THE
TI PROGRAMMABLE 57

GETTING ON TRACK

CONGRATULATIONS!
In this little example, you have already covered many of the key points
that make your programmable calculator easy and fun to use:
» The RN key lets you "teach the calculator”. (You can teach it up to
50 steps, and there is a lot it can learn — any of those “steps” is
usually equivalent to any keystroke, but some steps can
involve two or more keystrokes.)
* The [T key starts things back at the beginning.
* The [RS8l key allows you to control the action — stopping and
starting where you please.

MagING TRACKS

One way of looking at how the calculator works is to think of it as g little
"railroad” — where you can “"make tracks’ for the machine to follow:

Take the number Lasas
in the display AR

Bl
IR RIRH
Lan o o an)

i

X
[N

<t (1]

Multiply it by 2

Pause and let's H
-ml Pause s

see the result = IEZ
EF H

= 1L

L Tt

i 5 &

0

Go back and do ST RSyl

it again {reset)

The "train’ on this track has a special name — the "Pointer’ (or, more
technically, the program pointer). Each time this train passes an
operation, the calculator follows the instruction or performs the operation
listed. The calculator in eftect pushes its own buttons for you — in the
exact sequence you tell it. When you push the key {(or the train comes
to ST as part of a program), the train immediately goes back to the
beginning — to the first step (step number 00), and starts over. To get the
“train' moving, or to stop it once it's moving, you just use the
("run/stop”) key.

MaxkiNG TRACKS INTO PROGRAMMING 1-4

GETTING ON TRACK

A FIRST LOOK AT THE
TIPROGRAMMABLE 57

In the example you considered earlier, when you press R#], the machine
simply pressed its own buttons and doubled the display value:

and would have kept on doing this for quite awhile — had you not
stopped things after 21 “"go-rounds’’ with the key. (As you'll see later
on, these repetitive ""go-round’’ situations in your calculator — and in
larger computers — are called "loops’’.)

At this point you're already well into many of the features that make your
programmable calculator so special. Actually, we've explained enough
here so that you can now explore all sorts of programs on your own. We'll
naturally show you all the ins and outs of your machine with more on how
to solve problems and run programs using i, later in the manual. But
don't be afraid to explore. There's really nothing to it, and you can't hurt
the calculator by pressing any combination ot buttons. Your calculator
can be easily programmed to run through any set of keystrokes (up to 50
steps) which you could handle manually from the keyboard.

Just: Push

eEnter your keystrokes
(You'll need to use as your last step if you want things to repeat, or
as your last step if you want things to stop after one time. Also, if you
need to enter a number midway in a program, or want to see some
intermediate result, just put an RSl at that point.)

*Press again

ePress
At this point you've programmed your calculator. To run the program, just:

eEnter the number(s) you want to work on
ePress

1-5 MaxkiNG TRACKS INTO PROGRAMMING

GETTING ON TRACK

A PRACTICAL CASE

We'll be showing you many ways to use your programmable

calculator for a variety of school, home and recreational applications.
You'll see with each example the ease and power the machine can bring
to everyday mathematics. Let's take a quick look at a more practical case.

In this situation.let’s say that you (or someone you know) ran up a rather
large bill (say $500) on a credit card account. Credit cards are
convenient, but they really "sock you' with interest charges — typically
1.5% per month. You'd like to weigh several alternatives on payments and
get a picture as to what the best course of action would be. Paying back
the cash right away would be the best way, of course, but you might not
be able to afford it. However, it you string the payments out over a long
period, it would cost quite a bit.

Your calculator can help by speedily letting you calculate the
alternatives. .

For right now, let's say you'd like to know what your monthly payments
would be if you paid oft in 3, 6, 9, or 12 months, and how much you'd be
paying in interest in each case.

HEegre's ALL You Do:

First, turn your calculator oft and on — to clear everything — and then push
the following keys. (Remember, we'll be covering all the details later —

for now just see what your calculator will do for youl Push each key
caretully.) .

1 X]

(] [rey 2 [=]

Al=a0al Ret] 2 D]

R 3 O] O] =]

X1 Reg 3 [=]

(=1 1 =]

(At this point your display should read 27 00. If it doesn't, turn your

calculator OFF and ON, and go back and re-key carefully.)

Now press:

g

MAKING TRACKS INTO PROGRAMMING 1-6

l A PRACTICAL CASE

GETTING ON TRACK

At this point, all you need to do is store the values you want to try out in
the three memories we've used, and let your calculator do the rest.

Enter the amount you owe and store it in memory one by pressing:
200 |

Enter your monthly interest rate {i=1.5%=.015) and store it in
memory two.

.015 519 2

Enter the first option you'd like to try — equal payments for n=3
months:

3 [s10] 3
From now on in it's a cinchl
First press 2 so we'll be reading out dollars and cents

clearly in the calculator’s display.
Then press [sT] RA.

There it is: If you decided to pay back in 3 months, your monthly payment
would be — §$171.69.

Press RA] again to see how much you'd be charged for interest — §15.07.

To try the other options:
Enter 6 months, press 6 519 3
Then press
Your payment: $87.76
Press RSl again for interest charges: $26.58

Enter 9 months, press 9 3

Then press [RST]

Your payment: $59.80

Press RBlagain for interest charges: $38.24

Enter 12 months, press 12 3

Then press R

Your payment: $45.84

Press RS again for interest charges: $50.08

1-7 MAKING TRACKS INTO PROGRAMMING

A PRACTICAL CASE

|]

GETTING ON TRACK

You can now go on and pick a payment program very carefully, seeing
exactly how much your interest charge will be for each alternative.

In this example you've used your calculator to handle a very important
and versatile business formula. The formula for calculating the amount of
(equal monthly) payments on a credit card type of account is:
PV X [l
Payment (5 n)

Where: i =the monthly interest rate (1.5% or .015)

n =number of months

PV =the present value of the balance you owe ($500)

The total interest charge in dollars is calculated as:

Total Interest Charge = (n X payment) — PV

In handling the problem above the present value of the balance owed
(PV) was stored in memory 1.

The monthly interest rate (i%) was stored in memory 2, and the number of
months you take (n) was stored in memory 3.

From now on in you can “try out” any number of months you 'd like (for
any present value, or any interest rate) just by changing what you've got
stored in one of the three memories. Your calculator does all the work at
the touch of a key.

MaKING TRACKS INTO PROGRAMMING 1-8

20

GETTING ON TRACK

MovinGg ON

Well, at this point you've already come quite a long way. You've seen
your calculator in action in two program situations — each of which has a
useful side as well as a fun side. What we hope is that you've also seen
how easy it is to use and program your calculator. Let's make a few major
points about your machine belore we move on:

First of all, your programmable calculator is versatile and powerful —

and you can do all sorts of manual calculations right off the keyboard
anytime. '

Secondly, your calculator is programmable — and all this really means is
that it can remember keystroke instructions you give it, then go back and

push its own buttons for you. We've seen that programming the machine

to follow instructions is quite easy.

* Just push

*Enter your keystroke instructions.

*Push (BN ggain

*Push [sT] (don't forget this one — your program needs to start at
the right place,and [RST] starts it back at the first step).

*From then on in, you just enter numbers you want to work on and
press [R7] .

This new dimension of programmability brings several special benetits to
you. Faster and more accurate calculations — particularly in repetitive
situations — are now possible. You'll find it easier to use your calculator
as part of decision-making processes, in exploring relationships in math,
and in a host of everyday life and career applications.

Thirdly, and probably most important, your programmable calculator
should be a lot of fun to use! Don't be afraid to explore with it.

1-9 MakING TRACKS INTO PROGRAMMING

(GETTING ON TRACK

.

Asout THE REsT OF THIs Book

In this chapter our aim was to whet your appetite — to get you involved
with and using your calculator right away. The following chapters were
designed to allow you to learn about the machine at your own pace,
depending on how much you know about calculators and programming.

Chapter 2 —Firing Up is a guided tour of all the keys of your calculator,
except those specifically designed to program the machine. As we
mentioned earlier, your programmable calculator is a versatile,
general purpose machine — apart from its programmability. (If
you're already familiar with advanced calculators that are not
programmable, you may want to skip right on to the chapters on
programming.)

Chapters 3,4, 5 & 6 introduce the world of programming. In these
sections, through a series of step-by-step
examples, we'll introduce you to the programming features of
your calculator, as well as to the easy and fun side of
programming itself. (If you are an experienced programmer and
just need to learn more about how to program your calculator
specifically, you may want to skip right on to Chapter 7.)

Chapter 7 —The Trackmakers is a key-by-key review of the programming
keys and features of your calculator, with detailed
descriptions.

The subsequent chapters of "Making Tracks' are devoted to a wide
variety of example situations, case histories, and pre-written programs
you can use in everyday life problem solving, or to just learn more about
the machine. Operational details, battery and power considerations,
what to do in case of trouble, etc., are covered in the appendices.

So depending on where you are in learning about calculators and
programming, you can pick a path through this book that's quickest and
best for you. For any user, however, we'd recommend that you read
through this manual completely to avoid missing anything.

So enjoy your machine! It's a powerful bundle of technology you can
hold in your hand and explore with. You may find that, with it as a tool
and guide, a whole new side of the world of numbers and math can be
opened for you.

MakING TRACKS INTO PROGRAMMING 1-10

FIRING UP!
2

2

A TOUR OF
KEYS AND FUNCTIONS

Your calculator is a powertul problem-solving device that's especially
designed for easy use. You've already seen some simple programs in
action, and we'll continue to discuss the programming side of your
calculator’'s capability in later chapters. But apart from its
programmability — your calculator is a versatile and powerful

“slide rule” calculator. It's always ready to handle calculations right from
the keyboard. In this chapter we'll be touring the direct
problem-solving keys on your machine — the keys you can use
immediately to get answers. Then, in later chapters, we'll show you how
these basic keys can be used with the others on the keyboard to create
programs.

o
=
0
=4
E
[

The keyboard of your calculator has been organized and arranged in a
common sense, straightforward way.

You can easily do simple things like balancing your checkbook or
adding your grocery bill, as well as complex technical problems .

The usetulness of any machine or tool, however, depends on the
person who operates it. You'll want to get familiar with all of its features
— all of what it will (and will not) do for you.

To get full use from your calculator, take the few minutes necessary just
to see each key in action!

To make it easy for you to get acquainted, this tour is divided into three
major sections:

Basic Keys and Functions

Advanced/"Slide Rule” Keys and Functions

Statistical Functions and Keys

For those of you who have already owned or are tamiliar with an
advanced slide rule calculator — you may want to skip to Chapter 3 and
get right into programming. If there are some keys on the machine you
don’t know about, however, we'd advise that you take this quick tour.
Take out your calculator and keep it handy as we go through the keys —
relax — and let's go.

MakING TRACKS INTO PROGRAMMING 2-1

™o

SECTION 1: BASIC

KEYS AND FUNCTIONS

We'll begin with a brief look at the basic "'chassis™ on your calculator,
betore we go on to check out the "extra options”. These basics are what
allow you to get information into and out of the machine — and let you
handle the arithmetic part of mathematics quickly and accurately.

Firing Up

THE DispLAY

Whenever you first turn on your calculator, you should see a single zero
in the display indicating that all is well, the machine’s on, and it's ready
for action. Just turning the calculator OFF and ON clears everything
inside. To check out your calculator's display, press the key, the
decimal point key [*], the change sign key [#=], and then push the [8 key
until the whole display is lit up. You can enter up to 8 digits into your
calculator at any one time, for both positive and negative numbers.
(Entries after the 8th digit are ignored.) For extra accuracy, however,
results of calculations are computed to eleven digits inside your
calculator, and then rounded off to 8 digits in the display. Notice that the
negative sign stays immediately to the left of any negative number in the
display, for easy reading.

To continue the tour press the clear key [GR] in the upper right corner of
keyboard, and read on.

AND @ : THE "DuAL FuncTtioN” KEYS

Your calculator is loaded with functions to make all sorts of calculations
easy and accurate. To allow you access to all of this power, without
loading the machine with keys, many of the calculator keys have more
than one function. The first function of the key is printed right on it. To
use the first function on any key — just press it. The second function of

a key is printed right above it. To use second functions, just press the
key (upper left on the keyboard), and then the key right below the
tunction you wish to use. (We'll indicate second functions in this book
with a black background key I . For example, to put a 7 in the display
you'll use the key sequence)

The inverse key — W] — also provides additional calculator functions
without increasing the number of keys on the keyboard. The W] key
"reverses’’ the purpose or function of certain keys. Note: In cases where
you need to use both the and W]keys — you can use them in either
order and get the same result. lf you use the W] before a tunction with
no inverse, it's simply ignored.

2-2 Making TRacKs INTO PROGRAMMING

Firing Up

SECTION 1: BASIC
KEYS AND FUNCTIONS

CLEARING THE CALCULATOR

There are several procedures that allow you to clear various parts of your
calculator, or to clear the entire machine — depending on your needs as
you proceed through a problem.

The [€E] (clear entry) key clears the last number you entered into
the calculator, as long as that number wasn't followed by a
function or operation key. (So if you accidentally hit a [5] instead
of a[6]in the middle of an entry, just hit [€€] and try again.) This
key will also stop the display from flashing if you've created an
error condition in your calculator (we'll say more about this later).
The [€el key, however, doesn't affect pending operations, what's
stored in the memories, or calculated results.

—The [@R] (clear) key (upper right on your machine) essentially
clears the entire machine, except for data stored in the
memories, settings made on the display format, and program
steps. '

|2l’ld | — This allows you to clear only the "t" register (or "t memory).
This capability is benelicial in programming and with statistical
functions. We'll look at it in more detail later.

IEI — This key sequence clears everything in the machine

except program steps and decimal settings. (Technically, this
doesn‘t clear the first two registers of the math stack, but this will
seldom be a problem.)

OFF-ON — Turning the calculator OFF, then ON again clears
everything.
In fact, it's one sure way to quickly clear all your program steps,
memories, display setting . . . everythingl

MAKING TRACKS INTO PROGRAMMING 2-3

Firing Up

™o

SECTION 1: BASIC
KEYS AND FUNCTIONS

o]-19]] -]—DATAENTRYKEYS

Your calculator operates with a full floating decimal point, and numbers
are entered into the machine with the data entry keys [0]- 91 [+
As you enter any number, the decimal point stays to the right of your

‘entry until the decimal point key ([(=) is pressed. After pressing the

decimal key, the fractional part of the number is keyed in, and the
decimal point floats to the left with it. To change the sign of a number in
the display, just push the change sign key /-Jonce. (Pressing -l again
changes the sign back again.)

[+][=][X][=] anp [=] - Basic Operation Kevs

Basic arithmetic is handled with the 5 basic operation keys: =
[(=Jand [=]. Your calculator is equipped with a simple and powerful
entry system — the AOS™ entry method. This entry system makes problem
solution exceptionally easy. You just key in the problem the way it's
written, press[=], and get your result. The amazing feature of the AOS
system is that it automatically sorts out mixed operations in a problem for
you, and applies them in the correct order as it calculates your result.
(We'll say more about the AOS entry system in the next section.)

When you press the [=] key, all pending operations (things waiting to
happen inside your calculator) are completed. You get your result, and
the calculator is cleared — ready to start on the next problem.

Example: Calculate 15 + 7x31 — 4 =7

PRESsSs DisPLAY/COMMENTS
15017 31
=14 = 228.

Note: The AOS system of entry makes it easy to get the right answer in
this example, and not all calculators have it.

2-4 MAKING TRACKS INTO PROGRAMMING

™o

SECTION 1: BASIC
KEYS AND FUNCTIONS

Firing Up

Tue AOS™ ENTRY METHOD

Mathematics is a science which adheres to a variety of rules. One such
rule is that it never permits two different answers to the same series of
operations. Because of this requirement — one solution for any
computation — mathematicians have established a set of universally
accepted rules when mixed operations are used in one calculation. For
example, the problem:
3+410-2%x14+-7=7
has only one right answer! (Know what it is? It's 9.)
You can key this problem directly, left to right, into your calculator
equipped with the AOS entry system and you'll get the correct answer.
The calculator sorts the operations you enter, applies them in the correct
order, and lets you see what it's doing along the way. Your calculator’s
AQOS entry system is quite an organizer! It sorts and then performs
operations it receives from you in the following universally accepted order:
1) Special Single Variable function keys (=7 etc.) — act on the
displayed number immediately — as soon as you push the key. (We'll
talk more about each of these keys later in the “tour”” — but they
include all the keys for the trig and log functions and their inverses,
as well as square root, and reciprocal keys.)

2) Exponential calculations and [NV (or ¥/¥) are done next
(we'll discuss these further in a following section).

3) Multiplications and divisions are completed next, in order from left to
right, followed by

4) Additions and subtractions, in order from lett to right.
Finally, the equals key [=] completes all operations.

When you were in elementary school you may have heard the memory
aid "My Dear Aunt Sally” (MDAS) applied to help you remember the
last part of this hierarchy: Multiplications and Divisions first, in order lett
to right — then Additions and Subtractions in the same way. Ina
calculator equipped with the AOS entry system — all of this is
remembered for you.

There are cases in problem-solving where you may want to exactly
specify the order in which an expression is evaluated, or the way in
which a problem is completed. In these cases you can control the order
with the parentheses keys [(] []discussed in the next section.
Parentheses demand a special first level of attention in mathematics —
and they're treated that way by your calculator.

MAKING TRACKS INTO PROGRAMMING 2-5

SECTION 1: BASIC
KEYS AND FUNCTIONS

Firing Up
-]

[(] []-ParentaEsEs Kevs

In a variety of problems you may need to specity the exact order in which
expressions are evaluated, or the way in which numbers are grouped, as
a problem is solved. Parentheses give you a way to “cluster” numbers
and operations. By putting a series of numbers and operations in
parentheses you tell the calculator: "Evaluate this little problem first —
down to a single number result, then use this result for the rest of the
calculation.” Within each set ot parentheses your calculator will operate
according to the rules of algebraic hierarchy. You should use
parentheses if you have any doubts in your mind about how the
calculator will handle an expression.

There is a limit to the number of parentheses that can be opened at one
time, and how many "pending” operations can be handled. Your
calculator allows you to open nine parentheses at one time, with up to
four operations pending — exceeding these limits results in a flashing
display. (You'll rarely encounter this as a problem.)

Note an important point when using parentheses. You may often see
equations or expressions written with parentheses to indicate implied
multiplication: (24 1) (3+2) = 15. Your calculator will not recognize
implied multiplications. You must key in the operation between the
parentheses:

Az 1DOXIAa3g2bl=]16.

Here's an example on using parentheses:

Evaluate (8 >x4) + 8 x — 19) -

3+10+7) x 2
Solution: In problems of this type — you want the calculator to evaluate
the entire numerator, then divide by the entire denominator. You can be
sure of this taking place by placing an extra set of parentheses around
the numerator and denominator as you key the problem in.

PrEss DispLaY/COMMENTS
CA@8x14 O] 32. (8x4) displayed

CA8XTI9RA]

DI1[=] . —139. The value of the numerator
[Ardas 1017

DO1X]2[O] 8.8571429 Value of denominator
=] —15.693548 The final result.

2-6 MakiNG TRACKS INTO PROGRAMMING

SECTION 1: BASIC
KEYS AND FUNCTIONS

™D

Firing Up

MEemMory KEys

There are 8 multi-purpose memories available for you to use in your
calculator. These memories are special locations in the machine where
you can store numbers you may need to use later on. The memories are
a real bonus — and in many ways give you "several calculators” in one,
since you can store, recall or perform arithmetic on the numbers in the
memories without affecting calculations you have in progress in the
"main machine".

The [€E] and [ciR] keys will not affect what's in the memories — but you
can use the [INV] key sequence to clear them all out if you need
to. (Turning the calculator OFF and ON does this, too.)

Since you have 8 memories you need to tell the machine which one you
want to work with at any given time. Every time you push a

memory key you need to follow it immediately with the number of the
memory you are using (n= 0,1, 2, 3,4, 5, 6, or 7). This tells the machine
which one of the 8 memories you're referring to at the moment. The
operations of the memory keys is pretty much “"common sense’ as shown
below.

N — THE SToREKEY

This key just “'stores’ the displayed number in the memory you specify
withn. (n=0,1,2,...7). (Any number previously stored in memory n is
automatically cleared out first.)

n — Tue RecaLL Key

Any time you press [Ren, the number stored in memory n appears in the
display and can be used in operations and calculations. The number
remains in the memory after you press n, and you can recall the
value from any memory as many times as you need to in any calculation.
A stored number remains in memory until you alter it with another
memory operation, the [IN] clearing operation, or by turning the
calculator off.

MAKING TRACKS INTO PROGRAMMING 2-7

-]

FirinGg Up

SECTION 1: BASIC
KEYS AND FUNCTIONS

An example on the use of the memories:

Let's say that:

a=103(25-1.7)
b=15a+6
c=20b, and you need to find c.
PRESS DispLaY/COMMENTS
10.3 Ca25=] Calculate and store a
1.7 D1 =] 239.99
1 239.99 a stored in memory 1
15 XIReyl 36 =] 3605.85
2 3605.85 b stored in memory 2
20 X][reg 2 (=] 72117. The value of c.

MEMORY ARITHMETIC

In addition to the basic memory keys, there are a series of keys that let
you perform arithmetic on the numbers stored in memory without
alfecting other calculations in progress:

B n — The Sum Key — allows you to algebraically add whatever
number is in the display directly to the number stored in any memory.
(This doesn't affect any calculations in progress.) The result of the
addition stays stored in the memory. Note: This process is different from
what happens when you use the key. The n operation clears out
the number in the memory, and replaces it with the number in the
display. (The display is not affected by this operation.)

(w]suMn — The Subtract key sequence, subtracts the number in the
display from the number in memory n. The result stays stored in memory
n. (The display does not change.)

Eln — The "Multiply” or Product key sequence, multiplies the
number in memory n by what's in the display. The product stays stored
in memory n. (The display does not change.)

(nv] [2nd] Hflln — The "'Divide” or Quotient key sequence, divides the
number in memory n by the number in the display. The quotient stays
stored in memory n. (Note the W] and may be pressed in either
order for this sequence: (W] IEflin for any "memory divide"
calculation.) The display does not change during this operation.

Eln — The Exchange key sequence just "swaps' the number in
memory n with the number in the display. (The display value gets stored
in memory n, while the number stored in memory n is displayed.)

2-8 MAKING TRACKS INTO PROGRAMMING

SECTION 1: BASIC
KEYS AND FUNCTIONS

™

Firing Up

[=t] — THE “x"" EXCHANGE wiTH "t KEY
This is a special exchange key that exchanges the number in the
display with the number in memory 7. Memory 7 is used in several special

functions on your machine and is given a special name: the "'t" or "test”
register. The [t key is identical in function to the 7 key sequence.

ApbrtioNAL NoTES ON MEMORIES:

The 8 memories in your machine are designed primarily for your use and
convenience — but there are times (particularly in more complex
calculations) where your machine needs extra “space” to work in. In
these cases your calculator will need to use the memories, and this can
affect numbers you have stored in them. We'll mention these cases here
— and review them again as various special machine features are
discussed.

* When you're evaluating a complex expression, involving 3 or 4
levels of pending operations, memories § and 6 will be used.

* Memory 7, the t register, will be used whenever the [t key is
used.

* Statistical functions and trend line analysis problems (discussed
later) may use memories 0, 1, 2, 3,4, 5 and 7.

*The B key sequence, which is discussed in Chapter 4, (and
later chapters), works with memory zero.

In practice these memory situations aren't often a problem — but if you're
really "loading up” the machine with work to do, you need to be aware
of the fact that some of what you may have stored in memories can be

affected.

MaxING TRACKS INTO PROGRAMMING 29

o]

SECTION 2: ADVANCED/
“SLIDE RULE” KEYS

In this section we move on to discuss some of the features of your
calculator that are especially helpful in engineering, scientific, and
more advanced mathematical applications (applications that not too
long ago used to be handled with mechanical slide rules and tables).
Many of these features have only been made possible by

more recent developments in Integrated Circuit (IC) Technology. These
new developments allow calculator designers to''put” various
functions and tables right into the IC chip. This way you can put the
calculator to work on a complex calculation with the touch of a key.

@ — ScientiFic Noration Key

In many applications, particularly in science and engineering, you may
need to calculate with extremely large or small numbers. Such numbers
are easily handled (by both you and your calculator) using scientific
notation. A number in scientific notation is expressed as a base number
{or "mantissa’’) times ten raised to some power (or "exponent”).

FirinGg Up

. ower
Mantissa x 10 P

To enter a number in scientific notation
* Enter the mantissa (then press it it's negative.)
* Press [€E] (Enter Exponent) — a "00" will appear at the right of the
display.
* Enter the power of 10 (then press if it's negative.)
A number such as —3.8901448 X 10-%2 will look like this in your display:

mantissa exponent
L

decimal point decimal exponent sign
floating minus sign

In scientific notation the power of ten (the two digits to the right in your
display) tells you where the decimal point would have to be if you were
writing the number out in longhand. A positive exponent tells you how
many places the decimal point should be shifted to the right, a negative
exponent — how many places to the left. For example:

2.9979 X 10® equals 2.99790000

—
(Move decimal 8 places right, add zeroes as needed.)

1.6021 < 10-** equals .000 000 000 000 000 000 1.6021 {(Move decimal 19

places lett, add zeroes as needed.)

Note: The key sequence [EE] W] [EE] will truncate the “"guard digits” of a
result leaving only the rounded display for further use. See Appendix D.

2-10 MaKING TRACKS INTO PROGRAMMING

™

SECTION 2: ADVANCED/
"SLIDE RULE"” KEYS

FiriNg Up'

n — Fix DecimaL CoNTROL

This very convenient feature allows you to choose the number of digits
you'd like to have displayed to the right of the decimal point as you go
through your calculations. Just press [2nd] llll then press the desired
number of decimal places (0 to 8). Try it — press (2] Hll 3 — the display
immediately changes to *'0.000".

The calculator will round all of your subsequent results to this number of
decimal places. You can go on and make number entries with as many
digits as you like, and the calculator will retain its own internal (11-digit)
accuracy. The display value will continue to be correctly rounded to the
number of decimal places you've selected. Note also that you can use the
fix key to set the desired number of decimal places whether you're in
standard display format or scientific notation. Turning your calculator
OFF and ON again erases the "fix"” condition. Try the following example.

Example: % = 0.6666667

PRESs DispLAY/COMMENTS
OFF-ON 0

[CIR] 0

2[=13[=] 0.6666667

[2nd] EEH 6 0.666667 (Note: display

2 0.67 value is correctly
1 0.7 rounded)

) - [i] 1.

To CLEAR THE “F1x” CONDITION:

You can “'unfix”” you calculator’s display with the following key
sequences: ’

(Nv]

9

Turning the calculator OFF and ON (this clears everything).

MAKING TRACKS INTO PROGRAMMING 2-11

-]

Firing Up

SECTION 2: ADVANCED/
“SLIDE RULE"” KEYS

— “"P1” KEY SEQUENCE

The [2nd] EEll key sequence displays the first 8 digits of . (Eleven digits
are entered into the calculator — 8 correctly rounded digits are
displayed.) The number you'll see displayed is: 3.1415927. This key
sequence displays 7 immediately, doesn’t alfect calculations in progress,
and can be used anytime in a calculation.

Im — ABsoLuTE VALUE KEY SEQUENCE

When this key sequence is pressed, the sign of the number in the display
(x) is made positive. This feature comes in handy in a variety of
calculating (and programming) situations.

When Bl is pressed:

If the sign of the number in the display is negative, it's changed to
positive.

If the sign of the number in the display is positive, things are left alone.
This key can be used any time in a calculation, and doesn't atfect
calculations in progress.

Note that several keys on the keyboard use the letter "'’ as part of their
marking. The "x"' on these keys just means “"the number in the display”.

| x2|| ¥x || 1/x| - Squage. Square Root AND REciPROCAL KEYS

These 3 easily accessible keys are essentials for speedily handling a
variety of algebraic and equation solving situations. All three of these
keys act immediately on the number in the display (x), and don't affect
calculations in progress.

[#2]— The Square Key — calculates the square of the number in the
display {multiplies the displayed number by itself).

— Square Root Key — Calculates the square root of the number in the
display. The square root of a number (say x) is another number (labelled

V%), such that:
(V¥ X (V&) = x.

— The Reciprocal Key — Divides the displayed number into one.

2-12 MAKING TRACKS INTO PROGRAMMING

™D

SECTION 2: ADVANCED/
“SLIDE RULE" KEYS

Firing Up

— UN1vErsaL Power Key
This powerful key allows you to raise a (positive) number to a power
at the touch of a key. To use this key:

¢ Enter the number you want to raise to a power (y)

e Press

o Enter the power (x)

¢ Press[=](or any operation key)

Example: Calculate 3.189747%%

PREss DispLAY/ COMMENTS

0 Clear

3.1897 3.1897 'y value

47343 4.7343 "'x"’ value

=] 242.60674 Final result: y*

ILT!] —UniversaL Roor KEY SEQUENCE (1/y)

This key sequence allows you to take roots of a positive number
(the inverse of y*, or the v/y). Before calculators came along, calculations
like this were usually pretty time consuming — and involved a set of
logarithm tables.) To use this key sequence to take 1/y:

e Enter the number you want to take the root of (y)

o Press [Inv]

« Enter the root you want to take (x)

e Press [=](or any operation key)

Example: Calculate 74/ 21.496

PRrEss DispLAY/COMMENTS

CLR 0 Clear

21.496 (] 21.496 'y value

3.871 3.871 "x" value

=] 2.2089685 Final result ({/y).

Note: The Pl key (and W] [¥%]) key sequences perform calculations that
involve quite a few steps inside your calculator, and it takes a little
longer to complete these calculations than others. Be sure you wait for
your calculator to finish — with «a final result in the display before pressing
additional keys.

MAKING TRACKS INTO PROGRAMMING 2-13

-]

FirinG Up

SECTION 2: ADVANCED/
"SLIDE RULE" KEYS

(inx] ano [2nd] Il - Locamram Kevs

Logarithms are mathematical functions that enter into a variety of
technical and theoretical calculations. In addition, they form an
important part of many mathematical “models” of natural phenomena.
The logarithm keys give you immediate access to the "log" of any
number — without having to hassle with bulky tables.

(nx] — The Natural Logarithm Key — immediately displays the natural
logarithms (base e =2.7182818) of the number in the display. (Note: the
number in the display must be positive — attempting to take [inx] of a
negative number will result in a flashing display.)

E3l - The Common Logarithm Key — immediately displays the

- common logarithm (base 10) of the (positive) number in the display.

[E [E’ AND @ |2nd| m — ANT1I-LoGArrraM KEY SEQUENCES

These key sequences are the “inverse" or "anti”

functions of the logarithms. (e =x, and 10¢°¢ ©¥ =x) These
calculations arise in many technical situations and can be handled
quickly with just a few keystrokes on your calculator.

(IN] [inx] - e* Key Sequence — Raises e to the power of the number in the
display (calculates the natural antilogarithm of the number in the
display).

[iwv] 2nd) ITl - 10* Key Sequence — Raises 10 to the power of the number in
the display (calculates the common antilogarithm of the display value).

Notes on logarithm and “anti” logarithm keys:

Each of these keys acts immediately on the number in the display
— and doesn't affect calculations in progress. Your calculator uses
a variety of "routines” for arriving at these values. Certain limits
are set by these routines — and exeeding them may result in an
error indication - see the Appendix C: Error Conditions, for details.

Some examples: Calculate log 15.32, In 203.451, e--#315 107

PrESS DispLAY/COMMENTS
15.32 [iog | 1.1852588
203.45] [inx] 5.3154252
69315 [INV] [inx] 0.4999986
[(wv] IEN 1385.4557

2-14 MAKING TRACKS INTO PROGRAMMING

SECTION 2: ADVANCED/
"SLIDE RULE"” KEYS

™D

Firing Up

— “INTEGER Part oF A NuMBER" KEY SEQUENCE

This key sequence displays the integer part of any number in the display.
For example, if you enter the number 3.1117 into the display, and press
the Il key sequence, the calculator “chops off” everything to the right
of the decimal point and displays only the integer 3. (Try itl)

There are many situations in mathematics where you'll find yoursel!
needing to deal with just the integer part of a number. In programming
you'll find this key sequence very handy for handling these situations.

@ —"FRracTIONAL PART OF A NUMBER" KEY SEQUENCE

There are some instances in math and programming where you need to
deal only with the decimal part of a number, and need to isolate it. This
key sequence displays the fractional or decimal part of any number in
the display. So if you enter 3.1117, and press the [znd] (W] Bl key sequence,
0.1117 will be displayed.

The following diagram summarizes these two key sequences:

3.1117 (number in the display)

[INV]
Displays decimal part Displays integer part
3. 01117

Note: The original number is lost when Il or 8] llll is used — store it first
if you'll need it later.

MAKING TRACKS INTO PROGRAMMING 2-15

Firing Up

-]

SECTION 2: ADVANCED/
“"SLIDE RULE"” KEYS

[Deg [Ratl | —AnGuLAR MopE KEYs

Your calculator is equipped to handle a variety of calculations that
involve angles — notably the trigonometric functions and
polar/rectangular conversions. When pertforming these calculations,
your calculator allows you to select any one of three common units for
angular measure using the key sequences below:

(2nd] [E— selects degree mode. In this mode all entered or calculated
angles are measured in degrees, until another mode is selected
(one degree equals+k of a circle — a right angle equals 90°).

90°
180° 0°360°

270°

B — selects radian mode. In this mode all angles are measured in

radians (one radian equals 21; of a circle; a right angle equals % radians).
ki

2

T 0,27
37
2
[2na] Bl selects grad mode. In this mode all angles are measured in
grads (one grad equals 5 of a circle — a right angle equals 100 grads).
100
200 0,400
300

IMPORTANT NOTE: When you first turn your calculator on it powers up
in the degree mode, and stays in that mode until a new mode is
selected.

One very common error encountered when working with angles is finding
yourself in an incorrect angular mode. Once you select an angular
mode, your calculator will stay in that mode until you select a new one,
or until you turn the calculator OFF and ON again (the calculator is
always in degree mode on power up).

2-16 MAaxkING TRACKS INTO PROGRAMMING

FirinG Up

SECTION 2: ADVANCED/
"SLIDE RULE"” KEYS

, , — TRiIGoNOMETRIC KEY SEQUENCES

These key sequences immediately calculate the sine, cosine, and tangent
of the angle in the display (angle is measured in units of selected angle
mode). The trig functions relate the angles and sides of a right triangle
as shown below:

g
<
kel

Using the W] preceding another key reverses the operation and intention
of that key.

The [INV] 2nd] 1B, [INV] M. and [iw] (2nd BBl key sequences calculate the
angle (in the units of the mode selected), whose sine, cosine or tangent
is in the display. (These key sequences calculate the arcsine (sin?),
arccosine (cos™), and arctangent (tan-?), respectively.)

Examples: Calculate the sine of 90°, 90 radians, and 90 grads, and the
arctan of 1.

PRESS DispLaY/COMMENTS

OFF-ON [car] 0 Clear the entire machine
(Powers up in degrees mode)

90 [i | 1. sin of 90 degrees

90 0.8939967 sin of 90 radians

90 [2nd] 0.9876883 sin of 90 grads

1 [2nd] (inV] 45.The angle (in degrees)

whose tangent is one.

MaxiNG TRACKS INTO PROGRAMMING 2-17

™D

FirinGg Up

SECTION 2: ADVANCED/
"SLIDE RULE"” KEYS

ANGLE CONVERSIONS

You may at times find it necessary to convert angular values from one
unit system to another. While there are no special conversion keys on
your calculator for this purpose, the key sequences to convert angular
units in the first and fourth quadrants are pretty simple and can be used
without affecting the memories or calculations in progress.

1) Be sure the calculator is in the correct angular mode and enter the
angle to be converted.

2) Press [2nd|

3) Change calculator to desired angular mode.

4) Press [IN]

Example: Express 50 degrees in radians.

PREss DispLAY/ COMMENTS
[D | 0

50 [2nd] 0.7660444

[inv] 0.8726646 Radians

(The angular range of these conversions is limited to the first and fourth
quadrants. For larger angles you may convert directly:

o number of degrees X% =number of grads

o number of degrees XL =number of radians

o number of grads X{%=number of degrees

e number of grads ;& =number of radians

e number of radians X4 =number of degrees

o number of radians X% =number of grads

2-18 MAaxiNG TRACKS INTO PROGRAMMING

FiriNG Up

SECTION 2: ADVANCED/
“SLIDE RULE"” KEYS

CONVERSIONS:

Your calculator is equipped with two keys that make it especially handy
in conversion situations.

2nd] — DeGREES, MINUTES. SECONDS To DECIMAL DEGREES CONVERSIONS
This key sequence converts an angle expressed in degrees minutes and
seconds to decimal degrees. The Iv] 2nd BB key sequence does just the
opposite — converting from decimal degrees to degrees minutes and
seconds. This conversion is handy if you have to do arithmetic with
angles, or with time — expressed in hours minutes and seconds.

To enter and convert an angle, just follow the format shown on the
key label:

¢ Enter the number of degrees

* Press the decimal point key, [+

¢ Enter the number of minutes (2 digits — less than 60)

¢ Enter the number of seconds (2 digits — less than 60)
® Press [2nd]

The decimal equivalent of the angle (or time) is now displayed. The
reverse conversion is easy to do also:

¢ Enter the angle (whole number and decimal part)

* Press [IW]

The angle is now displayed as the number of degrees, followed by a
decimal point, {followed by the number of minutes and seconds.

Example: Convert 47°05'38" to decimal degrees and back to degrees
minutes and seconds again.

PRESss DisrLAY/COMMENTS
47.0538 47.093889 angle decimal equivalent
[INV] 47.0538 back to degrees, minutes, seconds

Note that you can also convert hours, minutes, and seconds to decimal
form by the same technique.

Occasionally, when converting to the degree, minute, second format,
minutes or seconds may indicate 60 due to rounding. This simply indicates
to round up to the next highest degree (or minute for 60 seconds). For
example convert % minute to degrees, minutes, seconds.

PRESS DispLaY/COMMENTS

2 [==1 3 [=1 [inv] [2nd] 0.396 Thisis 0°39'60"”
or 40 minutes.

MAKING TRACKS INTO PROGRAMMING 2-19

nd

Firing Up

SECTION 2: ADVANCED/
"SLIDE RULE"” KEYS

{an | — PoLAR To RECTANGULAR CONVERSIONS

This is a handy feature of your calculator that is particularly useful in
science and engineering applications. Working with the [zt key — it's fast
and easy to convert from polar to rectangular coordinates, or vice versa.
Just follow the key sequences illustrated below:

FROM: Polar TO: Rectangular

R ©
() ———— ylrm b (X,Y)

R
(8]

B o ——

To convert from polar to rectangular coordinates:
e Enter your value for "R"
* Press [=4]
eEnter your "0" value (units selected with angular mode keys).
*Press
y"' is now displayed; to read "x"":
e Press [=4]

"x"" is now displayed.

W

To convert from rectangular to polar coordinates follow the sequence
listed below:

FROM: Rectangular TO: Polar

(R.©)

Y —""""""(XIY) _—

M ————

e Enter your "'x" value
* Press [=%]
e Enter your "'y" value
* Press [inv]
""" is now displayed (in units selected by mode key); to read "R":
* Press [z3]
"R" is now displayed.

2-20 MAKING TRACKS INTO PROGRAMMING

SECTION 2: ADVANCED/
"SLIDE RULE" KEYS

-

FirinG Up

Example: Convert R =45 meters, @ =31.6° into rectangular coordinates

y=2
A
?\/

31.6°

x="7
PRrEss DispLaY/COMMENTS
Turn calculator OFF & ON 0 Calculator is in degree mode
45[==1 31.6 Enter polar coordinates: R, then ©.
23.579366 'y value
(==t 38.327712 ''x" value

Note: This conversion will make use of memory 7 (the "t register) — so be
sure not to use memory 7 while you're doing a polar to rectangular
conversion (you'll lose numbers stored there).

MAKING TRACKS INTO PROGRAMMING 2-21

FirinGg Up

™

In many situations — in school work, everyday life, or business, you may
find yourselt handling large sets ot data points. This data could be from
laboratory measurements, test scores, results from a study or research

project, etc.

Your calculator is equipped with features allowing you to easily collect
and analyze data by rapidly calculating mean, variance, and standard
deviation. Intermediate results are stored in the memories for you in an
easy to access tashion. (You'll find this especially usetful in programming
with statistics — as you'll see later on in this book.) You can also
simultaneously analyze two sets of data, allowing you to examine
relationships between them in advanced statistical programming.

To collect and analyze sets of data here's the procedure:
+ Begin any and all statistical calculations by either turning your
calculator OFF and ON, or by pressing the [n] [2nd] lHllkey sequence.

If you have only one set of data
to analyze:
eEnter each data point
ePress
*Repeat for all data points

¢ Press 2 to calculate the
mean of the data

¢Press to calculate the
variance of the data (with N
weighting).

*Press to calculate the
standard deviation of the data
(with N weighting).

("N weighting” means that the
total number of data points is
used in the calculation of the
variance — this type of variance
is called a

population variance.)

If you have two sets of data to
analyze simultaneously:

Nr_ bt

Call the two sets of data "'x
(independent) and "'y”
(dependent) arrays of data.

* Enter an "'x" data point

¢ Press (=3

*Enter a "y" data point

® Press

*Repeat for all points

¢ Press [Inv][2nd] B to calculate the
mean of the "x" data points.

*Press to calculate the
mean of the "'y" data points

¢ Press[inv] to calculate the
variance of the 'x"* data points

* Press to calculate the
variance of the "'y data points

® Press INv] to calculate
the standard deviation of the "'x
data points.

* Press 2nd) BA[= 110 calculate the

standard deviation of the "'y
data points.

2-22

™

FirinGg Up

STATISTICAL FUNCTIONS
AND KEYS

While you're doing any statistical analysis calculation, the data is
collected in the memories as follows:

n (The number of data points)
2y

Sy?

2x

Sx?

Zxy

7 Last x value entered, plus one.

memory

N W ~O

Note also that the formula used for the variance is:

S0, R op Sy, - 9

Variance =

The symbol 2 just means ''the sum of".

It you make a mistake entering any data point, you can remove the bad
points by re-entering them as betore, but pressing W] before
as you key it in.

Example: You're grading an exam, and the scores are in. You'd like to

see how well the class has done. The scores are tabulated below:
96 65 8l

85 76 86
57 98 75
78 100 72
81 70 80
PREss DispLaY/COMMENTS
[INV] 0 Be sure to clear the entire
machine
96 [2nd] 1. The calculator counts
85 2. your data points for you
continue for all points
72 14.
80 15.
80. Class average
11.564313 Standard deviation.

MAKING TRACKS INTO PROGRAMMING 2-23

-]

STATISTICAL FUNCTIONS
AND KEYS

FirinG Up

SoMEe SpeciaL NOTES ON STATISTICAL FUNCTIONS ‘
Occasionally, when you're dealing with the analysis of 2 sets of related

data, you'll need to “'step up” the x variable by one, for each "y
variable you enter. (For example, for data collected by year — 1961, 1962,
1963, etc.). In this case you only need to enter the first x value, and your
calculator will automatically increment x by one for each y value
entered. This feature is useful in programming what are called "trend
line analyses”— which folks into statistics know about. Also, the variance
calculations above all use "N weighting”’ — which as folks who use
statistics know, is suitable for analyzing population data. Statisticians use
(N-1) weighting when analyzing sample data. To obtain (N-1) weighting
in variance calculations, you can use the following key sequence atter
calculating the variance from the keyboard:

X1 [ret] 0 (=] CRel 0 =11 [=].

This multiplies by HE—I

(Note that the square root of the variance is the standard deviation.)

2-24 MAKING TRACKS INTO PROGRAMMING

ONE WaY Trips

oW

THE BASICS ON |
GETTING INTO PROGRAMMING

Anyone can understand programming — in fact, you follow "“programs”
of various sorts throughout your everday life. Anytime you follow a plan
to get somewhere or achieve some desired resuli, a program of some kind
is involved. Unfortunately, for many ot us the words "programming”,
“programmable”’, and even “calculator” and “computer” are often
shrouded in mystery The tact is that programmable devices are really
pretty simple. And in reality what computers do is easy to understand —
and also important to understand.

THE FUTURE

Devices like your programmable calculator are dedicated to cutting
through any "bunk’ or mysterious clouds about programming. In this
chapter we'll introduce you to many of the basics of programming
through a series of step-by-step real world examples. You'll be learning
with the help of your calculator giving you instant feedback. And — you'll
be learning important stutt. Because one truth about programmable
devices is this — more and more of your life is getting involved with

them. It's well that it should — programmable devices can

save time and money in handling information and helping make
decisions — all with increased accuracy. So the more you know about
programming, the more you'll be "in the know" when you come in contact
with programmable devices.

In the future you'll be seeing more and more "programmable’ things —
from microwave ovens to home computers. By learning about
programming now — easily — on your programmable calculator, you'll
find these devices of the future quite easy to handle. You'll also be in a
good position to easily move on to handling some of the bigger
computers and progammable devices in our world today. Some of the
procedures change, but the principles are basically similar.

Ler's Go

So take out your machine, and get into "Making Tracks.” This chapter
deals with what we'll call One Way Trips — simple, straight line
programs. Later chapters will cover such topics as:
* Round Trips — repetitive programs or "loops’".
* Fixing Tracks — editing, changing, and repairing programs and
documenting them.
* Switch Tracks — building decision-making into your programs,
and some more advanced subjects.

3-1 MAXING TRACKS INTO PROGRAMMING

ONE WAY Trips

k-4

THE BASICS ON
GETTING INTO PROGRAMMING

The examplesin each chapter are divided too, into bite-sized pieces that
tell you where you are each step of the way. These “'pieces” are each
identitied with a graphic symbol for you. In the following examples you'll
be seeing a brief introduction, and the sections described here:

DesTiNATION: This will boil down to a clear statement what you want
the calculator to do for you, once you finish programming it.

PLANNING THE RouTE: A discussion of the techniques we'll be using —
focusing on what's new in each section.

MaxiING TRACKS: Setting up a “track diagram",br flow chart that
describes your program.

RuNNING IT: Anytime you write a program, it's important to be sure things
are working correctly. One way to do this is to run through it with an
example whose answer you know. In this section we'll give you trial
examples — and what results to expect.

New KEyvs: In examples where new keys are introduced and used in a
new way, we'll review their operation for you.

Note that not all examples will have all of these sections. We'll be using
them only where needed as we go along. In addition, some examples will
have a section labeled:

TaeE NEXT SToP: In this section we'll be giving you suggestions on how to
“go turther” in your learning about programming. A quick example for
you to try on your own may be included — with typical answers in
Appendix E.

MaKING TRACKS INTO PROGRAMMING 3.2

ONE WaY Trips

TRAVEL R/S| [RST]
EXPENSES

ONE WAy Triprs

As you've seen in the last chapter, your programmable calculator is a
versatile and powerful machine — even apart from its programmability.
You can handle all sorts of calculations — from simple around-the-house
math, to advanced scientitic calculations — right off the keyboard. As it
turns out, the simplest programs you can write for your calculator are just
those where you “teach” it a series of keystrokes you'd normally handle
manually from the keyboard; and then have it "'push its own buttons” to
run through them again.

These programs, which we'll call “one way trips”, actually let you
arrange it so that the push of a single key triggers many powertul
calculations. In situations where you need to do many calculations over
and over again, this feature can mean much greater speed and
accuracy. The important keys involved in one way trips are the
and keys — as you'll be seeing in this section.

TrRAVEL EXPENSES:

Imagine for a moment that you're all set to strike off on that cross country
vacation — and that you have the time to plan on a few of those "side
trips’’ you'd like to make as well. Even with all the time needed, chances
are your budget may have some limits on it. In this case it's a lot easier to
run out of cash on your calculator before you do on the road. Let's say
that you've determined that it costs $0.06 per mile to operate your car —
counting gas, oil and "incidentals”. With this information, you could
handle the plan for simple trips easily on your calculator. If you plan to
go 15 miles, then the cost is just 15 miles x $0.06 per mile:

PRESS DispLaAY/COMMENTS
15 15 Number of miles
0.06 =] 0.9—90¢ is the trip cost.

It you're planning for a big trip made up of a lot of little trips, you'd keep
right on doing this. Enter mileage, multiply by 6¢, get result. Here's a
case where a program can help — anytime you're faced with an "over
and over again’ calculation it's prime time for a program.

DESTINATION

You'd like to arrange it so that all you have to do is enter the trip mileage
on your calculator, and then with a simple key sequence get your trip
cost (mileage X 6¢ per mile).

3-3

MaxkiNG TRACKS INTO PROGRAMMING

3 TRAVEL EXPENSES

ONE WaY TripPs

PLANNING THE RouTE

In cases like this all you need to do is use the [N key to teach the
calculator the same key sequence you'd use to do the problem by hand.
The only addition you need to make is to include a [R8l at the end of the
keystrokes you'd normally use to handle the calculations manually.

MARING TRACKS

Here we'll give you a picture of the tracks you're laying down for the
machine. (For the time being, don't worry about what's in the display
while you're programming the machine.)

Turn the calculator OFF, then ON.
This is a reliable way OFF-ON
of clearing everything inside.

Press the key.
This tells the calculator to
remember the keystrokes that follow.

.
|
Tt

Tell the calculator to take what's in
the display and multiply it by 0.06. 06 [=]

s

Tell the calculator to stop
and display the result.

A

At this point you've taught the calculator
all it needs to know for now.

Press again and
it will stop learning — but remember
all the keystrokes you taught it.

MaKING TRACKS INTO PROGRAMMING 3-4

ONE Way TriPS

TRAVEL EXPENSES

KeviNG IN YOour PrRoGRAM

Note that in most cases you can go ahead and key in your program right
from the "tlow" chart in the Making Tracks section. We'll just run through
the steps again for you to be sure you've got them in correctly:

OFF-ON
06 =]

In the Making Tracks section of each example, the flow diagrams are set
up to tell you why you're entering each keystroke in a program:

Reasons why N 1
each keystroke is there 1t Actual keystrokes to enter

Once you 've entered all the program steps from the flow chart, then
you're ready to "run’’ the program:

RunniInG IT

You're all set to go at this point. To use your program for trip planning,
just:
Enter the mileage.
Press [ST] (reset) — This starts your "train’’ — the program pointer —
back at the beginning.
Press (run/stop).

The [s1 and keys are deliberately placed close to each other, one over
the other, in the lower left on your keyboard. (In a few seconds we'll show
you how to include BTl as part of your programs — then it will take care of
itsell.) So if you're planning trips of 15.1, 35.6 and 231.4 miles just:

Press DispLAY/COMMENTS

15.1 15.1 First mileage

[RST| 0.906 or9l¢ trip cost
35.6 35.6 Mileage

[RsT] 2.136 or $2.14 trip cost
2314 231.4 Mileage.

[RST] 13.884 or $13.88 trip cost

Try it for any trip mileage you'd likel

3-5 MAXING TRACKS INTO PROGRAMMING

ONE WaY TriPS

TRAVEL EXPENSES

New Kevs

So we've seen that:

RN — [s the “'on/off’ button for teaching your calculator. Press it once and
you put your calculator in what might be called “learn” mode. The
display changes to a new format: 00 00 which we'll discuss in more detail
later. Once you've pressed RN your calculator can be taught up to 50
steps. When you press IR again, the calculator stops learning, but
remembers all the program steps you taught it.

— The run/stop key — does several things:
When written intc a program, [R5l tells the calculator to stop as soon as
the program pointer comes to it.

Once you've finished teaching the program to your calculator and you've
taken the calculator out of "learn” mode (by pressing IN again), the
key starts up the program, or will stop it once it's running. (If the program
is stopped, starts it running. If it's running, RB] stops it.)

st — The reset key, starts things back at the beginning. (If you forget to
push this key, the program won't start in the right place and the program
pointer may get “lost”. A flashing display will result.)

NEexT Stop
Can you write a trip planning program similar to the one above, that will
allow you to plan your trip in a rented car which costs $0.16 per mile?

Can you write a program that computes the sales tax (for your city, state,
etc.) on any item whose price you enter into the display?

MAKING TRACKS INTO PROGRAMMING 3-6

THE COMPLETE STo) (RCL) 509 ek
VACATION

In this example, we'll take our trip planning situation a little turther, and
along the way show you a bit on how to use memories in your programs.
In this case you'd like to be able to enter the mileage for various "legs” of
your trip, get a look at the cost tor that leg, and then the total you've
spent up to that point. This way you can just go through a road atlas and
plan your trip, with your calculator keeping constant tabs on total cost.
Let's say the trip you'd like to take is made up of the segments shown in
the map below:

ONE WaY Trips

San Francisco

DESTINATION

You'd like to be able to enter the mileage for any leg of your trip, press
RAland see the cost for that leg, then press RSl again to see the total
number of dollars you've spent to that point.

3-7 ‘ MAKING TRACKS INTO PROGRAMMING

THE COMPLETE
VACATION

o

ONE WaY TRIPS

PLANNING THE RouTE

You already know from our last example that to calculate the mileage cost
for any leg of the trip, all you need to do is multiply the mileage by 0.06. -
We'll want to do this and then stop things for a look.

Then, to keep tabs on the total trip mileage, we'll need to accumulate the
costs for each leg of the trip someplace. The pertect "place” tor such
things is one of the memories in your calculator. With the WM key you can
add the cost for each trip into a memory, then recall the running total
with the [Rell key any time you need it.

In case you've forgotten how the UM key works, try this quick example.
Add 5, 6, and 7 into memory 3, then recall the result:

Press DispLAY/COMMENTS

OFF-ON 0 Clears everything

S5 [sumM 3 5. Ssummed into memory 3

6 [5M 3 6. 6 added into memory 3

7 EUM 3 7. 7 added into memory 3

3 18. The final sum collected in
memory 3.

With the EUM key you can keep a running total in your program, and with
a [Re and you can get a look at that running total any time you'd like.
Since money is involved, we'll also use a 2+l 2-key sequence before
we start the program, so our answers will always appear rounded to the
nedarest cent.

MaKING TRACKS INTO PROGRAMMING ’ 3.8

ONE WAY TRiPS

-

QLI CLETELVTTIERT

D

THE COMPLETE
VACATION

MaxkiNG TRACES
Clear everything OFF-ON
Put calculator in “learn” mode LRN
You'll enter the "leg" mileage at this point T
later, when you run your program. i g
Take displayed numberand | & —— |t)
multiply by .06, e iasass!
[I
3 u i
Stop program «at this point and H
display cost for this leg of the trip. fg:
U
Add result to memory 3, [suM 3 :
then recall total to this point.) H
E H
1t
Stop program and display R T
total vacation cost to this point. :E:
E H
+t
H
3+
Automatically return to beginning of program jEj
for remaining trip segments entered. LETA . v o i o
(This keeps you from having to press[RST]each time.)
Tell calculator to stop learning. LRN
Reset program pointer to the
beginning for first run through program.

You can key your program in, right from the flow chart, after you turn
your calculator OFF and ON. (This important step clears the entire
machine and will prevent left over keystrokes from previous examples

causing any trouble in this one.)

3-9

MAKING TRACKS INTO PROGRAMMING

“

ONE WAY TripPs

THE COMPLETE
VACATION

RunNING IT

Let's say the segments of the trip you've planned are as follows:
Dallas-New York, 1552 mi.
New York-Denver, 1771 mi.
Denver-San Francisco, 1235 mi.
San Francisco-Dallas, 1753 mi.
Note: Be sure your program is carefully entered from the flow chart on the
previous page, then just enter the mileage for each leg and proceed:
Press DispLay/CoMMENTS
2 0.00 This sets the display to read
out dollars and cents, rounded to 2
decimal places

1552 93.12 Cost of first leg

93.12 Cost so far

1771 106.26 Cost of second leg

199.38 Total cost to Denver

1235 74.10 Cost of third leg

273.48 Total cost to San Francisco
1753 105.18 Cost of 4th Leg

[RAS] 378.66 Total trip cost

Note that if you'd like to try another trip with different cities, be sure to
place a zero in memory 3 so you don't just keep adding costs onto the
costs for this trip (just press 0 [519] 3).

New Keys

In this example we've seen how using memories as part of programs is easy
to do, and we'll be seeing more on that in later examples. We've also

seen how [RSTl can be put right into the program, so you don't have to push
it each time. Check back at our flow chart for a moment. In this case after
the second RS in your program, the program pointer (the "train” on your
track that tells your calculator which keys to push) is waiting right before
an [RsT] instruction. When you enter a new mileage and press RA, the
pointer goes down and hits BT, which immediately starts things right

back at the beginning for you.

NexT StoP

Let’s say your car is leaking oil. Write a program that lets you plan a trip
in the same way as above, but that adds $5.00 in "extra" expense for
each leg of the trip to cover buying a supply of oil at each majer city.

MAKING TRACKS INTO PROGRAMMING 3-10

ONE Way Trips

o

ON SALE!

In this case let's say you've got a job in a department store. The
manager thinks that running sales is a good idea. In fact, he has his
employees marking down price tags throughout the store quite often. He
also likes to vary the amount of the discount trom department to
department, 25% for shoes, 15% in hardware, etc. [n this programming
situation we'll review some of what you've seen in the first example and
expand on using memories as part of programs.

DESTINATION

You'd like to be able to go to any department in the store that you're
assigned, key in the price of any item on the shelf, press RBSland get the
discounted price. You'd also like to be able to vary the amount of the
discount as easily as your manager changes the discount amount from
department to department.

PLANNING THE ROUTE

When an item is discounted by 25%, you can find the new price using
the formula: “New price" = old price X (1-.25). In tact, tor any discount
amount you can find the new price from this same formula:

New price = old price X (] - discount)

[n our program, we'll store the discount amount as a decimal number
(25% = 0.25) in memory 3. Then we'll recall it as we need to in calculating
the new price.

New price = old price X (1- 3.

The advantage of doing this in your program is that if you go to a new
department with a new discount rate, all you'll need to do is store the
new rate in memory 3, then proceed. This technique is a handy one in
many situations where you'd like to change a number in a program
without rewriting the program itself.

311 MAakING TRACKS INTO PROGRAMMING

1]
&
&
b~
>
=
18]
Z
0]

ON SALE!

MaxiNG TRACKS

Clear the entire machine, and
tell it to get ready to learn. OFF-ON [RN
Take what's in the display and X' =1ret]
discount it using our formula. 3’ =]

4
Stop and display the result.

i 2
Automatically go back to the ST
beginning for the next calculation.

1]
Tell calculator to stop learning.
Reset the machine for the first calculation.

Enter your program caretully, following the keystrokes in the diagram.

RunNING IT

The manager has decided to take 25% off shoes selling for $14.95, $17.99
and $18.99. Then he'd like you to mark 13% off books selling for $6.00,
$7.99 and $12.50. What should the new prices be?

PRress DispLaY/COMMENTS

2nd] 2 0.00 This tells the machine to round
the display value to the nearest cent

256103 0.25 Store the first discount rate as

a decimal in memory 3
Enter old prices & press to see new ones:

14.95 11.21

17.99 13.49 } New prices

18.99 14.24

13 5103 0.13 Store the new discount rate
Enter prices discounted for 13%, & press RAlto see new prices:
6 5.22

7.99 6.95 } New prices

17.5 15.23

Note in this case that by storing the discount rate in memory 3, it's very
easy to change rates as you move from department to department.

NexT Stop

You'd like to keep track ot all the marking up and down you do all day.
Could you rewrite the above program to keep track of the number of
items you've marked down in memory 47

MAKING TRACKS INTO PROGRAMMING 3-12

ONE WaY Trips

PAUSE FOR 2nd] G xi
A REST STOP

Let's take time out from our examples for a moment to examine a very
helptul feature of your calculator. You've already been briefly
introduced to this feature in the first chapter — the "Pause’” feature. Using
it, you don't have to stop a program completely to get a quick look at
what's happening at any point. All you need to do is insert the key
sequence [2vd] @ where you'd like to see a result. (Pause is the second
function on the key labeled "SST".) Pause "stops the music" for about %
of a second. You can add more Pauses if you'd like a longer look.

Try the following short program to see this feature in action. We'll also be
using the clear key ([€R]) as part of the program, — to clear things out
as needed.

Turn your machine OFF and ON, then enter the following keystrokes:
| [2nd]
2
3 Puse

Can you guess what you'll see when you press [RA] at this point? Try it. (To
see it again, press [RASlagain.)

We'll be using the pause key at many points in programs where a quick
glance is required. Try this one:

-

DESTINATION

Let's work up a program that adds the digits 1 through 9 and pauses for.
each result before the next digit is added. Here we'll be adding 1+ 2,
displaying 3, adding 3 to that, displaying 6, adding 4, displaying 10 and
so on.

3-13 MAKING TRACKS INTO PROGRAMMING

PAUSEFOR A
REST STOP

3

7
=]
=
=
-
=
1w
z
O

Maxing Tracks

First — try this one on your own! One possible program is shown for you
below:

OFF-ON
| [znd]

(%] 9 [=] [d [0
13 (=] [z
[+ 4 (=) B
+15 [=] =0 Em
+16 = 2 W
17 = =4 Em
(+18 [=] [z E
19 (= =d Bm

RunnNinG It

Here just press RSJand you'll see 1, 3, 6, 10, 15, 21, 28, 36, 45. (Remember to
allow for longer pauses just insert the [2nd E@ key sequence 2 or more
times. Also keep in mind, however, that each M8 you insert uses up
one of your 50 available program steps, so in your longer programs you
may be limited as to how many pauses you use.)

NEexT SToOP

Create a program that will multiply all the digits from oneto 9(1 X 2 x 3
X 4 X 5x6X7x8x9),and pause to show each result. Note: Your final
result should be 362880.

MAKING TRACKS INTO PROGRAMMING 3-14

ONE WAY TriPs

GETTING AROUND:
A REVIEW 0!-‘ ILRN] [R/S] [RST] [STO] [RCL|

In this example we’ll be putting together all of the techniques we've
covered up to now. Imagine for a moment that you're currently employed
by the Acme Can Top Company Incorporated, one of the world’s leading
manufacturers of can lids. As part of your job, you need to be able to
quickly and accurately calculate the distance around any circular can

lid (its circumference), and its areq; given its diameter (the distance across
its middle). The formulas for these calculations are shown in the diagram
below:

C =Circumference

(distance around edge)

C =2 r=radius=D/2
=27

Area A=ar?

D =Diameter
D=72r

DESTINATION

Here we'd like to set up a program where we just enter the diameter D,
press and the circumference is displayed for about 2 seconds, tollowed
by the area.

PLANNING THE RoOUTE

Here the radius (r) (which equals Y2 the diameter) is needed in both
calculations. We'll calculate and store it in a memory right away. We'll
then calculate the circumterence by multiplying it by 27, and pause a
couple of times to look at it. To find the areqa, we'll recall the radius,
square it, multiply by =, and stop.

3-15 MAKING TRACKS INTO PROGRAMMING

[72]
£3 GETTING AROUND:
b A REVIEW OF [iru] [/75] [RsT] [To] [Ret] M
B .
[4%]
z
@]
MaxinG TRACKS
Clear calculator completely and QFF-ON
getit into “learn” mode
L i
(D will be entered in the display) 1 5 =1 el)
Calculate the radius: r=D/2. 2 [=] R 4
g H
1
H
Store the result in memory 1 : [sto] 1 H
—§ i
+ =
H
Calculate C=2nr X12 [X] Kl =] lgl
_ H
' g ' H
H
Pause twice to look at result * » [2nd] - [2nd] BN
3 '2
1[=2] [X] H
Calculate the area, A =nr* T
' =] 8
i i H
=3 A!,
=3 L1
: n
Stop ZEZ
i H
L = ,!.
[T s
H
Automatically reset to R g
beginning for next calculation (ST R

| 4

Stop calculator from “"Learning” . (LRN]
Reset calculator for first calculation. [RsT]

Key in your program caretully from the above flow diagram.

MAKING TRACKS INTO PROGRAMMING 3.16

W

ONE WAY TriPS

GETTING AROUND:
A REVIEW OF [rN] [R/5] [RST| [sTo| [ReL]

Runwming IT

Let's now say that you're confronted with 6 can lids and you've measured
their diameters as tollows:

10 cm 4 cm
13.61 cm 7.74 cm
30 cm 8.78 cm

You need to calculate the circumierence and area ot each, correct to 2
decimal places.

Just key in the tollowing:

PREss DispLAY/ COMMENTS

(2nd] IR 2 0.00 Setsreadout to 2 decimal places

10 10, Diameter

31.42 Circumierence

\ 78.54 Area
13.61 13.61 Diameter
42.76 Circumierence
' 14548 Area .

30 30 Diameter Note that the circumterence

94.95 Circumierence will be in the same units as
706.86 Areq the diameter, and the area

4 4' Diameter will be in these units

12.57 Circumierence squared.
12.57 Area

7.74 7.74 Diameter

RA] 24.32 Circumierence
47.05 Area

8.78 8.78 Diameter

27.58 Circumierence
60.55 Area

NexT StoP

Create a program to calculate the perimeter of a square (distance

around it), and also its area:
S

Perimeter=4s
Area= g’

317 MAKING TRACKS INTO PROGRAMMING

[]
[]
FILL IT UP: LEAVING
“HOLES” IN PROGRAMS
In some problem solving situations you'll need to enter several numbers

into the calculation. In this example we'll show you how to leave “"holes"
in your program that you can easily insert numbers into as needed.

ONE Way Trips

Let’s continue our "Acme can lid problem” for @ moment. This time you're
in a situation where you'd like to be able to calculate the volume of any
can that comes in. You can easily measure the diameter and the height of
the can. The formula for calculating the volume is: V==r1*h

D=2r

/—_’ﬁ

>

h V=arth

~

A key point here is that you have to enter two measurements into the
formula. You must enter the diameter, D (from that you'll calculate
r=D/2), and you must enter the height, h, to finish the calculation V =ar2h).

DESTINATION

You'd like to be able to calculate the volume of any cylindrical
can, with as few keystrokes as possible.

PLANNING THE RoUTE

We'll show two ways to approach this problem:

a. You could store both D and h in memories and then recall them in a
program to calculate the radius (r = D/2), then the volume (V = #r’h).

b. You could enter D, calculate r=D/2, square it, multiply by #, then
press [XJand [RA]. This halts the program and lets you enter h right
from the keyboard. You thén continue to complete the program with
an [=land . What you do in this case is sort of "leave a hole” in the
program to insert a number you'll need to work with.

Any "mixture” of these two methods is OK, too, depending on

your personal approach to the problem.

MAKING TRACKS INTO PROGRAMMING 3-18

-l

FILL IT UP: LEAVING
"HOLES" IN PROGRAMS

ONE WAY Trips

Maxing Tracks

Method a. In this method we'll assume that before we run the program
we'll store the diameter (D) in memory |, and the height (h) in memory 2.

HILRAPNENDUBRRERIT D
DAAAAAMMALALLALILS 4

Clear the entire machine. OFF/ON

Putitin "Learn” mode.
Y

First recall the diameter. 1 A

i

" 54
0T ja
a +H
u H

Calculate the radius (r=D/2). (=] 2 [=] Zg:
i H
=] .!.
=] .!.

Square r and multiply by 7. (%] [2nd] T

Multiply by the height h 1
recalled from memory 2. 2[=] H
pu§ ;'

H I

ok H

Stop and display result. .E:
E I

i

i

+F

il

Automatically reset for next calculation. 3

Get out of learn mode and
reset for first calculation.

To run this program, just key it in caretully from the flow diagram, then:
*Enter the diameter and press 1
*Enter the height and press [s1] 2
*Press RAlto display the volume, V==r?h.

3-19 MAKING TRACKS INTO PROGRAMMING

-

FILL IT UP: LEAVING
"HOLES"” IN PROGRAMS

ONE WaY Trips

For example, calculate the volumes of these two cans accurate to two
decimal places:

4cm
10cm

10cm

can | \—_) _JL.

can Il

PREss DispLaY/COMMENTS

(2nd] 2 0.00 Setdisplay to readout 2 decimal
places

10 1 10.00 Enter diameter and store

4 [s7o] 2 4.00 Enter height and store

314.16 Volume of canl

4 [s70]] 4.00 Enter diameter and store

101[s10] 2 10.00 Enter height and store.

125.66 Volume of can Il

MAKING TRACKS INTO PROGRAMMING 3-20

3 FILL IT UP: LEAVING
“HOLES" IN PROGRAMS

‘ ONE WAY TRiPS

Method b. In this case, we'll write a program that allows us to just enter
the diameter and press [’]. When the calculator stops, we'll enter the
height and press [RS8 again. The final result will be the volume (V=mr’h).

Clear the entire machine.
Put it in “"learn” mode.

OFF-ON

When you run this program, you'll
enter the diameter at this point.

Divide the display value (the diameter) | —— . — s)
by two to get the radius (r=D/2). [=] 2 [=] '“""'?’%_
H s
=3 ,!.
44 4
+=+
i
Square the radius and multiply by 7. [=2] H
g 1
: I
4+
I
L
Get ready to multiply, then stop
! R
and wait for next entry.
B ’
When the program stops, hu g T
you'll enter the height. + H
3 &
Finish the calculation and 252
halt to display result. =] ZEI
T H
L1 i
- = <3 .!.
I
45
Automatically reset for ST N o
next calculaton. | = frrTe ;
/
Take calculator out of “learn” mode
and reset for first calculation. (RsT]

To run this program:
* Enter the diameter and press [R7]
* Enter the height and press [R/].
The volume (V= arth) is displayed.

3-21 MAKING TRACKS INTO PROGRAMMING

FILL IT UP: LEAVING
"HOLES"” IN PROGRAMS

ONE WAY Trips

For our previous example, key in the new program carefully and then:

PRESS DispLaY/COMMENTS
i 2 0.00 Setdisplay to read out 2 decimal
places

10 10 Enter diameter and pressR/S]

78.54 When calculator halts, enter height
and press

4 314.16 The volume of can |

4 4 Enter diameter of can Il and press R/l

12.57 When calculator halts, enter
height and press [R7]

10 10

125.66 The volume of can Il

New Kevs

In this example we used some old keys for some new tricks. We saw that
you can get several numbers into a program in one of two ways:
* Store them in a memory betore you run the program and then
recall them when you need them, or
* Stop the program (make a "hole”) and insert the numbers where
you need them.

Any combination of these two methods is OK, too; just be caretul to write
down which memory is storing what or in which order things must be
entered. (More about writing things down — "documentation' — will be
covered later.)

NexT Stopr

Create a program that calculates the volume of any rectangular box:

v=Ilwh

Y on

Create a program that calculates the longest side of a right triangle (the
hypotenuse), given the other two sides:

You'll use the
c "Pythagorean Theorem'"

@+ b=

c= \/mz

MAKING TRACKS INTO PROGRAMMING 3-22

PROGRAM
SIGN POSTS: s IFEN ... GON

ONE WAY TRIPS

Up to this point we have seen a variety of programs that handle “straight
line"” problems, "one way trips” so to speak. In the examples you've seen
up to now, we've always started at the beginning, gone straight down to
the nearest RAl, and kept going from there when RSlwas pushed again.
In most of these programs, we used a R8T (reset) to get back to the
beginning, where we wanted to start things oft.

There may be cases, however, where you would like to write one single
program that covers several little problems you have to handle. Different
sections of your program may have specific applications that you may
want to use separately from other sections of the program. In cases such
as this its handy to be able to start your calculator running somewhere
other than the beginning of the program. You'd like to be able to pick
and choose just where the train starts on its program track.

Your programmable calculator lets you do this pretty easily. You can
start the program pointer, "'the train on your track’ at any preselected
point you'd like to.

PROGRAM SIGN PosTs — LABELS

How do you "preselect” or identity various points in your program? This
is where LABELS come in handy.

You can label any section of a program, or your entire program, by
pressing the key sequence, followed by one of the numbers 0
through 9. (Note that lllis the second function right over the key, on
the lower letft of your keyboard.) There are a total of 10 labels (0-9)
available for you to use in your calculator. These program labels are like
little signposts you can use to mark certain points in your program. These
make it easy for your calculator to find these points later on. Labels and
labeling are an especially handy feature — and once you've labeled any
point in your program it's very easy to get back to it using a variety of
methods.

3-23 MAKING TRACKS INTO PROGRAMMING

PROGRAM SIGN POSTS

ONE Way TriPs

—THE "Go To” KEy

One of the most straightforward keys on your machine is the 6/ or "go

to" key. Once you've labeled a section of your program, (0-9), you can

tell your program pointer "train” to get to that point by simply pressing:
[6M n (where ''n" is the number of the Label, 0-9).

Once the train is there, you just press RSland it starts up, beginning right

where you told it to.

You can also use the [610 key while you're writing a program (in “learn”
mode). With the [6T0] instruction you can control the "flow" of your program
any way you'd like. If you want the sequence of the program to change,
or you'd like to skip to ditferent sections of your set of keystroke
instructions, it's easy. Just label the points in your program that you need
to get to with the [2nd/ lll n key sequence. When you want the program
pointer to go to any of these points, just press [6T0In.

You'll see more about how handy the instruction is inside programs in
the next section. For now we'll show you an example of how the [60l key
can be used to let you pick any labeled point in a program as the
“starting point’ for your program pointer.

MAKING TRACKS INTO PROGRAMMING

ONE WAaY TriPs

EXAMPLE:
AREA/VOLUME

Here's an example of how labels might come in handy. Let's say you find
yourself in a situation where four separate mathematical tasks need
to be done, repetitively. One set of tasks might be:

1) Calculate the area of :[A_g
s S
a square.
2} Calculate the area of
a circle. A=mr
3) Calculate the volume Is ,
of a cube. V-s
4) Calculate the volume
of a sphere. V= —%wﬁ
DESTINATION

You want to be able to enter the value of s (a side) or r (a radius), and
then be able to apply the correct one of the 4 formulas shown to calculate
an area or volume.

PLANNING THE RouTE

] TJust key in each of these formulas as if it were a separate little program,

but with the following added:
Put a label at the beginning of each formula with the nkey
sequence. (use label 1 for the first formula, 2 for the second, and
so on).
Put an RA/at the end of each section, so that the program stops
after the individual calculation is finished.

3-25 MAKING TRACKS INTO PROGRAMMING

EXAMPLE: AREA/VOLUME

0
&
24
=
[
S
A
Z
O

MaAgING TRACKS

Clear the machine. OFF-ON
Getin "learn” mode. [LRN]
When out
] of "LEARN"
mode:
Label the first section <ﬂ N
A:Sz 1 1 key
sequence
s moves
T program
L pointer here
Square the display value
and stop. (2]

Label second section 2 2

A=art moves

program
g pointer here

LD 3

Take value in display as r;
evaluate A=ar? and stop.

[}
51
B
|

Label third section V=5, 3 q moveés
T program
:E: pointer here
H

Take value in display as 's 3 =]

calculate V=¢, then stop.

Qe

Label fourth section V=4/3ar". 1 : <ﬁ moves
. program
H pointer
H here

Take the value in display as "'r”
calculate V=4/3#r' and stop.

ey
Bl
w

oE
5

E
i

Get out of "learn” and reset.

MakING TRACKS INTO PROGRAMMING 3-26

EXAMPLE: AREA/VOLUME

ONE WAY Trips

RunnNING IT

Key your program in caretfully from the flow chart. At this point to use any
one of the 4 parts of your program just key in the number you want to
operate on and then:
*Press
*Keyin 1,2,3, or4 — this selects the formula you want to use.
*Press
EXAMPLE: ®Calculate the area of a square and the volume of a cube
whose sides are 6.17 meters.
*Calculate the area of a circle and volume of a sphere whose
radii are 2.98 cm.

PRESs DispLAY/COMMENTS
2 0.00 Set display to readout
2 decimal places
6.17 , 6.17 Enter first side
(610] 6.17 Select first label—
A =g’ program
38.07 Area of square (m?
6.17 6.17 Re-enterside
[e] 3 234.89 Volume of cube (m®)
2.98 2.98 Enter radius
(e 2 27.90 Area of circle (cm?)
2.98 298 Re-enter radius
4 110.85 Volume of sphere (cm®)
New Keyvs

In this section we learned about two new and important keys:

n (n from 0-9) — Lets you label (or put a sign post) at any point
in a program you need to get back to. You've seen in this section how
labels work with the key. In later sections you'll see other keys that
use labels as part of their function.

n (n from 0-9) — Lets you start your program at any labeled point
. you'd like, or sends the program pointer to any labeled point you'd like.

NexT StoP

Write a two-part program that will let you convert from Celsius(°C) to
Fahrenheit (°F), or from Fahrenheit (°F) to Celsius (°C).

Use Label | for °C-°F: °F=9/5°C + 32

use Label 2 for °F-°C: °C=5/9(°F - 32)

3-27 MAKING TRACKS INTO PROGRAMMING

(-

As you've seen in the section on One Way Trips, one of the primary
benetits of programmability is that it takes a lot of the drudgery out of
repetitive calculations. You can set up a keystroke sequence as a
program one time, and from then on, easily operate with that keystroke
sequence-on any number you enter. In this section we'll move on to show
you how your calculator can be set to perform repetitive calculations on
its own — reading out results along the way. When your calculator is
performing operations on its own, over and over again, it's said to be “'in
a loop” or "'looping”.

RounD TRipPs

A “loop" is just a round trip for your program pointer “train’’. You can set
things up so that your calculator will keep looping for weeks or even
months with your recharger — until you manually stop things with the
key. Or, you can program your machine to perform a key sequence for a
specified number of times. This section shows you how to set up "loops”.

You've already seen some round trip loop programs in action in the very
first chapter Getting on Track. As with all of the basic programming
operations you're learning on your calculator, it's really very simple to
do. Looping programs are especially useful, and are tun to watch in
action, too — because your calculator is working on its own. It's
interesting to think that it costs you little or nothing to have your
calculator run loops for you — even if you have it looping for hours or
days. On larger computers, where expenses often run hundreds of
dollars an hour, running long loops can cost a fortune!

o T TS o S o OO OO o Y O 0 D o N o WD o 0 0

.l
st

0 0

MAKING TRACKS INTO PROGRAMMING 4-1

Rounp Trips

" -

HELLO! LOOPS WITH
THE RESET KEY :

The first program in this book — back in Getting on Track — used the
simple technique you're about to see in action here to create a loop. All
you do is put a Rstlkeystroke at the end of your program while in learn
mode — and don’t insert any R instructions. Your program pointer moves
down through your set of instructions, hits the BT, turns around, "loops”
back to the first instruction and starts down again. In this first example
we'll examine a simple loop situation.

o
I
L

s

By placing atthe end of a
series of operations, with no as
part of the program, you create a
continuous "looping"’ program.
(This situation is sometimes called
an unconditional loop.)

Py
IR
*-

0

DESTINATION

Let's consider an example of an unconditional loop.

By now just about everyone's realized that when you flip your calculator
over — upside down — certain of the numbers look like letters of the
alphabet. (Some numbers do a better job of this than others.) With a little
imagination you can see that the following numbers lock like letters
when the calculator is “flipped’ over:

0-0 3=E 6=g* 9-G*
1=1 4=h 7-L
2-2* 5-S 8= B*

*(These letters are tougher to “"see” until you get used to them.)

As one loop example you can have your calculator display a message
"neon sign” fashion over and over again. In this case — just to get a look
at the process — let's create a program that displays "hello”, over and
over agdin.

4-2 MAKING TRACKS INTO PROGRAMMING

4 HELLO! LOOPS WITH
THE RESET KEY [Rst]

RouNnD TRiPS

MaxinGg TrRacks

Sttt

Clear the machine. OFF-ON
Getin "learn” mode.
Y
Write "LO" portion -
and vause 0.7
]
Add an "L" and pause. 7 [2nd]
H
Add an “"E” and pause. 3 [2nd]
Add the "h"” and pause. 4 [2nd]
3
j 3
Clear the display.
pag
Go back and do it again.
A
Get out of "learn’’. [LRN|
Reset for first run through.

Running IT

Now your calculator is all set up to "'print” the message. Just press R/,
flip the machine over, and there it is. (Programmers have been known to
spend hours thinking up clever things that their calculator can say — with
neon sign emphasis — to their friends and others.)

NEexT STOP

Write a program that displays the numbers | through 8 progressively in
the display:

1

12

123

etc. — pausing each time, clearing at the end, and repeating.

MaxkING TRACKS INTO PROGRAMMING 4-3

(-3

GRAPH WATCH!
LOOPS WITH

Often in school (and later on the job) it will be handy to graph the
behavior of some mathematical function or "model” of some real life
phenomenon. Your calculator in a loop is a natural for this. While it'sin a
loop, it can pause long enough to let you write down results in a table —
or plot them right on a graph. (If it should start "getting ahead" of you —
it's easy to stop things with the key — then start them once more by
hitting RSl again.)

RounDp Trips

In this example let's say you want to graph the distance an object travels
in free fall — as it drops from an airplane, for example. Let's assume that
it's a small, dense object like a brick — so that we can neglect wind
resistance (at least until the brick is talling very tast). You need to plot
the total distance it's fallen in feet for one-second time intervals. The
equation that describes this process is:

distance fallen = 16 X 12, when t is the time in seconds
in feet atter the object is dropped

DESTINATION

You'd like to write a program where you simply press R/S|and your
calculator

*Displays a time t in seconds

*Pauses (2 times)

*Displays the distance the object has fallen at that time

Distance = 16 X f,
*Pauses (3 times)
eDisplays the next time (t + 1) — one second later, and so on

PLanNNING THE RouTE

First we'll store the current time in memory 1. Each time we go through
the program we'll add one second to the current time in memory 1, recall
memory one and display it (for 2 "pauses”’). We'll then square it, and
multiply by 16 to calculate the distance and display that for three pauses.
At the end of our program, the last step will be [f8Tl to get things back to
the beginning.

4-4 MAKING TRACKS INTO PROGRAMMING

GRAPH WATCH!
LOOPS WITH kst

(-

RouNnp Trips

MaxkinGg TRACKS

[Clear the machine. OFF-ON

Get in "learn’” mode. LRN

Sl

'Y
Jd i {1
r=r-t—t

Add | to current time.

D1
=
in

L. .!.
N I
H 1T
B o
Recall current time (1) Rel] 1 B
and display it. Pause Pase H
% H°
Calculate distance 3
; X1 1 .
Caleule (=7 [X] 16 [=] :
H
in
4
g I
. . 20a H
Display the distance. — o é
]
d I
1T
4}
I
Go back and repeat. [RST] HHHE
1
Get out of "learn”.
LRN :
Reset for first calculation.

At this point you'd be all set to either write down time and distance in a
table as shown on the next page, or graph them right on a graph. As
we've mentioned — if the machine starts getting ahead of you, just stop
things with the key.

MAKING TRACKS INTO PROGRAMMING 4.5

Rounp Trips

[-

GRAPH WATCH!
LOOPS WITH [rsT]

Another important point here is that your calculator can help you “feel”
functions happening. Since it's displaying the tunction rapidly for you —
you can get a good feel for how fast the distance “"grows" in a free fall
situation; or how tast your money grows if you double it once a day, as
we've seen in the very first example in the book. This feature of learning
with programming is a valuable one. Instead of just hearing or reading
about how formulas and tunctions behave, you're watching it happen.
You may find that some of the formulas you've been learning about take
on a new life when you watch them in action on your calculator. At this
point you know how to get almost any formula on the machine into a

loop. Experiment! Watch functions “'grow”

RunmNING IT

Enter your program carefully from the flow chart on the previous page.
Then just get your pencil and table (or graph paper) all set and press
. You should see results like those below. (To stop things, just press
and hold it down momentarily until @ number appears in the

display.)
t(sec) dist(feet)
1 16
2 64
3 144
4 256
S 400
6 576
7 784
8 1024
9 1296
10 1600
11 1936
12 2304
NEext StoOP

distance fallen (feet)

1600
1500
1400
1300
1200
1100
1000+
900
800 —
700 -
600 -
500 —
400
300 -
200
100

0

I T T 1 L T T

4 5 6 7 8 9 10
time after drop (sec)

Write a program that will let you plot the tunction:

y = 2x* — 10x
for values of x;

x=123, .. etc.

You'd like to have x displayed, then y, then x + 1, and so on.

4-6

MakING TRACKS INTO PROGRAMMING

-3

COUNT OFF! LOOPS
WITH con ANDzd i n

Rounp TRipPs

You've already seen — and will continue to see — how it's often

handy to be able to "count” inside your programs. There are many ways
to accomplish this — and in the looping examples we'll discuss in this
chapter we'll be showing you quite a few of them.

There are also quite a tew ways to make loops or "round trips” happen
for you. You've already seen how to do it easily with « [RsT at the end of
your program. The [RSTIkey, however, always starts you right back at the
beginning — so your whole program is "in the loop”. There may be times
where you'd like a "round trip”’ to involve just part of your program.
Here's where the [0 key, working with labels, can be handy. To create a
loop that only involves one part of your program just:)

¢ Put a label where you want the loop to start with the [2+d lll nkey
sequence (nis one ot your labels, 0-9).

e At the end of the "loop", make sure the last instruction is [€0/n
(where n is the same label number).

Here's a counting example that involves loops:

DESTINATION

You'd like to cook up a program that sets your calculator counting by 1's,
2's, 4's, etc. — whatever number you'd like. You'd also like to start
counting from any number you select. The way you'd like things to work
for you is as tollows:

¢ You'll enter the number you'd like to count by, and press
¢ You'll enter the “'starting number” and press RA]. . .
The calculator will then count by whatever number you've
selected, beginning at your "starting number”’

PLANNING THE RouTE

In the first part of the program we’ll store the first number entered — the
number we're counting by — in memory 1. Then we'll store the starting
number for our counting in memory 2. Now, after you've stored these two
numbers, you won't want to return to this portion of the program for the
counting sequence, so put down a label — telling the calculator this is the
point to come back to in the "loop”

Atter the label, write the "counting”’ portion of the program. One way to
do this is to recall the number you're counting by (in memory 1), and sum
this to the starting number (in memory 2). This is the first number in the
counting sequence, so recall memory 2 and pause to look at it. Then just
repeat the process by returning to the label.

MaxiNG TRACKS INTO PROGRAMMING 4-7

[-3

RouND TriPs

COUNT OFF: LOOPS WITH
6™ n AND n

MaxinG TRACKS

Clear the machine.
Get in "learn’ mode.

OFF-ON

When you're running the program,
you'll enter|the number
you are counting by at this point. ¢

Take displayed number
and store in memory 1.

|
Lan

B

Stop.

At this point you'll
enter the starting number.

Take displayed number
and store in memory 2.

el
Ll
Lan .o o

Label this point.

g

Count:

Here you're adding the number
you're counting by (in memory
1) to the starting number (in
memory 2) and recalling.

kel 1 [0M
2 Reg 2

Pause.

Go back to Label 1 and repeat.

Get out of "learn” mode
and reset.

[LRN] [RST]

4-8

MAKING TRACKS INTO PROGRAMMING

COUNT OFF: LOOPS WITH
n AND n

- -

Rounp Trips

RunnNiNG IT

Enter the program carefully from the flow'chart. To start counting,
simply:

» Enter the number you'd like to count by (say 5), and press [RA] .

» Next, enter the number you'd like to start with (say 120), and press

again.

Your calculator will start counting:
125.
130.
135.
140.
145.

NEexT Stor

Write a program that lets you take any number you'd like, and raise it to
powers that go up from zero in steps you select. For example, you enter a
13, press [R8], enter 2, press RBland the results
1. (orl3y)
169. (or 139
2856]1. (or 139
4826809. (or 13°)
etc.
are displayed. (Use the key.)

MakING TRACKS INTO PROGRAMMING 4-9

[

CASH IN THE BANK-
LOOPS WITH coin AND =<t n

Let’s consider another more "'close to home" type of application for your
calculator. One major advantage of being able to program repetitive
calculations is that it's easy to play the game of "what if?” What if you
had $3000 in a savings account for 6 years? How tast would it grow? Are
there other better places to put it? What if you need $1500 of it after 2
years?

RounD Trips

Before devices like your calculator came along, weighing alternatives in
situations like this could be quite tedious — even with a “regular”
calculator helping out! Now you can have the calculator pushing its own
butfons for you as a decision-making helper. Consider the following
situation:

DESTINATION

You'd like to have a program that “grows’ a sum of money just as if it
were in a savings account. To use it, you'd like to:

¢ Enter the amount of cash you're tucking away in your account,
and press

¢ Enter the yearly interest rate and press RBjagain.

¢ Then — you'd like the calculator to display — at yearly intervals —
just how much your money grows — year by year (its future value).
You'd like the year, then the tuture value displayed.

PLANNING THE RouTE

The formula to use for watching your cash grow is:
tuture value = present value X (1 +1)®
where i is the yearly interest rate expressed as a decimal, and n is
the number of years you've left your money in the bank.

Here we'll be taking the first number entered in the display (the present
value of the cash we're putting in the account) and storing it in memory 1.

We'll take the second entered number (yearly interest as a decimal), and
we'll store it in memory 2.

At this point we'll set up a label (we'll use label 1) — because we'll be
using a loop to calculate our cash growth. After the label, we'll step up
the year by one, display it, and then evaluate the cash growth
formula.

The last step of our program will be a 1 — to complete the loop.

4-10 MAKING TRACKS INTO PROGRAMMING

4

[2]
=
o~
=
a
z
=}
0
a3

CASH IN THE BANK: LOOPS
WITH n AND n

MaxkING TRACKS

of cash at current year
FV=PV (1 +D"

Clear the calculator. OFF-ON
Get into “learn” mode. LRN
When you run the program, you'll
enter the amount you deposit at this point. L
Store in memory 1. 1
&
H#
Stop.
You'll enter the yearly EE
interest rate as a decimal.
Store in memory 2. 2
H
Label this point. 1
]
Add] to current year — stored
in memory 3, and recall 3. I [EuM 3 3
Pause and display year.
H
Calculate future value
1 1

and reset.

.
Pause and display FV. — —
Go back to Label 1
and proceed. [Grol 1
Y
Get out of "learn STl

b/

MAKING TRACKS INTO PROGRAMMING

4-11

(-

CASH IN THE BANK: LOOPS
WITH 6] n AND n

Rounp Trips

RunnNING IT

Enter your program caretully from the flow chart above. Press B 2so
that your results will be displayed in "dollars and cents” format. Then
* Enter your cash deposit, say $1000, press , and the display will
show 1000.00
 Enter the yearly interest rate (for 6% enter .06) and press
again.

Your display should then read out:

1.00 First year

1060.00 Value of cash at end of first year
200 Second year

112360 Value of cash at end of second year
3.00 Third year

1191.02 Value of cash at end of third year
400 Fourthyear

1262.48 Value of cash at end of fourth year
efc.

When you'd like to stop, just press and hold down the RS key for a
moment. You can "try out” or "what if" with any cash value or interest
rate you'd like. Just press [IN][2nd] Il [T to clear all the memories and
begin at the first step, then proceed as before.

NExT StoP

Develop a program that will let you start with any number:
* Display its square.
* Increase the number by 0.5 and display it.
* Display the new square.
etc.

4-12 Maxing TRACKS INTO PROGRAMMING

Rounp Trips

-3

CONTROLLED ROUND TRIPS:
LOOPS WITH z I ol n

In this section we're introducing a new and powertful key sequence tor
“making loops happen’ in your calculator. This particular feature lets

“you select exactly how many times you'd like to go around a loop. After a

selected number of times around you can send the program pointer
“train’’ on to other tasks or stop it — whichever you like. This feature we're
speaking of uses the [2nd] [6T0 n key sequence. (@ is the second
function of the 60 key — on the left middle of your keyboard.) stands
for the words (watch these carefully):
decrement
and
skip
on
Zero.

The “"decrement and skip on zero" key sequence works with memory zero
to allow you to set up loops. Here's how it works:

You just enter the number of times you want the calculator to go “around
the loop' — any positive integer in this case — and store it in memory
zero. From then on in, whenever the program pointer comes to a
[2nd] [61 n key sequence, several things will happen:
First, the calculator subtracts one from whatever positive integer is
stored in memory 0 ('decrements” it by one).
Then it examines the result:
— If the result is not zero, the program pointer goes right on to
the [6T0] n instruction step that immediately follows the
— It the result is zero, the program pointer skips (hops right
over) the 60 n step immediately following the IR, and moves
on to whatever step is listed next.

Got all that? Once you get the hang of it, setting up loops using the
[6T0 n key sequence is really pretty easy. You can set up a loop to any
labeled point in your program, for as many times as you like. The
is really just a "lap counter”. You tell your calculator how many times

you want to go around the loop by storing that number in memory 0. The
program pointer "'train’’ goes around the loop that number of times, and
then skips on to whatever instruction comes next. Here's a picture of what
happens:

MaxiING TRACKS INTO PROGRAMMING 4-13

Rounp Trips

-

CONTROLLED ROUND TRIPS:
LOOPS WITH n

Some point in the program T« booios
labeled n. il ininininie X
53
b
Series of Program Steps. I Y O T

i

At this point calculator subtracts one
{from memory zero and examines result.

If result IS ZERO | lf result is NOT ZERO
Skip the n | gorightonto n

step and go on. | step immediately

{ollowing.
b |
B

j Go back and loop to label n. n

e o0 o o oo oo o o o o o g
D D O O O VD O V I DR

Program comes to “"decrement
and skip on zero” instruction.

Y R VR,

Next steps in program sequence. I T

Let's consider a simple example:

DESTINATION

Cook up a program using the 61 n instruction sequence that
counts up to whatever number you enter into the display. You'd like to
enter a number into the display, press and have the calculator count
up to that number and stop, pausing at each count.

PLANNING THE ROUTE

Here we'll enter the number of loops needed into the display and store it
right away in memory zero, then clear the display. We'll plant a label
right after the clear instruction for setting up the loop. Then we'll add one
and pause. At this point you need to create the “controlled loop’’ back to
your label with the 610 n key sequence. After the display has

counted up to the number stored in memory zero, you want it to halt — so
end things with an :

4-14 MAKING TRACKS INTO PROGRAMMING

CONTROLLED ROUND TRIPS:
LOOPS WITH [2nd] [610 n

-~

Rounp Trips

MakiNG TRACKS

QLLLILITITIITINY

Clear the machine.
Get in "learn’ mode. OFF-ON L]
When you run your program, you'll
enter the number of loops at this point.
Store in memory zero. 0
by
Clear the display [CR]
4
4:
] Y,
Label this point. TN) !
Add one to starting value 1 =]
{0 in this case), then pause.
s
Decrease positive number
in memory zero by 1, then ask: (2] BN
Is memory zero equal to 0? H
i
YES NO H
&
L 4=
EEZ H
4 4+
u
1 Return for another loop. [6T0] 1 imaiman’
Stop.
{
Get out of “learn” and reset. (RN [RST]

MakiING TRACKS INTO PROGRAMMING' 4-15

[-

Rounp Trips

CONTROLLED ROUND TRIPS:
LOOPS WITH (610 n

RunniInG IT

Caretully key in your program trom the flow chart. Then just enter
any number you'd like to count up to - (say 10), press RBSland your display
should read:

OONPU RO

10.

Then, things should stop. To count to any other number, just enter it and
press [RST| R7].

New Keys

In this section we've introduced a powertul key sequence for setting up
“controlled loops”. The (2nd] I 670 n key sequence lets you "'loop” to any
labeled point in your program, for the number of loops you enter into
Memory zero.

As you'll continue to see as you go through this book, the (2nd] il key
sequence is quite a powerful and versatile program instruction. There
are many places where you'll find this operation useful — and we'll try to
introduce you to these applications areas one at a time. (No doubt you'll
find some of your own unique dpplications as you move on in
programming.)

NEexT SToP

Develop a program that causes your calculator’s display to count
down from any number you enter in the display to one, pausing at each
count.

4-16 MaxiNG TRaCKS INTO PROGRAMMING

b

FACTORIAL!
LOOPS WITH n

An idea that crops up often in studies of probability and statistics is
what's called the factorial of a number. The factorial of a number is
indicated with an exclamation point 1", So, "'17 factorial” is written 17!. I
you've ever wondered how many ways 17 people could arrange
themselves in 17 chairs — the answer is 17!. The factorial of any number,
say 9, is calculated by multiplying the number “out” as follows:

Sl =5 X4 x3x2xI

The tactorial of any number, N, is equal to:
NIl =NXN-1) x (N-2) x 1.
(The number 0! is defined to be 1.)

Rounp TriPs

DESTINATION

Write a program that allows you to enter a number (say 17), press)
and have its factorial calculated and displayed.

PLanNNING THE ROUTE

This example is a "natural” for use of the [2nd] n key sequence to
generate the numbers 17, 16, 15, . .. 3, 2, | in memory 0. We'll enter our
number, load it in memory zero, and put in a label (Label 1) right atter
that point. Then, we'll recall memory zero, hit the multiply key and then
enter the [619] 1 key sequence. You can visualize the loop something
like this:

Recall number in memory 0 Multiply

Decrease the quantity
in memory 0 by 1.

If the first number placed in memory 0 is 17, then the first time around the
loop would produce 17 , and the quantity in memory 0 would be re-
duced to 16. After the next loop you would have 17 16 X1, and 15 would
be stored in memory 0. This loop would continue to generate the required
series for the factorial.

Atter this loop has "finished” and memory 0 is at 0, we'd like to see the
results of all the products. However, since the last thing the calculator is
told to do is [X], an [E]lcannot immediately follow as [XI[=]produces an
error signal. To avoid this, you can put a 'l [Z]" at the end of the
program, and the “'final product” 1 [=] gives the correct result.

MakiNG TRACKS INTO PROGRAMMING 417

(Y-

FACTORIALI LOOPS
WITH n

Rounp Trips

MarinG Tracks: FacToriaL PRoGRAM

ATTETVETTTPITTIe
QUL
DAAMASALLALLALAS

Clear the machine.
Getinto "learn’ mode.

OFF-ON

When you run the program, you'll
enter the number at this point.]

Store displayed number 0
in memory zero.

-

Label this point. 1

g
pu i
++ 4L
H
Recall memory zero, :E:
and multiply. kel 0 H
% HH
Control the loop with instruction.
bse 4
At this point the calculator subtracts | LI 11
from memory zero, and examines result. H
H
IF ZERO IF NOT ZERO i
=
o s
=+ 45
H
[T 1 e
Complete the operation with
1 [—ip] and stop. =]
5:
+F
Reset for each new problem. [RsT]
Y
Get out of "learn”
and reset. RN [RsT]

MAKING TRACKS INTO PROGRAMMING

FACTORIALI LOOPS
WITH 610 n

[-

Rounp TRiPS

RunnNING IT

Enter the program carefully from the flow chart. Once entered, to
calculate the factorial of any number (positive integer less than 70), just
enter it and press [R/]

Some examples:

PRESS DispLAY/COMMENTS
5 120. or 5!

10 3628800 or 10!

17 3.5568743 14 ori7i

50 3.0414093 64 or 50!

Notice that this last calculation keeps your calculator busy for quite some
time. Remember any time you put your machine into a loop — give it time
to crank out the result. Some loops can take hours — even days! Note also
that this program will give you an incorrect result for 0! If you enter 0 and
press [RASI— the result is zero, not 1 as it should be. You might want to
develop a program where you do not get an incorrect result for 0!
(Techniques you'll be learning later on will help.)

As we've already mentioned, using the [2nd llllikey sequence will come in
handy in a variety of situations. In this section we've introduced a few of
its most straight-forward uses. In later sections we'll be speaking more on
the "ins and outs" of its application.

NexT Stor

Develop a program that displays the factorial of the numbers 1, 2, 3, 4, . ..
etc. You'd like each integer displayed for two pauses, then its factorial
displayed for three.

MAKING TRACKS INTO PROGRAMMING 4-19

Fixine Tracks

AN INTRODUCTION

Up to this point we've been running through some shorter programs to
show you how easy it is to get into action with your calculator. By now it's
probable that somewhere along the line you've made a mistake (a
missed keystroke, a RSt key left out, etc.). When this happens (and it
happens to even the most experienced calculator users), often the
simplest thing to do is turn your machine OFF and ON, and re-key your
program caretully. There will be cases, however, where you'd like to be
able to correct or just change programs you have in the machine. There
will also be times where, even when you haven't made any keystroke
errors, there's a mistake in your programming logic that causes trouble.

Well, your calculator has several special features designed just to help
you-in these situations. With these features you can:

* Check over program keystrokes to see just what is "where"” in your
program.

* Insert or delete keystrokes to correct errors, or change what a
program does for you.

*® Easily get to any part of a program that needs “fixing”'.

In this chapter we'll be introducing these editing teatures, and we'll be
talking a bit about recommended ways to "write up’’ or document your
programs — to make them easy to get back to and use even long atfter
you've first written them. We'll also mention some of the basics on
program troubleshooting.

MaKING TRACKS INTO PROGRAMMING 5-1

FINDING PROGRAM STEPS:
KEY CODES AND

How Your CaLcuLATOR REMEMBERS STEPS

Fixing TRacks

At this point, let's talk a bit on how your calculator goes about
remembering program steps you teach it. It's not really magic; your
calculator just has a separate, special memory — called the program
memory — that remembers keystrokes for you. You “'turn on" this memory
when you first press the key. Your calculator then remembers the
keystrokes you enter, until you press (tRN again (or enter too many steps).
You know when you're in “learn” mode — and your program memory is
working — because your display takes on the unique format: 00 00.

Now, the way that your calculator remembers the keystrokes is also
pretty simple. It remembers each keystroke you enter in 'learn” mode as
a number — called a key code. Each programmable key sequence on
your machine has a numerical code that your calculator stores in its
program memory. When you run a program, the program pointer runs
through the program steps, and as it comes to each code it "pushes” the
key or keys each code represents.

THE AND [BsT] KEYS

To take a look at some of this in action, we'll go back to the very first
program we covered in Chapter | and check out its key codes. There are
two special keys that help you do this checking out:

The single step (forward) key lets you step through a program one
step at a time
—either while in "learn” mode to check out key codes,.as we'll see
or
— when not in "learn” mode, to move your program
peinter “train” one step at a ime — and actually run a program
keystroke by keystroke — checking out what's in the display at
each point.

The backstep key moves you one step at a time, but in reverse.
Again, if you're in "learn” mode you'll go backwards through
your program and be able to check out key codes in reverse. (The
key doesn't tunction when you're out of "learn” mode.)

5-2 MaxinNGg TRACKS INTO PROGRAMMING

FINDING PROGRAM STEPS:
KEY CODES AND [ss7

Fixing TRACKS

Let's see all this in action! First, let's key in our simple program that takes
whatever is in the display, doubles it, pauses and then repeats:

Clear the machine. OFF-ON
Getin “learn”. LRN

y
Double the display value. 2 =]
Pause.
Go back & do it again. [RST]
Get out of "learn’ & reset. [rST]

Now, instead of running this program, let’s check out its key codes — the
codes that store what we told the calculator to do.
Press [tRN].
Notice now that the display reads

00 55
This special display format is designed to let you easily examine and
keep track of key codes: .

* The left two digits of the display are the program step counter, or
what step number you re at in your program. (The first step is
numbered 00 and numbers continue up to the last allowable step
49, for a total of 50 steps.)

* The right two digits display the code for the keystroke instruction
at that step.

MAKING TRACKS INTO PROGRAMMING 5-3

Fixine TRACKS

FINDING PROGRAM STEPS:
KEY CODES AND [s5T]

Because we pushed reset, the program step counter digits are (00, the first
of our possible 50 steps. The right pair of numbers (335) is the key code for
multiply, thatcorresponds to your first program step. We'll examine all of
the key codes in a minute, but first let’s step through our program and
watch what happens at each program step.

PRESS DispLAY/COMMENTS
[ssT) 0102 atstep 01 (2nd step).
02 is the code tor digit 2"

[ssT) 0285 At step 02 (3rd step), 85 is the code for [=]. At
this point we've told the calculator to take the
display, multiply it by 2 and display the results

[ssT) 03 36
36 is the code for pause

0471
71 is the code for RST or reset

SST 05 00
A zero, or in this case, nothing, is at step 05

06 00
Again nothing

At this point, we've reached (and gone past) the end of our
program. Now move backwards with the BT key:

0500
0471

At this point, we're back to the instruction
03 36

Back to the pause instruction (and so on).

We can [sStlor BSTlanywhere in our program. However, one important point
about [8Tand BsT: they cannot become part of any program in your
calculator. When your calculator is in the “learn” mode, all that pressing
[ssT or {8sT does is move you through the program steps and show you the
step number and key code. When you're out of "learn” the Eslkey moves
your program pointer through the steps one a time — and you can watch
the results in the display. (As we said betore, the [B5T key does nothing
when you're not in "learn” mode.)

5-4 MakING TRACKS INTO PROGRAMMING

FINDING PROGRAM STEPS:
KEY CODES AND [ss1]

FixiNG TRACKS

To watch the 58T key in action in stepping through your program while
out of "learn”, just press the IRV and [RsTlkeys, then press [@Rand enter a
one in the display. Then begin pressing [55T:

PRESS DispLAY/COMMENTS
(ssT] 1. Stepl [X]
2 Step?2
[5§T) 2. Step 3 =]
2. Step4
[s5T] 2. Step 5 [rsT]
ESl 2. Stepl X]
[ssT] 2 Step2 2
[SST] 4. Step 3 [=]
4, Step 4 [2nd]
[SST] 4. Step b [rs7

L} L [J L]

Oftten at this point in learning about kéy codes folks will ask, "Why can't I
see these key codes while I'm programming my machine? All I see on the
right side of the display are zeros when I'm keying a program in.” The
reason for this is that while you're in “learn” mode keying in keystrokes, the
display jumps ahead to the next step location in your program memory
as soon as you enter any program step. As soon as you enter a step
the display moves on to the next blank instruction space — waiting for
your next instruction. So, to actually see the key codes, you need to:

e Press 1A to get out of “'learn” mode.

* Press [®8T] to get back to the beginning of your program.

* Press [N ggain.

* You can now go through your program and check the key codes

with the 55T and [BSTkeys — and see things one step at a time.

MaxinG TRACKS INTO PROGRAMMING 5-5

FINDING PROGRAM STEPS:
KEY CODES AND [5s1]

Fixing Tracks

Key CobDEs

Now, how do you (and your calculator) know what the number codes are
for all the keys and key sequences on your calculator? Actually, it's
simple — the key code for any key is just the row and column position of
that key. Look at the keyboard diagram below:

Rclws

1

2

3

4

)

6

7 ¥ X 2
8 P (o] =7 E5 [5]

CoLUMNS

1 2 3 4 5
{(column
numbers lor second functions) 6 7 8 9 0

There are 8 rows ot keys (numbered 1 to 8 top to bottom), and S columns
of keys (numbered 1 to 5 left to right.). The key code for any first function
key is a two-digit number: the first digit is the row the key is in, the
second digit is the column it's in.

Look at the [@Rkey. It's in the first row and fifth column, so its key code is
15. The multiplication key (IX]) is in the fifth row, fifth column, so its code
is 55, and so on.

For second tunctions (written right over the keys) the column numbers are
6,7, 8,9, 0 as shown. For example, the key sequence has 36 as its
code (for row 3, column 6). Notice that the right-most column for second
functions has the digit number zero (instead of 10). So, the key code for
second functions in the 10th column will just show a row number and 0.
‘For example, notice the [2nd] key sequence. Its key code is 30: row 3,
column 0. A complete table of these codes is in Appendix F of this
book. The key code logic is easy to remember — so even without the table
you can pretty well keep track of key codes as you go on in your
programming.

56 MaKING TRACKS INTO PROGRAMMING

Fixing TRacks

FINDING PROGRAM STEPS:
KEY CODES AND [ss1]

SpeciAL NoTEs oN KEY CoDES

There are several situations where you'll see some special behavior
when looking over the key codes. Let's go through three of these special
cases.

First . .. For the numbers 0 through 9, the key code is simply the number: 0
1s 00, 1is 01, 2 is 02, etc. Numbers you enter into a program just stay as
numbers and not a separate code.

Second . . . A three-number code (called a merged code) is used when
you use certain keys on your machine. This is true for all of the keys that
require either a memory or label number immediately after them. Turn
your calculator OFF and ON and try this example:

PRESS DispLaY/ COMMENTS
00 00
[$10) 00320

The 00 32 0 shows the code for step 00 will be “store”’
(32) but the memory location (0-7) must be entered
next (in the place of the last 0).

1 01 00 Memory 1

(GTO] 01510
The 01 51 0 shows the code for step 01 will be "go
to" (51) the label number (0-9) entered next (in the
place of the last 0).

2 0200 Label 2

0

We didn't really write or finish this “"program’’, but it will show you the
three number code we were talking about.

PRESS DispLaY/COMMENTS
[RST] 0
00321

This means that the first step, step 00, is to store (the
32 code) in memory | (the extra or 3rd number on
the right)

01512

(to step to This means that the second step, step 01, is go to

next step) (the 51 code) label 2 (the extra or 3rd number on
the right)

MaxkING TRACKS INTO PROGRAMMING 5-7

FINDING PROGRAM STEPS:
KEY CODES AND

FixinG Tracks

Third . . . The IWlor inverse key when used with certain keys as part of a
program will give the standard key code with a negative sign in front of
it. Since the [Wmeans to "undo’’ or reverse a function, the key code is the
same as for the function, but the negative sign will tell you it's the inverse
of the key and not the key itself.

To check this out on your calculator, first turn it OFF and ON to clear

everything and then:
PrESss DispLay/COMMENTS
00 00
01 00
- [nv]) 02 00
0.
Again, this isn't a program that will do anything, but let's just examine its
key codes:
PRESS DispLay/COMMENTS
(RsT] 0 Reset machine to first program step
0028 Step00is sine (code 28)
SST 01 -28 Step 01 is the inverse of sine {or "arcsine”)

Again, any time you see a negative key code, it indicates the inverse of
that keyboard function.

5-8 MAKING TRACKS INTO PROGRAMMING

Fixine TrRACKS

KEYS WITHOUT CODES

For some important reasons, there are several keys that are not given
separate key codes:

(2nd] and [INV]

The and Wl keys that we've talked about don't have codes because
they are always used with another key that does have a code.

The [N key just puts a negative sign in front ot a standard key code, as
we've discussed.

LRN

Since this key is only used to go in and out of the “learn’ mode, it doesn't
have a code. (RNl itself can never be part of a program.

(587l and [Bs]

As we mentioned earlier, these just step us forward or backward through
the program without aftecting the program. Since they can’t become part
of a program, they don't need a code. Two new and important keys which
we'll discuss in the next section — (keys that let us correct errors and
change programs) — also don't have key codes. These are the "insert”
and “delete” key sequences:

(2nd] I and [2nd] IEH

These key sequences actually are designed to let you modity a program
while in "learn” mode, and cannot become part of a program.

MAaKING TRACKS INTO PROGRAMMING 5-9

Fixing TRACKS

MAKING CHANGES
AND CORRECTIONS

At this point you've seen how you can check out the key codes of any
program you have entered in your calculator. To review the process one
more time:

* First, be sure you're out of "learn” mode

*® Press [RsT]

*Press [LrN]
Then step through your program, forward or backward, with the [5s71and
keys and check the key codes for each step.

Now, it you find a wrong key code, or should you want to alter the
functions of your program, there are three basic methods available to
change or edit the steps in your program.

REPLACING ONE STEP WITH ANOTHER

You can at any step, simply replace the step that's already there with a
new one. While you're in "learn” mode, right at the step you'd like to
replace, just enter the new step right over the old one. The new keystroke
sequence will just replace the old one. Note that as soon as you enter a
new program step the calculator’s display will skip right to the next step.
The step number and key code you'll see right after you've replaced a
given step in your machine is the next one in your program. If you want to
go back and see the new key code for the step you just entered — press
the Bstkey. In this way you can check changes you've just made.

ExaMPLE: Let's consider one quick case using our "Double the Display
Value" program again. First, key it in:

OFF-ON

RN

X12 =]

[20d]
[RN

Now, let's say we'd like to change this program so that it multiplies the
number in the display by 5, instead of 2. Here's what you do:

PrEss DispLay/COMMENTS

RsT| 0 Get back to beginning of program

0055 You're at the first step — " [X]

[ssT] 01 02 This is the 2 that multiplies the display value.
Just enter 5 at this point.

(5] 0285 Display jumps to next step "[=]1"

01 05 Go back to check on your correction. 5 has

replaced 2.

5-10 MAKING TRACKS INTO PROGRAMMING

INSERTING OR
DELETING STEPS zd X

In addition to just replacing program steps with new ones, your
calculator will automatically handle the operations involved in inserting
additional steps, or deleting unwanted steps. Two new key sequences —
the insert — [2nd Il — and delete — [2nd] Il — sequences, do this for you.
Here's how to use these new keys:

Fixing Tracks

To INSERT STEPS:

e While in “learn” mode, using the BSTlor [BSTkeys, get to the program step
where you'd like to add additional keystrokes. For example, if you want
to insert some keystroke sequence between steps 07 and 08 in a program,
[$$T]to step 08. (You go to step 08 because step 07 is O .X., but you want
new information inserted at step 8.)

® Press [2nd] . This takes the instruction at this program step, and all the
ones that follow it, and "pushes them down" one step. This leaves a blank
instruction at the point where you'd like to insert a new one.

¢ Key in the new instruction.

* You can continue this sequence of adding program steps: [2+d] i, then
key in the new instruction, as many times as you need to —
provided that your overall program doesn't exceed the limit of 50 steps.

If you exceed the limit, (2] Nl will push the last instruction "off”’, and
you'll lose it.

Note: Whenever you key in your new instruction (or instructions), the
display will jump to the next step. If you'd like to check the key codes on
instructions you've just inserted — use the [Bst key.

To DELETE STEPS:

e While in "learn” mode, using the 8T or BST keys as needed, get right to
the step you'd like to delete.

e Press 2nd lBl. The unwanted step will be deleted, and all the steps that
follow it will be "brought up’’ one step to fill the space it leaves. The
display at this point will show the same step number, with a new key
code — the code of the step that followed the one you deleted.

MAKING TRACKS INTO PROGRAMMING 5-11

INSERTING OR
DELETING STEPS [2nd) HE

Fixing TrRacks

ExAMPLE:

Let's put all of these editing features together in an example. Let's say
that for some assignment you need to solve the equation y = 2x2+ 4x for
several values ot x. First, write a program to do this:

Clear the entire machine. QOFF-ON
Get into "learn” mode.

When vou run the program. yvou'll
enter your value for x at this point. |

Store x in memory 1. 1

I
pa H
H H
Take what we've stored (for x). 5
square it, and multiply by 2. (=2 [X] 2 ‘
Add 4x to the above result. 4 [X]J 1 E
I
i
g H
Total the result, stop the 2
program & reset. =1 kst GHEAH [
L
Take the calculator out of “learn”
and reset for the {irst calculation. [BsT]

Now, let's check the program. Find y when x = 2.

PRESS DispLAY/ COMMENTS
2 16.

Whenx=2,y=16

5-12 MAKING TRACKS INTO PROGRAMMING

INSERTING OR
DELETING STEPS [2nd] Il [2nd]

Fixing TRACKS

We can also check our program by checking the key codes.

PRESS DispLAY/COMMENTS
[CtR] [RST| 0
00321
[ssT] 0123
Then [5s7 through the program to see 02 55
* that your key codes match your 03 02
program. (As you might expect, it'sa 0475
good idea to write down your 05 04

program. This helps you check it and 06 55
also save it for tuture reference. We'll 07 33 1
show you a suggested form for this 08 85
later.) 09 81
1071

Now let’s say you have a need to change this program. Maybe another
problem has come up, and now you need to evaluate the equation
y=2x—4x+7.

At first glance you may want to just key in a new program, but in many
cases you may find it easier to change the program you already have.
All you need to do is change the +4x to a—4x, (the plus to a minus), and
tack the " +7" on at the end. We'll make these changes one at a time,
starting on the next page.

MAKING TRACKS INTO PROGRAMMING 5-13

FixinG TRACKS

INSERTING OR
DELETING STEPS (2nd] IEN

First, remember that you can change any program step to a new one
simply by going to that step and, while in the "learn” mode, keying in the
new step right over the old one. If you look at the program steps on the
previous page, you'll see that the is at step 04 (key code 04 75). To
change this, lirst press to get out of "learn” mode, then press .
Then {ollow these steps:

PrEss DispLay/COMMENTS

[tRN] 00321 First program step

01 23

02 55

[ssT] 03 02

0475 Step you'd like to change

At this point, just key in the new step

=1 0504 Display jumps to the next step

BST 0465 New code at step 4 — we've changed the
"plus” to a "minus”’.

Now, let's move on and tack a + 7 on the end of our original program. The
key code for the [=lkey is 85, and if you look back to the original key code
listing, you'll see that this is step 08 in the original program. We'd like to
insert a " + 7" at that point — so step to 08 with the T key.

[s5T) 05 04

[ssT] 06 55

ST 07331

[ssT] 08 85

Now use the “insert key sequence".

08 00 The display shows that step 8 is now clear —
ready to have a new step inserted.

0985 Display jumps to next step. Note the 85 key
code. The [=1has been moved down to step 09.

0900 Step 9now clear

7 1085 Again the display jumps to next step.
[=] has been moved to step 10.

BST] 0907 '"[ZI" atstep 9.

0875 "[+]" atstep 8.
All our changes have been made correctly!

[LRN] 0

[rsT] 0

5-14 MAaKING TRACKS INTO PROGRAMMING

5 INSERTING OR
DELETING STEPS [2nd] [2nd]

Fixine TRacks

You're now ready to run the edited program.
To solve for y, when x=2, 3, and 5:

2 7.
3 13.
9 37.

Now, to see the delete key sequence in action, let's go back and undo
what we've done in our edit, and change the program back to evaluating
y=2x*+4x.

To do this, we need to change the minus back to plus, and delete the
"+7". Here’s what to do:

PrESss DisrLAY/COMMENTS
[CLR] [RST] 0
00321
0123
(ssT] 02 55
[ssT] 03 02
0465 Thisisthe code for [=]-
we need to change to .
05 04
0475 go back & check, then go on
05 04
06 55
07331 _
0875 key at step 08 — we need to delete next
two steps
08 07

2 &

0 08 85 Now 85 code [=]is where it belongs, and
"+7" has been deleted.

At this point, you've completed your changes on the program, so press
and BT, To check the program, enter 2 and press®S), If the result is 16,
your edit was successiul. If not, you now have the power to review the key
codes and check for problems.

MaxING TRACKS INTO PROGRAMMING 5-15

GOING RIGHT TO
THE PROBLEM nn

At this point you've seen how to use the 55T and BS keys to get to any
point in your program — and how to change things by writing over
program steps you'd like to change, or using the Il or Ellkeys to add or
take away steps. There’s another key sequence that helps you “get right
to" any point in a program, to help you locate problems or just check on
the codes. This is a special sequence involving the 6@ key. You've
already seen how the n instruction can be used in a program to
create loops, or to move the program pointer “train” to any labelled
location in the program that you'd like.

Frxing Tracks

The B® key can also be used when you're out of "learn mode” — to get
you to any step of a program. You can go directly to any step you need to
with the [61 2dInn key sequence — where nn is the (two-digit) step
number you'd like to go to. Here's how it works:

5-16 MAkING TRACKS INTO PROGRAMMING

GOING RIGHT TO
THE PROBLEM [610| [2d n n

Fixing TRaCKS

Tue [610] 20d nn KEY SEQUENCE:

*Be sure you're not in "learn” mode

*Press [6T0 [2d]nn, where nn is the step number you'd like to get to
(01, 05, 21, etc.)

*When you press RN, you'll be at that step number.

As an example, let's key in our quick program that doubles the display
value one more time, and go to various parts of it with the [610] [2d]nn key

sequence:
PRESS DisPLAY/COMMENTS
OFF-ON 0
LeN] 00 00
XJ2[=] 0300
04 00
[RsT] 0500
[RsT] 0
Then we can get to any step easily:
[GT0i [2nd] 02 0.
0285 We're at instruction number 2 ([=1) in our
program.
(LRN] 0 Getoutol "learn” mode
[610| 04 0471 — theRsTinstruction
(LRN] 0

503 28 8] 2800 We're at instruction space 28 — no program
instructions here

0

61 0. (Flashing) We've tried to go heyond step 49 —
the last allowable step — an error condition.

Using the [6T0] nn key sequence can be a genuine time saver —
particularly in checking, editing or troubleshooting longer programs!
Keep in mind, however, that this sequence cannot be used as part of
program (You must use the [60 n sequence where n is a label if you need
a "‘go to” instruction in o program.)

MAKING TRACKS INTO PROGRAMMING 5-17

“WRITING UP” PROGRAMS:
DOCUMENTATION

As you continue to learn about programming, you'll find that there are
some especially handy programs that you'd like to save for future use. To
enable you (and other friends or colleagues) to use your programs at
some later time, it's a good idea to take a moment to write them up so that
you can use them later. A pad of "Program Record” forms — designed to
make it easier for you to write up programs — is included with your
calculator.

FIXING TRACKS

The Program Record torm is divided into the following sections to
tacilitate program writeup while you create the program:

¢ At the top of the form are spaces for the program title, your name
and the date; in the lower right hand corner is a space for a
three-digit program number you can assign to each program for
easy and accurate program record keeping.

¢The Program Description section lets you write "'in words' exactly
what the program does and what equations/information, etc. it
uses to do it.

eThe How to Use It Section lets you write down the
keystroke sequence for using the program (once it's correctly
entered into the calculator). There's room to let you insert sample
data — so you can check out the program for correct operation
after it's keyed in.

The information above can (and should) be written down
before you begin writing a program. In this way, you have a clear
destination in mind as you set down program keystrokes.

¢ On the back of the Program Record form there's an area labelled
Flow Chart/Notes — to enable you to write up a condensed flow
chart or extra notes on your program. You may be able to actually
develop your programs in this area.

* To the immediate right of this area — there are columns for
recording keystrokes, step numbers and key codes — as well as
comments about "where you are” at important points in your
program.

Notice that the "Key” and "code"” columns are each divided into three
sections. This is to let you write on one line any key sequence that
requires one program step. Key sequences involving the and (W] keys
(or both), as well as those that require a label or program number
following them — can be entered on a single line.

5-18 MAKING TRACKS INTO PROGRAMMING

“"WRITING UP " PROGRAMS:
DOCUMENTATION)

Fixinag TrRacks

Once you've keyed in your program, and you're sure it's working
correctly, you can press [RST] [lRN], and then use the [S8T key to step through
and write down each program key code. In the three columns in the
"code’ section — you can write on one line those instructions whose
codes include a minus sign, label or memory number.
¢ The lower left of this side of the form provides special charts
allowing you to easily record what's stored in the memories, or
what program segments are identitied with labels. These are
especially easy to forget — and so it’s quite important to record
them.

A sample form — filled out for you — is shown here. The idea

in writing up programs is to record things so that any friend of yours (with
the same calculator) could pick up the form — and use and understand
your program right away.

a
ProGRAM TITLE PURPOSE _ém[uatc_%ivzz_fﬁb

Procrammer . FoYNER ©
Dae 8/5/7F Program RECorD

PrOGRAM DESCRIPTION

—
FLOW CHART/NOTES Key Locy Copr COMMENTS—’
] 2l1 321
A3

tlear §-get OFF —ON
into ¥learn? 2 o

Square X and X3
multiply by 2. 2

HOW TO USE IT:
DispLay COMMENTS

Ster{ Press

i
gl

(D[Key_in_program E
Add 4% B4 X 5
(D Fress 1 1
[T
- EE T =
St Re. RS
o op, % Reset = ﬂ
|- Set out of ‘leam' 1 -
] Fr] . —
6 |
 — 7
] (i‘l
|]
F 5 70 L i =
MEMORIES LABELS ! |
[olel] o] Tn o [38
V% value |3r |1 i
2 3y |2 |]
Kl Ix |3 f ‘1’
4] Ix |4 I il
5|(a0s) Sxy [
6]A0S) 5
7]t 7
d g
[o]o]1] s | |

MAKING TRACKS INTO PROGRAMMING 5-19

BASIC
TROUBLESHOOTING

Even the most caretul person makes mistakes from time to time. Your
calculator is easy and straightiorward to use, but sometimes through a
programming oversight — even when you've carefully keyed things in —
your program won't work properly. Here are a few tips and things to look
for in troubleshooting basic programs.

FixiNg TRACKS

Your calculator will let you know about errors in a program in one of
several ways. If at any point in a program an inaccurate key sequence or
series of operations creates an error condition (see Appendix C), the
program will stop and show you a flashing display. This simply means
that you've asked the calculator to do something in a program that it
couldn't normally do even from the keyboard.

Exceeding the display limits or using an incorrect key sequence will
"stop the music”. In other cases you may not see a flashing error
condition, but the results of your program are just plain wrong. It's
always good practice to verily the accuracy of a program with test input
data, whose program outcome you know. If you don't get the result
expected, it's time to look for a problem.

When a program is not working — try to “'think like the machine”. Go
through your flow chart (and key codes) and execute — blindly —
whatever it says to do there. You may find that you've inadvertently
boxed your program into some corner. The 88 key can be of help — both
in and out of "learn” mode, in tracking just what may have gone wrong.

[RsT — Be sure you've reset the calculator wherever you need to — to get
back to the beginning of the program. Also, be sure to turn the machine
OFF and ON before beginning a new program — to clear everything.

— Algebraic Operating System
Remember that all the power of the AOS™ algebraic entry system is
working for you — even inside programs. All operations will be carried
out following the correct mathematical hierarchy. This order may not
correspond to the order of entry you've used in your programs.

Remember that your calculator will hold up to 4 pending operations, at
any one time.

If you have any doubts about the order in which expressions are being
evaluated — remember that you can insert parentheses — (] [0]— to be
certain that things are evaluated in the order you specity.

§5-20 MAKING TRACKS INTO PROGRAMMING

BASIC
TROUBLESHOOTING

FixinGg TRACKS

Remember that special (single variable) function keys must follow the
number they work on. If you want the sine of 30° at some point in a
program, the keystroke sequence is 30

[=1Key — this completes any and all pending operations

waiting to happen inside your machine — be caretul using it.

(Be caretul of using [=] in subroutines — discussed later. It's better to
use [[keys to complete calculations when in a subroutine,
because [=] will complete calculations in the main program as well.)

Labels — Be sure you use any one of the 10 labels no more than once in
any program.

Angular mode — If you're using any of the trig tunctions, remember that
when you first turn the calculator on it interprets all angles as degrees,
unless you change things with the or 2] Bl key sequences, and
stays there until you change again (or turn the calculator OFF-ON).

Memories — Be caretul to check and see that all operations using
memories are working with the correct memory. Also, note that if you
have 4 operations pending in any expression in your program — that
memories 5 and 6 will be used to hold some of the expressions. Any
numbers stored previously in memories 5 and 6 will be lost if a long
expression involving 4 pending operations is entered later on. (Also,
memory 7 is the "t" register — you'll be learning more about it in the next
section.) Memory zero is the memory used with the key sequence
— keep that in mind, too. ”

You'll find that with a little experience your programs will run accurately
and with little trouble. You'll also develop an “eagle eye” for a potential
problem area once it's hit you one time — so the best way to learn
troubleshooting is to keep using your calculator. After awhile you
probably will rarely need to troubleshoot any of your programs.

MAKING TRACKS INTO PROGRAMMING 5-21

X
.",./’

”/.,

o,

O

%
.'Q,"/'

*

%

Iy

33

Q ~\..'o
¢
0O

J
O

D

W

L)

SwitcH TRACKS

There are several keys on your calculator which give it the power to
make decisions while in a program. These keys are
straightforward to use, and basically, they allow you to make
comparisons between what is in the display (or, more properly, the
display register), and some test number or value. Based on how the
display register and test register values compare (equal, unequal,
greater than or equal to, less than), the calculator will take ditferent
program paths. In this chapter we'll cover each of the decision-making
keys and features of your calculator. The keys and key sequences we'll
be discussing include:

(=2t] Exchange x and t

Is x equal to 1?

(inv] Is X not equal to t?

Is x greater than or equal to 1?
(iNv) Is x less than t?

We'll introduce each of these features and key sequences first; then we'll
go through examples of how to use each of them las part of a program.

THE “TEST OR 't REGISTER AND THE [#3t] KEY

One of the memories in your calculator, memory seven, is set aside to
handle tests. For this reason, memory 7 is called the “test” or "'t” register.
As you'll be seeing, many decisions in your calculator can be set up as a
comparison of the "display register’” and the "'t" register. Since memory 7
is so special, there are several ways to get numbers into it:

-One way is to just enter the number and press [S10] 7.

*Another way is to enter the number and press the (=] key. This
key just "swaps” what's in the display register for what's in the "t”
register (memory 7). (By the way, the words "register’’ and
"memory'’ actually mean the same thing.)

Keep in mind that [#%] is not a “'store’’ operation but an “exchange”
operation. (Actually, it is just a handier, single key equivalent to the
7 key sequence which performs the identical function.)

When you press (2] the value in the display register gets stored in the
"t" register (memory 7), and what was in the "'t” register gets put into the
display register.

MAKING TRACKS INTO PROGRAMMING 6-1

SwitcH TRACKS

DISPLAY AND
"DISPLAY REGISTER"

DispLAaY AND “DispLAY REGISTER"

As we've mentioned, the decision-making power of your calculator
involves comparing two numbers, then taking different program paths
based an how they compare. These two numbers will be the number in
the “'t" register, and the number in the display register. The display
register is also called the "x" register; whenever you see an "'x"' on your
keyboard ([l , etc.), the x is referring to the number in the display
register. One point to keep in mind is that the display register holds
numbers up to 11 digits, while your calculator's display only

shows you 8 of them (correctly rounded).

This, in most cases, is not a very significant matter, but we are pointing it
out now for a good reason. Those last three digits in the display register
— the ones you can't see — can affect comparisons your calculator makes.
The displayed number you see in the "'x" register and "t" register may be
equal, but the last three digits may still not agree. In a case such as this,
the calculator will say that x is not equal to t if it makes a comparison.

As we have said, this is seldom a problem for most of your calculations
and programs. When problems arise on this point, however, they can be
really irksome if you don't know the reason why. One way to avoid this
problem is to insert the key sequence [EE] [IN] [EE] This sequence
following a number will truncate the guard digits of a result leaving only
the rounded display value for further use (see Appendix D).

Tue CoMPARISON INSTRUCTIONS:

IS

There are {our ways to compare what's in the “x"', or display register,
with what is in the "t", or test register (memory 7). Each of these four key
sequences makes a comparison and asks a question. If the answer to the
question is "'yes", your program pointer will go right on to the keystroke
sequence immediately following the comparison. If the answer is "'no”,
the program pointer skips the keystroke sequence immediately following
the comparison and keeps on going. We'll list how these comparisons
work for you, then show you a program example of each one in action.

-2 MakING TRACKS INTO PROGRAMMING

" «
£6 THE COMPARISON
E INSTRUCTIONS
m
&
=
0
1. EAl — "Is x EQUAL To t?”
Calculator asks:
"Is x equal to t?”
Yes No
T Note:
Goes to step : je~————=This step can be anything,
immediately following.; but a [610] n sequence can
I be especially useful here (to
Skips to next step!(s). ... move to some other labelled
part of a program).

2. [inv] —"Is x UNEQUAL TOt?’ (x # 1)

Calculator asks: [iNv]

"Is x unequal to t?”
Yes No
T

Goes to step
immediately following.

Skips to next step(s). ...

3. [2nd] — "Is x GREATER THAN ORr EqQuaL To t?”

Calculator asks:

"Is x greater than or equal to t?”

Yes No

Goes to following step.

Skips to next step(s). ...

4, [nv] —"Is x LEss THAN t?" (x << t)

Calculator asks: (V]

"Is x less than t?”

Yes No
iT

Goes to following step.

Skips to next step(s). ...

MaxinG TRACKS INTO PROGRAMMING 6-3

SwitcH TRACKS

COUNTING UP
EXACTLY: =1

In this first example, we'll show you a straightforward way to use the
E&l key sequence.

DESTINATION

Write a program that uses the ERl instruction and counts (by one)
from zero up to any number you enter. You'll just enter the number, press
and the calculator will count up to the number and stop (pausing at
each count).

PLANNING THE ROUTE

We'll take the displayed number and put it in the "'t register right away
with the [#3 key. Then we'll clear the display and plant a label. We'll
“"count” by adding 1 to the display and pausing. We'll test to see if we've
reached our stopping point with a ERY key sequence. Whenx =t
we'll want to stop the program. For all x values less than t we'll want to
keep counting.

MakiNG TRACKS
Enter the program carefully from the flow chart on the next page.

RunnNing IT

PRESS DispLAY/COMMENTS
5
[RsT)

- O

At this point you can enter any new number you would like to
count to, press and , and watch your calculator count up
to it.

NEexr StoP

A Edit the program in this example so that it automatically resets itself
after each "counting session' — ready for new number entries.

B. Write a program that counts down from any number you enter to zero,
then stops, using [x=

6-4

COUNTING UP
EXACTLY: [=t]

SwiTcH TRACKS

MaAxkING TRACKS
Clear machine. OFF-ON
Get into “learn”
When you run this program, you'll enter 0]
the number you want to count to at this point. ¢
Put displayed number
in "t" register. =)
i o
H
Clear the display and .
pause to see 0.
% 03
Label this point. [2nd] 1 0"’9
i §
B 04 H
b 1
Add one to displayed 1 =1 H
number and pause. g
+
H 08 i
[i
Is display value .
equal to "t" value?
YES NO H
&1L
i H
B ja
i
Stop program. H
§ H
18§
2 ;
i8¢
T
Go to Label 1. G0 } oY
11
1
Get out of "learn”
and reset. RsT)

Note: 'rom now on, to help you keep track of your program keystrokes as you enter them,
we'll include the step number you'll see as you enter the program, right below each
program keystroke box. This is the step number you'll see in the display when you're first
entering the program in “learn” mode, after you've completed entering the keystrokes in
that box.

6-5

SwitcH TRACKS

THE SAME BIRTHDAY:
(z=t] (iNV] (2na] E2

In this example we'll be taking a look at an interesting problem from the
field of probability that will illustrate the use of the [iNV] EA key
sequence.

It you are in a room with several people, what are the chances that two of
you have the same birthday? (The answer may surprise youl) The
solution to this problem is a “classic’’ — and it's a natural for your
programmable calculator to handle.

The usual way to handle this problem is in reverse. First consider how you
would calculate the probability that no two people in the room would
have the same birthday. Then subtract that result from | to get the
probability of the reverse outcome.

Start by considering one person. Whatever the day, he or she has a
birthday. The probability that another person does not have the same

birthday is ggg The probability that a third person does not have the
363

same birthday is 365’ and so on. So, if five people are in a room together,

the probability that none of these {olks has the same birthday is:

364, 363, 362 , 361
365 < 365 < 365 < 365 — U-9728644.

The probability that two of these folks do have the same birthday is one
minus this: 0.0271356, or about 2.7%. Note that in solving this problem you
keep multiplying numbers divided by 365: (364 363 362 x)
You'll have one less of these numbers 365 ™ 365 ™ 365

than the number of people you're considering.

DESTINATION

Using (W] , write a program that calculates the chances (as a
percent) that two people in any room have the same birthday. You'd like
to enter the number of folks in the room, press , and have the
probability of two people with the same birthday displayed.

PLANNING THE RouTE

We'll place the number of loops needed (the number of people minus 1)
in the t register and then use [INV] for a branch to

get the correct number of loops. We'll store 365 in memory 2

and then generate the numbers 364, 363, 362, ... for each loop by
subtracting one from memory 2 and then storing in memory 2 again. For
details follow the logic as you enter the program trom the flow chart

on the next page.

6-6 MakING TRACKS INTO PROGRAMMING

2 6 MAKING TRACKS
E Clear the machine. OFF-ON
§ Get into "learn”. [LRN] 00
(% When running, you'll enter the number of people here. Y
Subtract 1 from displayed number =11=
and store in "'t register. [==t] 04
u
Set up memories for calculations 365 [sT0] 2
to follow: 365 in memory 2 1 q
| in memory 3
0 in memory 4 0 4 12
Label this point. 1
PRI
8 13 #
Calculate term to be Re] 2 [=] 1] [=] I
multiplied for each loop. 51012 (=] 365 [=] 23 H
—FF 11
45
Multiply result into memory 3. A
m 3
24
I
Set up a number in memory 4
to "count loops'.] 5 4 Rl 4 27
a i '
Is x unequal to t? .
(checks number of loops) [INV] [20d] R 08
j YES | NO
H
Go back to label | and repeat. [GTo] 1
Subtract contents of memory 3 1 =1 k] 3 [=]
from 1, multiply by 100, 100 [=] 8
s
Stop, and reset. [rsT) 40
Y
Get out of "'learn”, reset & [RsT]
fix decimal at 1 place. 1

RunNING IT

Just enter the number of people in any group and press to see the
probability that two of them have the same birthday. For example:

PrESS DispLAY/COMMENTS

S (people) 5

2.7 (2.7% chance that 2 folks
have the same birthday).

25 56.9 (56.9% chance)

Notice how long you keep your calculator busy during these long “loop”
calculations!

MAKING TRACKS INTO PROGRAMMING 6-7

SwiTcH TRACKS

RENT-A-CAR?
DECISIONS WITH

Any situation where a series of calculations must be repeated many
times is an excellent place for your programmable calculator to save time
and increase accuracy. The "behind the counter” calculations repeated
daily in many businesses is one example. Let's say you're in the
Rent-A-Car business, where the mileage charge is $0.15 per mile for the
first 100 miles, and $0.12 per mile for all miles above 100.

DESTINATION

You would like to work up a program where you just enter the number of
miles, press , and the calculator computes and displays the correct
total charge.

PLANNING THE RouTE

You have two situations here. If the mileage is under 100 miles, you just
need to multiply the number of miles by 0.15. If the number of miles is
above 100, you will charge $15.00 for the first 100 miles and $0.12 per mile
for all miles over that. Your total is then: 15 + (number of miles

driven — 100) x $0.12. Since the number of miles driven is used in both
formulas it will be stored at the beginning of the program (in memory 1).
Your calculator can select and evaluate the proper formula for you by
asking: "Is the number of miles driven greater than or equal to 100?” The
keystrokes E&l will ask this question for you if the number of miles
driven is in the display and 100 is placed in the "t” memory (memory 7). If
the number of miles driven is greater than or equal to 100 the program
pointer will execute the step immediately following E& |, otherwise,
that step is skipped.

Maring Tracks

Follow the program logic and enter the steps carefully from the flow chart
on the next page.

Running IT

To use the program, just enter the mileage, and press .Asan
example, calculate charges for 250, 101 and 37 miles:

PRESS DispLAY/ COMMENTS
250 33.00 charges—250 miles
101 15.12 charges—101 miles
37 5.55 charges— 37 miles
NexT Stor

Edit the above program to allow you to also add in a $12.00/day

charge in addition to the mileage charge above. You'd like to be able to
enter the number of days, press ; enter the mileage, press again,
and have the calculator display the total charges.

6-8 MAaKING TRACKS INTO PROGRAMMING

SwiTcH TRACKS

RENT-A-CAR? DECISIONS
WITH [2nd]

MaAkING TRACKS
Clear entire machine. OFF-ON
Get into "learn” mode. [LRN]
00
When you run this program, you'll enter
the number of miles driven here.
Store number of miles driven. 1
01
Put 100 miles in the "t register. 100 [==t]
ig 05
Recall the number of miles driven. rey 1
ju i 06
Isx greater\?lr/llan e
orequal to "t"'?
YES NO 07
pas
If "yes"” go to Label 1. Gro|]

08

.

If number of miles driven
is less than 100, multiply by 0.15,
stop and reset.

9

Label this point.

5] O
9
I

— .
(=)

Q&

Al
VI
T

T

If number of miles driven
is greater than or equal to 100,
calculate charges, stop and reset.

Get out of "learn”
Reset,
Fix decimal to 2 places.

MAKING TRACKS INTO PROGRAMMING

6-9

SwitcH TRACKS

k-4

FOLLOW THE BOUNCING BALL!
LOOPS WITH [~ [zna EX

There are a variety of situations where setting up limits on a loop may be
handy. In this case the [2nd] EEl or [IW] E=l key sequences can be
very useful. Consider an example you may find from a basic physical
situation. A new toy ball on the market, "dynamoball”, claims to bounce
to 85% of its height on each bounce. As part of a lab exercise you need to
plot what the ball's behavior should be, then you'll experiment with a
ball to see if it meets the manufacturer’s claim.

DESTINATION

You'd like to write a program that lets you enter the initial height of the
ball (in centimeters) oft the ground, press and have the “"bounce
number’’ and height of the bounce displayed for several pauses each —
(long enough to write it down). When the height of the bounce becomes
less than | cm, you'd like the calculator to stop.

®~—"dynamoball”

|
H .
\ height of first bounce = 85 H
initial i // /\\/,*/ g
height | / \
T ERY,
) y
1 2

PLANNING THE ROUTE

We'll take the initial height and store it immediately. We'll put a 1 in the
"t register (since we want the calculator to stop when the height is less
than 1), and then place zero in memory 2. We'll sum | to memory 2 to
display the "bounce number”. Then we'll recall the height (in memory 1)
multiply by .85, and store the result back in memory 1, and pause (This
displays the height of each bounce.) Then, we'll check to see if the
bounce height is less than 1. [it is, we'll stop; it not, we'll go back and
calculate another "Bounce".

MaAakING TrRACks

Follow the program logic and enter the program caretully from the flow
chart on the opposite page.

Running IT

Try entering 5, asthe initial height, and press . The result:
Bounce # Height Bounce # Height
1.000 4,250 6.000 1.886
2.000 3.613 7.000 1.603
3.000 3.071 8.000 1.362
4.000 2.610 9.000 1.158
5.000 2.219 10.000 0.984

6-10 MAKING TRACKS INTO PROGRAMMING

FOLLOW THE BOUNCING BALL!
LOOPS WITH [nv] E=

SwitcH TRACKS

MaxrInG TRACKS

Clear calculator. OFF-ON
4II|IIIIIII|III|II:ID Get lnto ”learn” mOde
When you run the program, you'll enter 00

the initial height at this point. .

Store the height in memory 1. 1
Clear memory 2 and 0
put | in the "'t register. 1

"

H 05 m
Label this point. 1 (1 i
H 06 o
. :g:
Add 1 to number of bounces. 1 suM 2 2 tH
Recall it and pause two times. Pause :E:
o
g 11 H
H
Caloulat 0 — Rel] 1 [X] .85 [=] t#
alculate current bounce neignt, Iz
store it in memory 1, and display it. 1 ,
[P [2nd] 1] [2nd] XN
g 22 :
H :g:
[s x less than t? H
This asks, is the bounce height less than 1? [INV] [2nd| EE Zgi
(if yes — stop; if no — repeat) ‘,gi
YES NO H
i §
oy =
s It
+
Go to Label 2. 2 il
H
Go to Label 1. 1 Y
Label this point 2. 2
Stop program and reset for next use.
28
Get out of "learn”, reset,
fix to 3 decimal places. 3
NEexT SToP

Develop a program that calculates the value of y in the equation
y = 4x* — 3x, forx = 1, 2, 3, 4, etc. The program should stop when the
value of y exceeds 100.

MAKING TRACKS INTO PROGRAMMING 6-11

SHORT HOPS: “SUBROUTINES”
AND

SwitcH TRACKS

At this point you've come quite a long way in learning about
programming. As we move on toward the completion of the programming
section of this book, we'll be covering a few of the special features of your
calculator that contribute to what we'll call its “advanced"” programming
power. One such feature is the "subroutine” feature of your machine. As
its name implies, a subroutine is a "sub” or "mini" program that may
come in handy — particularly if some task is repeated many times

within your program. You can take any series of steps and make it into a
subroutine easily on your calculator with the and keys.

Here's how it works. If you need a sequence of keystrokes over and over
again as part of a program, you can (while programming):
- Put a label (n) in front of the series of keystrokes
- Enter the keystrokes as you would normally
- Important: At the end of the series of keystrokes finish with the key
sequence [NV

When you need to execute the entire series of keystrokes, all you need to
do is insert the key sequence n.

This single key sequence then operates with all of the instructions you've
put in the subroutine, and the program then moves on normally. Here's a
diagram of what happens:

(| Series of program steps. I
It

Calculator comes to subroutine. n

At this point the calculator
goesto label n

“MaIN” PROGRAM
A

Rest of "Main Program” |:[]:I|:|I:|D s
it
\ ‘ End of Main Program.
Beginning of Labelled Subroutine. n f e :%:
W T
|
: T H
) Subroutine keystrokes. i
= [B I ing
@ 8 o
End of Subroutine. [INV] Y
Program pointer goes back
to step right after n
instruction, and continues.
6-12 MAkING TRACKS INTO PROGRAMMING

SwiITCH TRACKS

SHORT HOPS: "SUBROUTINES"
AND [nv]

SoME ADVANTAGES OF SUBROUTINES:

There are several important advantages in using subroutines as part of
your programs.

You can use a subroutine as many times as you need to in your program.
(By the way, "using” or "accessing’ a subroutine is often referred to as
“calling it"))

You can use the n key sequence right from the keyboard (while not in
"learn”’) too. When you press this sequence from the keyboard the
program pointer goes right to label n, and starts up. The calculator
keeps on working until it hits [INV] , or , then it stops. This way you
can use subroutines right off the keyboard, without using the "main”
program itself.

Your calculator is equipped with 2 levels of subroutine capability. This
simply means that while you're inside one subroutine you can “call”
another one. (One subroutine can call another one.) You cannot,
however, have a subroutine call a subroutine that in turn tries to call up a
third one.

Using subroutines can mean a huge savings in program steps and a
genuine boost to your programming efficiency. Anytime you use a set of
keystrokes in a program more than once, use of a subroutine may save
steps. If you're running a longer program, breaking it into subroutines
and then putting it together in one main program can be very helptul. It's
a great aid to troubleshooting and debugging if you happen to have a
problem, since you can check the function of your program in
easy-to-examine “bite-size pieces”.

Using subroutines is a convenient way to organize your thinking while
programming. By giving subroutines easily defined roles in your
program, it's also a lot easier for other programmers to use the programs
you write — and to understand your logic in putting the program
together.

It's also a good idea, as you become more experienced as a
programmmer, to write any and all of your programs so that they can
easily be used as subroutines in other programs. This isn't at all difficult
to do. In fact, if you just stop the program with an [IN] instead of an
instruction, you can just lift it, label it, and use it as a subroutine
where needed. (Note that [IN] will act just like an instruction if
it's not used as part of a subroutine called with the n key sequence.
If you're just running along in a regular program, and the program
pointer “hits" an [INV] sequence, the program just stops.)

MAKING TRACKS INTO PROGRAMMING 6-13

SwiTcH TRACKS

COMBINATIONS:
AND (v

Let's consider a program example from statistics that involves the use of
subroutines. A “combination” calculation arises when things are being
put together in groups (say 10 items grouped 3 at a time without
repeating). The general formula for the number of ways n things may be
combined, r at a time, is written (®) or ,C, and equals: n!

(n—r)lr!
(remember that nl means "'n factorial” — see Chapter 4).

DESTINATION

You want a program that allows you to enter the total number of the
things you are looking at (n) and press ; then enter the number you
want in each group r, press ; and the calculator will display the
number of combinations of n things taken r at a time (,C,).

PLANNING THE ROUTE

To compute the factorial, we'll use a subroutine that works with the
key sequence, as we described in Chapter 4. We can "lift” the
factorial program described in that chapter and use it as a subroutine
here, by just starting it with a label, (label 2), and ending it with an [INV]
key sequence.

We'll calculate nl, store it in memory 1; calculate 1!, store it in memory 2;
calculate (n—r1)!, store it in memory 3; then use these results to compute

C _ n!
i (n—n)!rl

n

MaxkiNG TRACKS
Enter the program carefully from the flow chart on the next page.
RunninG IT

Using your program,calculate the number of poker hands (5 cards) that
can be dealt from deck of 52 cards (5,Cs).

PRrESSs DispLay/COMMENTS
52 8.0658175 67 (Thisis 521)

Note: Allow time for your
calculator to finish.

S 2598960. the number of possible
poker hands from a 52
card deck (,Cs).

Now let's say you would like to use just the subroutine part of the
program to find 10!

10 2 3628800. (thisis 101)

6-14 MaxkiING TRACKS INTO PROGRAMMING

MaxkinGg Tracks

Clear the entire machine.

Getinto "learn” mode.

SwitcH TRACKS

When running, you'll enter n here. J

Store n in memory 5. s10] §

£

Calculate n! with subroutine 2. 2

CLULLITLIRTITNITED

Store n!, and stop. sfo]] [R/S

When running, you'll enterr here.

Store r in memory 6. sTo| 6

jad
Calculate r! with subroutine 2. 2

Store r! in memory 2. sto| 2
I
Calculate (n—1). [Ret] 5 [=] 6 (=]
H
Calculate (n—r)! with subroutine 2. 2

Store (n—r)! in memory 3. 3

It
Calculate n! (=]

(n—n)lrl 3 2D}
then stop & reset. [RsT]

Label subroutine 2. 2

| Store displayed number in zero. 0

Calculate factorial. 1
Rel 0

1
1 [=]

(see program in Chapter 4).

End of subroutine. [INV]

Get out of "learn” and reset. [LRN|

MAKING TRACKS INTO PROGRAMMING

6 COUNTING DOWN!
LOOPS WITH i 2nd

As we move on to some of the more advanced features on your calculator,
we'll be covering some of the special uses involving the keys.
This versatile feature enables loops to be set up and counted in many
programming situations. You've already seen in Chapter 4 how the
(decrement and skip on zero) key sequence enables simple "'lap
counting’’ in a loop situation. The key sequence has an inverse
too, that simply reverses the conditions of the skip. The [NV
sequence could be called the "Decrement and Skip it NOT Zero”
sequence. When the program pointer encounters this sequence, here's
what happens:

[INV]

*The calculator subtracts one from whatever (positive integer) is
stored in memory zero.

-The calculator then asks, "Is the result equal to zero?"

-If the answer is "'yes"”, go right on to the program step
immediately following the .

-1f the answer is "no”, skip right over the {ollowing step and on to
the next instruction.

SwitcH TRACKS

Here's a picture of what happens:

Calculator comes to

"Decrement and Skip if NOT Zero" sequence. [1wv] b

Calculator subtracts one from

memory zero & examines result:

If result is zero, It result is NOT zero,

calculator goes right on | calculator skips

to next step. next step.

YES - NO

Step immediately following. o d-
Next program steps. 1]

*Note: This step can be anything.
However, a [6T0] n key sequence
is especially usetul to move the
program pointer to other labelled
program points.

6-16 MAKING TRACKS INTO PROGRAMMING

SwiTCH TRACKS

COUNTING DOWN!I LOOPS
WITH [N

The only difference between this inverse key sequence and the
"regular” key sequence is that in this case the calculator
will skip most of the time, and only go on to the instruction
immediately following when the content of memory zero equals
zero. Note that you can follow the [INW] key sequence with
any program step, but you'll find that following this sequence with
a n instruction will allow you to easily set up loops. Let's look
at a simple example:

DESTINATION

Develop a program that will count down from any number you enter in
the display. You'd like to enter the number, press , and have the
calculator count down by one from that number to one, then stop.

PLANNING THE ROUTE

Take the displayed number and store it immediately in memory zero.
Label that point, and put down the decrement skip if not zero sequence.
In this case, use a [61] immediately following [INW] to take you to a
point that stops the program. Right after the [INV] n sequence
you want to continue your loop, so recall memory zero, insert two pauses
and a 1 to count down. Follow the steps in the flow chart.

MakinG TRACKS
Key in the program steps from the Making Tracks chart on the next page.

RunniING IT

At this point, you can count down from any number. Key the program | in
caretully from the flow chart. Then:

PRESS DispLaY/COMMENTS
5 5
4.
3.
2
1. (Program stops here.)

MAKING TRACKS INTO PROGRAMMING 6-17

6 COUNTING DOWN! LOOPS
E WITH [
5
5
n

MaKING TRACKS

Lt Clear the machine. OFF-ON
Get into "learn”. [LRN]
When you run your program, you'll 00

enter the number you want to
count down from at this point. Y

Store displayed number in
mMemory zero. 0

01
Label this point 1. 1 F ettt

g 02

Calculator decrements memory zero

by 1 and asks, "Is the content of [nv] Os?

memory zero = (07"

fdl

&

YES 03

NO
Go to Label 2. ? 2 HHHRX
04

10 0 D VR R

Lam a2

P
10 11

Recall memory zero
and pause twice.

Go to Label 1.

Label this point 2.
Stop/Reset. [RST]
11
\
Get out of "learn”, and reset. [RN]

6-18 MAKING TRACKS INTO PROGRAMMING

ADDITIONAL FEATURES
AND TRICKS WITH =g

The key sequence (and its inverse [INV]) are powertul
programming features of your calculator. You'll be seeing more of the
things they can do for you as you proceed through the later sections of
this book. Until now, though, we've tried to give you just a first look at the
most straightforward applications of these key sequences as “'loop
counters’’. At this point, we'd like to go on to show you a bit more on how
these key sequences will behave in different situations.

SwitcH TRACKS

UsiNG writH NEGATIVE NUMBERS IN MEMORY 0

In our previous examples we've used and [INV] with
positive integers in memory 0. However, the teature will also work
with negative numbers in memory 0. When a negative number is stored
in memory zero, the instruction will first add 1 to the negative
number, then ask if the contents of memory 0 equals zero. The program
will then move on, or skip, depending on the result. Using with
negative numbers gives you an increment and skip on 0 operation. To
keep things straight, here's a summary of what happens with the
key sequence, using positive or negative numbers in memory 0.

If the number in
memory 0 is negative

[the number in
memory 0 is positive

— When the calculator comes —
to in a program
[t subtracts one from It adds one to the
the number in memory 0 number in memory 0
— The calculator then asks:
"Is the result equal to 0?7

If yes: Skip the next instruction
and continue.

If no : Go right to the next instruction
Basically, then will perform equally well with positive or

negative numbers in memory 0 (as will its inverse — the [INV]
sequence).

MaxING TRACKS INTO PROGRAMMING 6-19

ADDITIONAL FEATURES
AND TRICKS WITH

SwitcH TRACKS

UsinGg wiTH NoN-INTEGER NuMBERS IN MEMORY (0:

In all previous examples, we've used integer values in memory 0 when
we're using . However, will also operate if the number
placed in memory 0 is a non-integer (any number with a whole and
decimal part, such as 3.8). If you start with a non-integer number in
memory zero, though, you cannot get exactly to "zero”” by subtracting 1
from it each time. You need, then, to be aware of exactly what the
calculator does when using the key sequence with non-integer
numbers in memory 0.

Let's say we've entered the number 3.8 in memory 0, and we're running a
program that has a n key sequence in it. Here's a chart
showing what would happen:

Contents of memory Calculator Then calculator |Program
zero when calculator | first subtracts asks: "'Is content |Pointer
comes to | from memory 0| of memory zero |Will:

equal to zero?"

Isttime 3.8 -1=28 No Goton
2nd time 2.8 —-1=18 No Goton
3rd time 1.8 -1= 28 No Goton
4th time 0.8 -1 =0 Yes Skip

*When the results of a decrement operation will cause the contents of
memory zero to change sign, the calculator just stores a zero in memory
zero. Since 0.8 — 1 = —0.2, the calculator sees the change in sign,
automatically loads a zero in memory 0, then skips.

Here's another way to look at this. When a non-integer value is stored in
memory 0, the calculator will go through the same number of loops as if
the next larger integer were stored. Our 3.8 then would produce the same
number of loops as a 4; a 4.1 would give you 5; 6.7 would yield 7; — 3.2 the
saime as —4; etc.

To see this, let's take a look at a program that shows the
sequence in operation. This program pauses during each loop to look at
the contents of memory 0 right before the program step. The final
display will show the value in memory 0 before the last operation. (a
.8in our 3.8 example). To see the "automatic 0" in memory 0, just push
0 after the program halts.

6-20 MAKING TRACKS INTO PROGRAMMING

ADDITIONAL FEATURES
AND TRICKS WITH [2nd]

SwiTcH TRACKS

Now, key in this program and then try the examples shown
on the next page.

Clear the machine and OFF-ON
get into "learn”.
00
Store contents of display
in memory 0. 5wl 0
‘ H 0l
Label this point. (2nd] 1 Zﬁ:'F i
T T
pup 02 I
4 =
Recall memory 0 & display 0 [z0d] H
contents at this point. H
H
] 05 i
ad H
Insert Dsz instruction. [(] &
Calculator subtracts 1 from memory 0 06
i positive; adds 1 if negative. TT
3+
jul
Asks: is content of memory 0 = 07 H
13
Yes No +
4+
had .
= s
Go to label 1. t (61] °
07
Stop/reset. [RsT]
09
Out of learn, reset for st calculation. [RST]

MAKING TRACKS INTO PROGRAMMING 6-21

ADDITIONAL FEATURES:
AND TRICKS WITH

SwitcH TRACKS

Now, try these examples:

PREss DispLaY/COMMENTS
4 —4. Enters negative integer
—3. [2nd] adds 1 each
-2. loop.
—1. Stops since value in memory 0 = 0.
Red 0 0. A zeroin memory 0
3.8 3.8 Enter positive non-integer

2.8 Calculator subtracts 1

1.8 each loop.

0.8 Stop since value
in memory 0 = 0.

0 0. A"0" stored automati-

cally in memory 0
(Notice the 3.8 acted
just like a 4)

47 —4.7 Enter negative non-integer
-3.7
=2.7 Calculator adds | each loop
-17

—0.7 Stop since value
in memory 0 = 0.
[Ret] 0 0. A"0"” aqutomatically stored
with last operation.

6-22 MaxkING TRACKS INTO PROGRAMMING

THE TRACKMAKERS

3

THE TRACKMAKERS: A TOUR
OF THE PROGRAMMING KEYS

Your calculator is a powerful problem-solving device, equipped with a
variety of features that are ready to use — right from the keyboard. In
addition, though, your calculator is programmable. This means you can
teach your calculator to “'push its own buttons” to automatically perform
a variety of calculations (including those that involve decisions). You
can teach your calculator up to 50 problem-solving steps, and then have
it execute these steps as often as you like — with the touch of a single key!
If you've just read through the first half of this book, you've already seen
programmability in action. If you haven't read this book from the
beginning, and if this is your first experience with programming, we
encourage you to learn the basics of programming, one step at a time, by
reading Chapters 3 through 6. These chapters are designed to be a short,
sell-paced course in programming basics. In this chapter we'll go on a
tour of the keys on your machine especially devoted to programs and
programming. If you already have some programming experience, you
may be able to just take this brief tour, pick up your calculator and
program it right away. If you've just finished reading Chapters 3 through
6, this chapter will serve as a quick review.

WHAT's HAPPENING INSIDE:

The way your calculator "learns” a program is in reality quite simple.
There's a special memory, called a "program memory” inside your
machine, that remembers the program keystrokes you teach it. As you
program your machine, each keystroke sequence you enter is stored in
order in this memory as a simple code. When you've finished entering a
program, your calculator can then go back, read the “codes’ in order,
and push its own buttons for you in the exact sequence you've taught it.

To enter a program, you use the programming keys clustered on the left
side of your keyboard. These keys let you teach the calculator the |
necessary problem-solving keystrokes. When you've taught your
calculator a program, it's as if you've set up “tracks” for it to run on — a
path for it to follow in solving your problem. When the calculator is
programmed and ready to go, you can start it oft at the beginning of
these tracks and, much like « train, run down the line of steps you've
entered. The "track” is your program — stored in program memory and
the “train” is called the program pointer. As the train on the program
track comes to (or points to) each step you've programmed, the calculator
pushes its own buttons for you as it was directed.

This chapter, then, will give you a quick review of the “trackmakers”
— or programming keys of your calculator.

MakING TRACKS INTO PROGRAMMING 7-1

THE TRACKMAKERS

g

—THE
LEARN KEY
— THE
RESET KEY

— THE LEARN KEY

Pressing this key once puts your calculator in the “learn” mode of
operation — ready to be taught a program. When the calculator is in
“learn” mode, the display takes on a whole new format, displaying 4
(and sometimes 5) digits.

00 00

The left two digits in the display will indicate the step number you are
about to enter into the machine. (You can enter up to 50 steps, labelled
00 through 49.) The digits to the right are for key codes. These are two
and three-digit numbers that tell the calculator which program steps
you're entering. These right two digits (and a 3rd one that will pop up as
you enter certain keystrokes) will be zero while you enter a program. This
is because the display is always reading out the step you are ready to
enter, and immediately moves to the next step location in program
memory after you enter a step. (Later we'll be discussing how you can go
back and check the key codes for each step you've entered.)

Pressing the key a second time takes your calculator out of “learn”
mode, and it's ready to run a program — or do calculations right from
the keyboard. At this point the display changes back to its standard
format.

Note that while you're in "learn” mode, the calculator won't do keyboard
calculations — it will interpret each keystroke you enter as a program step
to be stored. Once you've stored a program and get out of "learn”

mode, you can do any keyboard calculations you need to — without
atfecting the program stored in program memory. Also, note that turning
your calculator OFT clears the program memory completely (as well as
all other calculator memories and registers).

RST| _ Tue Reser Key

This is the “start back at the beginning’ key. It tells the program pointer
to go back to step 00. This key can be used as part ol a program (you can
enter it while in "learn” mode), or right from the keyboard when out of
"learn” mode. When encountered as part of a program, the program
pointer immediately jumps back to the very first step — step 00, and keeps
on going. When used from the keyboard when out of "learn” mode,
pressing just sets the program pointer to step 00.

The also has other special functions. It resets the subroutine level
counter back to zero and clears the subroutine return register.

7-92 MakING TRACKS INTO PROGRAMMING

THE TRACKMAKERS

o3

—THE
RUN/STOP KEY

—THE
PAUSE KEY SEQUENCE

— TuE Run/Stor KEY

Pressing the key (when out of "learn” mode) tells your calculator to
start running a program (from the current location of the program

pointer). It a program is running, pressing this key (and holding it
momentarily) tells it to stop. The key has a dual function — it things are
stopped, it starts them going; if a program is running, it stops it.

The key can be used as part of a program, too — when entered in
“learn” mode. It a program is running and it encounters an
instruction as a program step, it simply stops and displays whatever is
currently in the display register. This allows you to stop a program to
see intermediate results, to enter new numbers the program may need
to work on, or to halt the action when the program is finished.

Note that when you're out of “learn” mode and press , the program
pointer begins stepping through program memory starting from its
current location. If you want to start at the first program step (step 00), you
need to press before pressing R/ (You can position the program
pointer at any other location you'd like to start at with the key —
discussed later.)

— THE Paust KEY SEQUENCE

This key sequence is designed to be used as part of programs, and

you enter it into your program while in "learn” mode. While a program is
running and the program pointer comes to a instruction, it stops
the program for about % of a second and displays whatever result is in
the display register at that point. Then, it continues on to the next step.

The key sequence lets you get a quick look at a program result,
without stopping the action. This sequence is especially handy when

used in repetitive programs (or “loops’’) — letting you watch the

changing results of continuing calculations. You can watch your money
“grow’' in a compound interest account as the months go by, or watch a
function go to a “limit"”, etc. If you'd like a pause that's longer than % of a
second, you can just add additional key sequences, and keep
things in the display % of a second longer for each pause sequence you
add. (Keep in mind, however, that each key sequence you add

to a program will use up one of your 50 allowed program steps.)

The pause feature can also be used while a program is running by pressing
the [s8T] key. This stops the program and displays the result at that point for
one pause. lf you press and hold the [SsT] key while the program is running
you have a “continuous pause’ that causes the program to pause one time
at each program step. Releasing the key restores normal operation.

MAKING TRACKS INTO PROGRAMMING 7-3

THE TRACKMAKERS

n — THE
LAREL KEY SEQUENCE

MERGED CODES

N — Tue LaBerL KEy SEQUENCE

This key allows you to label any point in a program (or an entire
program), or a subroutine (subroutines will be discussed later). When in
“learn” mode, you press the n key sequence, where n is any
digit 0 through 9. This lets you label up to 10 points in a program. (Label
numbers cannot be repeated in the same programs.)

Labels in a program are convenient, because they work with other keys
(61 and), to let you place the program pointer at any point in a
program you select. Labels don't interfere with any program steps or
calculations in progress — they are just reference “signposts’ for you and
the program pointer. You should put a label at any key point in your
program — especially if you are going to want the program pointer to go
(or “transfer”) to that point as your program runs. If you label a program
point, you can start your program running from that point easily by using
the [61 key (we'll discuss this in a moment).

MEegrGED CODES:

The entire n key sequence takes only one program step,
because the calculator stores both the instruction and label digit with a
special shortened code called a merged code. Try this on your calculator:
Turn it OFF and then ON, press . then . The display now
reads:

00 86 O

The first two digits are the step number: 00, the next two digits are the
code for "label’’: 86, and the last digit (zero) is the location {or the label
number (0-9). You would now enter a label digit to complete the label —
say 3. When you press 3 the display reads: 01 00, which is the next step
location for program entry.

There are several program key sequences that use this merged code
tormat. Basically, these are any of the functions that require a label
number or memory location to be complete. (All the memory
instructions [ReL] | etc. are examples.) Whenever you see the third
rightmost digit light up while you're programming in “'learn’” mode, the
calculator is requesting a label or memory number (0-9). (Don't forget to
put one in — and, also, keep a record ot what each label or memory is
being used for.) Note that the n key sequence also uses a
merged code.

7-4 MaxkING TRACKS INTO PROGRAMMING

THE TRACKMAKERS

n — THE "GO TO"

KEY SEQUENCE

[eT0] nn — THE

"GO TO A STEP NUMBER”
KEY SEQUENCE

n — Tue “"Go To” KEY SEQUENCE

This key sequence can be used as part of a program (when entered in
“"learn” mode), or right off the keyboard (when out of "learn” mode).
Pressing n, where n is a label number (0 through 9) immediately
moves the program pointer to the label number n. In a program, when
the program pointer encounters a n instruction, it goes right to label
n, and continues on from that point. (The n sequernce is stored as one
program step — with a "merged” code.)

The [610] key creates what is called an "unconditional transfer”” when you
use it in a program. No matter what's going on, when the program
pointer comes to a 61 n, it goes right to the program label n and
continues running. There are other types of program transfers made
possible by combining the n key sequence with other keys. These
other keys let you place a condition right before the n instruction.
When you use these other keys (discussed in Chapter 6 and reviewed
later), you can build decision points into your program — and create what
are called conditional transfers.

The n sequence is handy in a variety of situations. You can, for
example, write a long program that performs several different functions.
If you label each function with its own label number, you can easily use
each tunction individually — without running the entire program. When
out of "learn” mode just press n (the label number of the tunction
you want), and then start the program with the key. The program
pointer will start up from the labeled point.

nn — Tye “Go To A STeEr NuMBER” KEY SEQUENCE

This key sequence can be used only when out of "learn” mode. It simply
lets you position the program pointer at any step number you choose.
When out of "learn” mode, if you press [2nd] , and then any two digit
program step number (00-49), the program pointer immediately moves
to that step number. This feature is especially handy if you want to
change or correct a program step (see editing keys — discussed later); or
if you'd like to start the program pointer from some unlabeled point in a
program.

Try this on your calculator. Turn it OFF, then ON, and press 16.
Now press . The display reads 16 00, telling you that you've moved
the program pointer to step location 16. In similar fashion you could
locate the program pointer at any step: 0 through 49. (Trying to go
beyond step 49 results in a flashing error indication).

MAKING TRACKS INTO PROGRAMMING 7-5

L |

— THE "DECREMENT
AND SKIP ON ZERO"” SEQUENCE

THE TRACKMAKERS

— THE “"DECREMENT AND Skip oN ZERO" KEY SEQUENCE

This key sequence is a powertul one. It lets you set up a repetitive
calculation (or "loop”) for as many times as you select. (You store the
number of repetitions in memory zero). What this sequence really does is
allow you to control whether or not the program pointer moves on to the
step that immediately tollows it, or skips that step and goes on to the next
one. When the program pointer comes to a [2nd] key sequence in a
program here's what happens:

- First, the contents of memory zero are decreased by one. (This
assumes that a positive integer is in memory 0. It a fractional
number is in memory zero, the calculator “acts” as i the next
larger number is in memory zero. If a negative number is in
memory zero, it is incremented by one.)

- The calculator then asks: is the content of memory zero equal to
zero?

* If the answer is no, the program pointer proceeds right on to the
step following [2nd] .

- lf the answer is yes, the program pointer skips the following
instruction and continues.

The step that immediately follows the key sequence can be
anything, but a n instruction is often handy at this point for setting up
repetitive calculations. For example, in the program situation shown in
the diagram, the "series of program instructions’ would be executed
repetitively because of the loop.

| @ 3 b The number of times the

“instructions’’ were executed would

p ”Seliiest of fons” be controlled by the number stored
rogram js ructions in memory zero (stored before
I 2nd] j running the program). If a 6 were
1 stored in memory zero, the series of
[3 B instructions would be carried out 6
1 times, then the program would halt.
L i

Note that the series of instructions would also be executed 6 times if a 5.2,
a —b6, ora —5.2 were stored in memory zero belfore the program pointer
arrived at this series of instructions. Alsc, be aware of the lact that since
memory zero is involved whenever is used, it cannot be used for
other storage purposes while handling a sequence, although the
number in memory 0 can be used as part of the computational sequence
by recalling it.

7-6 MaAKING TRACKS INTO PROGRAMMING

TuE TRACKMAKERS

i |

[NV — THE
"DECREMENT AND SKIP
[F NOT ZERO" KEY SEQUENCE

IE — THE “"DECREMENT AND Skipr IF NoT Zero” KEY SEQUENCE

This key sequence works in the same fashion as the previous one, except
the condition of the skip is reversed. When the program pointer comes to
an [INV] [2nd] key sequence, here's what happens:
- One is subtracted trom the contents of memory zero. (Again, it's
assumed that the number in memory zero is a positive integer.
It it's fractional, it acts as if the next largest
integer is in memory zero. lf the number in memory zero is
negative, one is added to it.)
+ The calculator then asks, is the content of memory zero equal to
zero?
- If the answer is no, the program pointer skips the instruction
immediately following the [IN] [2nd] sequence.
« If the answer is yes, the program pointer proceeds right on to the
instruction immediately following the [INV] .
This instruction is also handy for setting up repetitive calculations in a
variety of programing situations.

For additional details on the and [v] key sequences
and their use, see Chapters 4 and 6.

MAKING TRACKS INTO PROGRAMMING 7-7

THE TRACKMAKERS

CONDITIONAL
TRANSFERS

There is a family of instructions on your calculator designed to let you
build decision-making into your programs. The basic operation of this
family of instructions is similar — and they're quite easy to learn, but they
are also flexible enough to allow a great deal of programming power.

Basically when a conditional transfer key sequence is encountered in a
program, the calculator immediately compares two quantities: the
number in the display register (called x) and the number in a special test
or "'t register (called t). (The "t" or test register is just memory 7 on your
calculator.) The calculator then asks one of 4 questions about how x and
t compare — depending on the program instruction you use:

(2nd] BB} Isx = t? (Isx equal t?)
(Nn] [2nd] BE] Isx # t? (Is x not equal t?)

B Isx = t? (Is x greater than or equal to t?)
(in] [2nd] BBl Is x < t? (Is x less than t?)

If the answer is yes, the program pointer goes on to the instruction
immediately following. If the answer is NO, the program pointer SKIPS the
instruction immediately following and continues.

Let's go through each of the conditional transter instructions (and the
keys for using them) one at a time.

@ — THE "'x EXCHANGE WITH t"’ KEY

When this key is pressed the contents of the display register and the "'t
register (memory 7) are just exchanged. This provides a convenient
method of getting any test, or t, value into the test register.

(You can also use the 7 key sequence, or simply the 7
sequence i it is appropriate in your program.)

m — THE “Is x EQUAL To t?” KEY SEQUENCE

You can enter this key sequence while in "learn” mode to have the
program pointer take one of several pathways in your program. When
the program pointer comes to this instruction in a program, the calculator
compares what's in the display register (x) and what's in the "t register
(1) and asks: [s x equal to t? If the answer is yes, the calculator goes right
on to the step following the key sequence. If no, the pointer
skips whatever instruction follows and moves on to the next instruction
and continues.

7-8 MAKING TRACKS INTO PROGRAMMING

P

CONDITIONAL TRANSFERS

THE TRACKMAKERS

The instruction that immediately follows the ERl key sequence can
be anything, but you'll find a [619] n key sequence especially useful, as
shown in the diagram below:

Calculator asks,
"Is x equal to t?"'

= -- B
T Twe To © ©

| @ n) }—— Program goesto Labeln

| Next program steps |

Again, key things to remember when using the EXl key sequence:
*The calculator asks the question: Is x = t?
-1 the answer is yes — it goes on to the step immediately following.
-If the answer is no — it SKIPS the step following and goes on.

OTHER CONDITIONAL TRANSFERS:
@I — "Is x Not EqQuaL to t?" (x # t) KEY SEQUENCE

This key sequence is entered into a program (while in "learn” mode) to
create a conditional program transter (or decision). When the program
pointer encounters the 'Is x not equal to t?"' key sequence — [IW] Exl
— the following things happen:
‘The calculator compares the contents of the display register (x) to
the contents of the test register (register 7).
*The calculator asks: Is x not equal {or unequal) to 1?
-If the answer is yes, the program pointer goes right on to the step
that immediately follows.
-If the answer is no, the program pointer SKIPS the following step
and continues.
Again note that the program step immediately following the [iW] -]
key sequence can be any program step you choose, though «a nis
especially handy at these points.

MaxinG TRACKS INTO PROGRAMMING 7-9

e |

THE TRACKMAKERS

CONDITIONAL TRANSFERS

m — “Is x GREATER THAN oR EQuUAL 10 t?” KEY SEQUENCE

When the program pointer comes to this instruction in a program, the
following things happen:

*The calculator compares the contents of the x and t registers.

-It asks the question: "Is x greater than or equal to t?”

-1f the answer is yes, it goes on to the instruction that immediately
follows.

-If the answer is no, it skips the following instruction and continues.

@] ﬂ —"Is x Less THAN t?" — (x<<t) KEY SEQUENCE

When the program pointer comes to this instruction in a program, the
following things happen: '

-The calculator compares the contents of the x and t registers.

-It asks the question: "Is x less than t?"”

-If the answer is yes, it goes on to the step immediately
following the [WNv] key sequence.

-If the answer is no, it skips the step immediately following, and
continues.

AppitioNaL NoTEs:

It's really quite easy to remember these instructions if you keep your eye
on the "big picture”. Basically you can have the calculator make any one
of four tests: Is x equal t, is x greater than or equal t, or their inverses — Is
x unequal t, Is x less than t? Whatever the case, the calculator makes a
test and asks a question. If the answer to the question is yes, it goes right
on to the step immediately following. If the answer is no, it skips the step
immediately following, and continues.

Note that the quantity x that's compared to t is the contents of the display
register. The display register holds numbers to 11 digits, of

which only 8 are actually shown (correctly rounded) in the calculator's
display window. In certain cases these last 3 digits can atfect the
outcome of the comparisons described in this section. (These cases are
rare, but if a problem should arise, it's helptul to know about this
possibility.) One way to avoid problems with the last 3 digits (called
guard digits) is to use the key sequence [EE] [IN] [EE] . This key sequence
will truncate the 3 guard digits of a result leaving only the rounded
display value for turther use (see Appendix D). For additional details on
the use of these key sequences, as well as sample programs using them,
refer to Chapter 6.

7-10 MaxING TRACKS INTO PROGRAMMING

THE TRACKMAKERS

o3

Using subroutines is not only a handy technique for saving program
steps and breaking a large program down into easy to analyze
segments: it's also just plain good programming practice. A subroutine is
just a "miniprogram'’ you can write as part of any program. Anytime you
need to use a set of program steps more than once in a program, it's a
good idea to make that series of steps into a subroutine. Here's how:

To make any series of program steps into a subroutine, all you need to do
is:

-Start the series of program steps with a Label.

+End the series of steps with an [INV] key sequence.

Subroutines can be of any length, as long as your entire program with all
its subroutines is no more than 50 steps.

To USE A SUBROUTINE IN A PROGRAM:
*While in "learn” mode, anytime you need to use
any subroutine, just press: n. where n is the label of the
subroutine. You can use (or "call”, as is sometimes said), a
subroutine as many times as you'd like in a program.
When the program pointer comes to a n key sequence in a program,
the calculator does the following things for you (illustrated in the
diagram):

(DFirst, it "notes” the step in the
program where the n
instruction occurs in a special
memory (called the subroutine
return memory).

@ The program pointer goes
right to label n and starts
executing the instructions after
it, until it comes to the [INV]
instruction.

@When the program pointer
reaches the [INV]
instruction, it returns to the
point where the subroutine
was "'called”, and continues.

Calculator remembers
next program step.

“MAIN" PROGRAM
'y

SUBROUTINE
b

| [™ ==

MAKING TRAGKS INTO PROGRAMMING 711

SUBROUTINES:
AND [w]

L |

THE TRACKMAKERS

To Use SuBrouTINES RiGHT FROM THE KEYBOARD:

One advantage of using subroutines in a program is that you can use
any subroutine in the program separately from the program itselt. To do
this, just press n while out of “learn” mode. The program pointer will
immediately go to label n and execute the subroutine. In this case the
[INV] key sequence at the end of the subroutine will act just like an
instruction.

NOTES ON SUBROUTINES:

Using subroutines is good programming practice!/ Subroutines let you
organize your programs easily (and thus can help you find errors — it
they exist.) It's also easier for other programmers to understand and use
your programs when they're in bite-size subroutine "chunks".

Your calculator is equipped with two levels of subroutine capability. This
means that while you're inside one subroutine, you can "call” or use
another subroutine. You can't go to a third level, however. It a second
level subroutine tries to “'call”’ a third, a flashing error condition will be
created. The "subroutine return” memory has room for only two return
locations.

You can easily write any of your programs so that they can be used

as subroutines in other programs. (In fact, most experienced
programmers suggest that you do this.) Naturally, this won't be practical
for programs that contain close to 50 steps — but it's a good procedure to
follow for any shorter programs. To do this, just start the program with a
label, and end it with an [NV] key sequence. The [iN] key
sequence acts just like an instruction if the subroutine return memory
is empty.

7-12 MaxiNG TRACKS INTO PROGRAMMING

THE TRACKMAKERS

Your calculator is equipped with a series of keys that allow you to alter
your programs easily and rapidly to it new problem solving situations, or
to correct any errors you may have in your program. These editing
features of the calculator let you get to any point in a program, analyze
it, change a step, add or delete steps, or leave “"blanks” in the program
for later use.

As was mentioned earlier in this chapter, your calculator stores the steps
in any program as a sequence of key codes. These codes are arrived at
in a pretty straighttforward fashion. The code for any number key on the
keyboard is just the number itselt (00 through 09). The key code for any
first tunction key is a two digit number: The first digit is the row the key is
in, the second digit is its column. (Rows are numbered from 1 to 8 top to
bottom, coclumns from 1 to 5 lett to right, as shown in the diagram.)

For example, the key code for the
instruction is 32, [#?] is 23. For second
tunctions, just add 5 to the column
number — with the rightmost column
being indicated by a zero. The code
Rows for is 28, the code for

is 30.

8in CO8 tan

—-IEEIHE

Pause Ins Exc L

B B Fed B O

Nop Del Fix Int 1 X1

— 9 [s5] [[[
im-mm

Rad

—.lIIEIIEIEI

Grad

-IIIEIIZI-
fEEEIEE]J

[o'o BRI B o > NS B O * 2 s o

1 2 3 4 5 Columns for First Functions
Columns
7 8 9 0 Columns for Second Functions

When you first enter a program in “'learn’” mode, you won't see the key
codes, because the program memory display always moves ahead to the
next step. To see the codes in any program, you need to enter the
program first, then go back and examine the codes. Here's how to do this:

MakING TRACKS INTO PROGRAMMING 7-13

THE TRACKMAKERS

PROGRAM EDITING:

SST

Let's enter a simple program to work with. We'll enter a program that
displays the squares of the counting numbers (1, 2, 3, ... etc.) Key in the
program as follows:

PRESS DisrLAY/COMMENTS
OFF-ON 0 Clears entire machine
00 00

1 01 00

SuM 01340

2 02 00

02330

2 03 00

[(#2] 04 00

[2nd] 0500

RST 06 00

0

To run this program, just press and you should see 1, 4, 9, 16, etc.
Press and hold it momentarily to stop the program. Now, using this
program you can check on the key codes and edit, using the keys and
teatures described on this and the following page. (Press now to get
back to the beginning of the program.)

— SINGLE STEP KEY

When used in “learn” mode, this key steps through your program one

step at a time, and lets you check codes. Note that this key has no keycode
of its own, and can't be entered as a program step. This key can also be
used when out of "learn” mode, to execute a program one step at a time.
For editing you press repeatedly, to see the codes for your program:

PRESS DispLAY/ COMMENTS

0001 1

01342 sum 2

02332 2

Sst 03 23 [22]

04 36 Pause|

ssT 0571 Last program
step

06 00

7-14 MakING TRACKS INTO PROGRAMMING

i PROGRAM EDITING:
E BST

; [610] nn

&

ol

=

— ThHe BacksTep Key

This key operates in "'learn’” mode only, and lets you step back through
your program one step at a time. Press repeatedly to go back
through your program codes. (This key also has no code of its own and
can't be entered as a program step.)

[6T0] [2nd] nn

As was already mentioned, this key sequence can be used when out of
"learn’ mode to go directly to any program step. Press to get out of
“learn’ mode, then press [GT0] 05. Then press [N again. The display
shows 05 71 — you're at step 5 in the program which is the [RST] instruction.

To CHANGE oR EpiT A PROGRAM:

You can write over program steps, blank out program steps, insert steps
or delete steps. Let's take a quick look at each of these:

To WRITE OVER A PROGRAM STEP:

Just get to the exact step you want to write over, and simply enter the new
keystroke or keystroke sequence. The new instruction will write over
the old one and replace it. (The display will move on to the next step as

soon as you do this, so you can go back and check the new code with the
key.)

IIEI — THE “No OpEeRATION OR NO-OP” KEY SEQUENCE

This sequence lets you blank out any instruction in your program with a
"NO-OP" instruction that's simply ignored by the calculator. The
key sequence lets you leave blank spaces in a program you can fill in
later, or lets you “blank out” any instruction you wish. Just step to the
instruction you want to blank out while in "learn” mode, and press

. A NO-OP instruction (code 46) will replace the old one.

— "INSERT” KEY SEQUENCE

This sequence allows you to insert additional steps in a program easily.
If you want to add instructions to your program, step to the program step
that's right at the point you'd like to add additional steps (while in
"learn’ mode).

Then press .
This moves all instructions from that point on down by one location, and
leaves a blank space at the location you're at. Now you can add a new
instruction. To add more instructions, just repeat the process. Note: Any
step at location 49 will be "pushed off”” and lost when you press [s B
MAKING TRACKS INTO PROGRAMMING 7.15

STEPS IN WRITING
A PROGRAM

o3

THE TRACKMAKERS

m — "DELETE"” KEY SEQUENCE

This sequence allows you to remove an instruction from a program, and
close up the gap — moving all the following instructions up by one

location. Just step to the exact instruction you want to delete, and press
the ER key sequence.

For additional details on editing and key codes, as well as examples, of
the editing keys in action, see Chapter 5.

STeEPS IN WRITING A PROGRAM:

As you learn more about programming, you'll begin falling into a
“natural rthythm' where programming solutions will begin to suggest
themselves to you as soon as you're confronted with a problem. The
actual steps you'll follow in getting to a program solution will naturally
depend on your personal approach, but these steps suggest one way to
proceed:

1. Study the problem — gather the equations and procedures you'll need.

2. Set a destination for yourself. Determine how you'll use the program,
so that when the program is complete, you'll know what to enter, what
keys you'll press, and what you want to see displayed.

3. Plan the Program “Route’ — Conceptualize how the program pointer
will "flow" through the program (a flow chart or schematic diagram
of the steps you'll follow may be helptul here).

4. Write down the actual program steps (or, as you gain confidence,
key them right into your machine). As you go along keep careful track
of what is stored in each memory, and what any label you use
signifies. These are items that are easy to forget, and forgetting them is
a common source of error and “'start overs’’.

5. Once the program is entered, check it with known test data to be sure
it's working.

6. Edit and correct as necessary.

7. Document or "write up”’ the program caretully to save it for future use.
Standard program record forms are provided for this purpose and the
form is arranged 1o follow the “steps in writing a program’’ that we've
discussed here. Once your program is working, you can press ,
and then use the key to step through the key codes and record
them on the program record form. This type of complete record will let
you (or a friend) pick up the form at a future date and understand the
program — how it works, how to use it, and how to check it to be certain
it's working.

7-16 MAKING TRACKS INTO PROGRAMMING

THE TRACKMAKERS

DEVELOPMENT OF
PROGRAMMING STYLE

DEVELOPMENT OF PROGRAMMING STYLE:

Whether you're programming your calculator, or a large scale computer
— keep one point in mind: there is no single unique programming
solution to any problem. As you gain experience in programing, you'll
find yourselt developing your own unique style, “tricks of the trade’’, and
favorite techniques in getting at a solution. As you begin gaining
experience, it's a good ideaq to review your techniques periodically to be
sure you're using all the power of your machine. Don't be afraid to
explore new routes, try new alternatives, and experiment with new
methods. Programming is an excellent exercise in clear, common sense,
logical thinking that many folks enjoy (and some are quite addicted to).
Your calculator is deliberately designed to allow you to get started
easily, and then grow quite quickly into an expert in creating programs.

Moving ON:

One more point, — your calculator is easy to use, and readily accessible
and affordable. But, it incorporates most all of the major features and
functions of any large scale computer! The concepts of a program
memory, a program pointer that moves through it, labels, go to
instructions, loops and conditional transters are common to all digital
programmable devices. Once you've learned to program your calculator
you'll find it quite easy to move on to programming any machine — no
matter what the scale. Larger scale computers simply accept their input in
different ways, have more ways to get output results to you, and in
general are equipped to handle and store larger amounts of information.
Most commonly a beginner will approach these machines by writing
instructions one at a time, on cards, paper tape or magnetic discs. These
one-at-a-time instructions will resemble your keystroke instructions —
particularly in most common beginning computer languages such as
FORTRAN or BASIC. The keyboard design of your calculator will

allow you to learn programming easily in either of these languages, after
learning the basics on your machine.

In the next decade, logic and memory will become omnipresent in our
everyday lives. Programmable devices will be everywhere — in the
kitchen, in your home finances, in communications, in personal security —
everywhere. Learning the basics of programming on your calculator

now, will prepare you for the sound use of these devices — and enable
you to enjoy them as a natural part of your daily living.

MakING TRACKS INTO PROGRAMMING 7-17

At this point, you've seen the basics on how to operate your
programmable calculator. This chapter, and those that follow, go on to
give you a selection of examples that illustrate where your
programmable will come in especially handy. Bear in mind that these
tew examples are only a beginning. Keep your imagination “open” as
we go through each one. Building your own programs and finding new
applications for your calculator are an important part of your growth in
learning about programming.

CasH TRACKS

As you go through these programs, take the time to follow the flow charts
caretully to observe the programming techniques utilized. It you have
any difficulties, carefully check each program step for any problems. To
help you avoid “keying in"’ errors, we've included step counter numbers
to the right of the blocks on the flow charts. These are the step

numbers shown as you are first keying in the program. Use these as a
guide to avoid "forgetting” where you are.

Calculators are very handy to have while handling “around the house”
situations involving numbers and mathematics. They bring a speed and
accuracy to calculations that can give you "the edge” in getting best
buys, making sound investments, and getting the most out of your money.
Programmable calculators bring an added dimension to your problem
solving capabilities. Whole sequences of keystrokes can be "boiled
down' to a single “"enter and press” sequence. This lets you "try things
out”, plan, and watch things happen on your calculator to a degree never
before possible. Examples in this chapter include such topic areas as:

-Comparative Shopping — Which size package is the best buy? This
program not only helps decide which is the best buy, it
automatically gives the percent difference.

-Bank Book Balance — Ever have problems balancing your checkbook?
This program helps check on all the "ins and outs”'.

-Bit by Bit — Do you make regular payments to a savings account? If so,
Jhow much money do you have now . . . how much will you have several
years from now? This program helps you to find out.

‘Kilowatt Cost — Ever wonder how much it costs to run your TV set for a

month? What happens to your electric bill when someone leaves that
basement light on all night? This program can help you find the cost of
running any electrical item around the house.

8-1 MAKING TRACKS INTO PROGRAMMING

CASH TRACKS:
AN INTRODUCTION

CasH TRACKS

-Car Fever — Need to shop around on interest? . . . or do you want to
figure out what your monthly payment will be before you take out a
loan? Here's how.

-Interesting Points on Interest — This is a brief (but important) discussion
of the method used to relate monthly interest to annual interest,
vice versa, and more.

r

A a
T

Vi e \ D
O ©— ‘iz.b

=

MaKING TRACKS INTO PROGRAMMING

[2]
%
0
g
P
=
oo
2]
g
O

COMPARATIVE
SHOPPING

One way to determine which of two similar items is really the better buy
(and get the most tor your money) is to compare their unit prices — the
price of one unit of each of the items (for example, cost per pound, oz., qt.,
etc.). The item with the lowest unit price is the most economical.

DESTINATION

We'll work up a program that lets you enter the price and quantity (ozs.,
gts., etc.) of the lirst item (pressing aiter each), and then the price
and quantity of item 2 the same way. The calculator will then pause to
display 1" if item 1 has the lower cost/unit (or "'2" if item 2 is lower). After
the pause, the calculator calculates and displays the percent difference
between the two unit prices.

PLANNING THE ROUTE

Your program should first take the total price of item | (entered trom the
keyboard) and divide it by the number of units. This value should then be
stored for comparison with item 2. The unit cost of item 2 should be
calculated and stored the same way (in memory 2). After calculating
and storing these unit costs, the calculator can compare them using the
E=l key sequence with 0 in the "t" register. To do this, the unit cost of
item 1 is subtracted from the unit cost of item 2 and the difference
compared to "t". If the ditference is negative, item | is cheaper; if the
difference is positive, then item 2 is cheaper. The ExEl key sequence
can be set up to display a 1 or 2 to show which is better. Then the
percentage difference can be calculated using this formula:

% — Higher Unit Cost — Lower Unit Cost
° Lower Unit Cost

x 100

MariNg TrRacks

Enter the program from the flow chart on the following page.

RunnNInG IT

[tem 1 costs $1.09 for 16 oz. I[tem 2 costs $0.89 for 12 oz. Which is the better
buy and by what percentage?

PREss DispLaY/COMMENTS

2 0.00 Fix display at "dollars & cents".
1.09 1.09 Item | price.

16 0.07 Unit price Item 1.

0.89 0.89 Item 2 price.

12 1 Calculator displays a one.

(Item 1 is the better buy.)
8.87 Then displays percent difference.

8-3

MakING TRACKS INTO PROGRAMMING

u
M
o]
E
=
Josi
7}
[
O

COMPARATIVE
SHOPPING
MaxkiNG TRACKS
Clear and enter "learn”. OFF-ON
When you run this program, you'll
enter item | price at this point. ¥
Get set to divide. (=] 0
You'll enter # of units (item 1) . E
Compute & store item 1’s cost/unit. (=] 1 05
Enter item 2 price. z:
Get set to divide. (=] 07
Enter # of units (item 2). g
Compute & store cost/unit (item 2) (=] 2

and find the difference in unit costs.

(ke 1 (=] [Rel 2 [=]

13

+H:
[s difference between
unit price positive? = 14

YES NO
i

If YES, then results are .)
positive — go to label 0. 0),
If NO, results are negative. Item 1 1 I
costs less, so display "'1". Pause 8

m 5
Calculate % difference (item 2 larger) 1 [=] \
& stop, display results, and reset. =] 100 3]

I),
Label for item 2 — best buy. 2nd 0 @

i+
Item 2 costs less, so display a 2.) Pause Pause 3

+
Calculate % difference (item 1 larger) % ?OOE
& stop, display result, and reset. = k5

48

Y

Get out of "learn” & reset. LRN] [RST

MAKING TRACKS INTO PROGRAMMING

8-4

Casu TRACKS

Once each month all of us have the opportunity to tackle "balancing”
our checkbook against our bank statement. Normally, your checkbook
balance will not agree with the balance shown on the bank statement
because you need to allow for the checks and deposits that haven't
cleared yet. But which one do you add . . . ? or do you subtract . . . ?
or...? Well, in this example we'll develop a program that will help you
balance your checkbook.

DESTINATION

We'll design a program that lets you do the following:

- First, you enter the balance trom your bank statement and push
.

+ Then, enter the amounts of your outstanding (uncleared) checks
one at a time, pushing after each. When you're finished
entering uncleared checks, enter a zero, press and go on.

- Next, enter each outstanding deposit (not shown on your bank
statement) one at a time, pressing after each.

+ When you're through entering deposits, enter a zero, press
and the calculator will display the corrected balance for you to
verily with your checkbook balance.

- It these balances don't agree, you can enter the balance you
show in your checkbook, push , and the amount you need
to add or subtract from your checkbook balance to correct it will
be displayed.

PLANNING THE RoUTE

Start by storing the bank statement balance in memory 1. Then, set up a
loop using [INV] SUM] to subtract outstanding checks from the balance.
An [In] comparison in this loop can be used so that when you're
through entering checks, entering a 0 will get you out of the loop. A
similar loop is then used to add deposits to the balance. After the last
deposit, the contents of memory 1 should agree with the balance you
show in your checkbook. If it doesn't, you can then enter your checkbook
balance, take the difference, and the display will show the amount to use
to correct your checkbook balance.

MaxinGg TRACKS
Key in the program from the Making Tracks chart on the next page.

8-5 MakING TRACKS INTO PROGRAMMING

BANK BOOK
BALANCE

0
B
8]
E
[—q
ey
u
=3
O

MaxkiNG TRACKS

Clear & get into “learn” mede. OFF-ON
At this point, you'll enter bank statement balance.
Stores bank balance. ST0] 1
H
Identifies loop for subtracting checks. 0
Stop to allow entry of check value.
At this point, you'll enter check value. u
Subtracts checks from memory 1. [INv] UM]
i
Is the last check entered not 07 (V] E= 05 L
YES NO
i
Last check not 0.
Go back & subtract next check. 0
Last check is 0. 1 i’
Label to identify start of deposits.
08
Enter outstanding deposit. {;
Adds deposit to bank statement balance. sum 1
IT
Is the last deposit entered not 0? [INV] [x=t]
YES NO
i XX
Last deposit not 0.
Go back and add next deposit. 1
Last deposit is 0.
Recall correct balance and step to display. 1 13
Enter checkbook balance. 5
. [ReL] 1
Calculate correction amount.]
(=] 18
¥
Get out of "learn” and reset. [RST]

MAKING TRACKS INTO PROGRAMMING 8-6

BANK BOOK
BALANCE

Casu TRACKS

Running It

Your bank statement balance is $340.26. You have outstanding checks of:
$76.83, $122.87, $219.50, $397.31, $231.00, and $138.25. You also have a
$450.00 deposit outstanding. After subtracting your service charge, your
checkbook balance is $209.15. Is this correct?

PrEss DispLAY/ COMMENTS

940.26 [RsT] 940.26 Bank balance.

76.83 [R/S], 122.87 , Each amount will show as

219.50 , 397.31 , entered.

231.00 Al , 138.25

0 0. Tells all checks entered.

450 450. Deposit.

0 You enter zero to indicate last
deposit.

204.5 Correct balance. Let's say
your checkbook record shows a
balance of 209.15
209.15 —4.65 The amount to subtract from
your checkbock record to
correct your balance.

8-7 MAaKING TRACKS INTO PROGRAMMING

CasH TRACKS

BIT BY BIT: BUILDING
A SAVINGS PLAN

A savings account can be an important tool in building a "nest egg"’. You
may just put a lump of money in savings and let it grow. More often,
though, you try to save a little at a time with a monthly savings plan. With
your programmable calculator, it's easy to set things up so that you can
watch how your money will grow with a monthly savings plan.

DESTINATION

We'll develop a program that lets you watch the tuture value (FV) of your
money grow in a monthly savings plan situation. The program will
evaluate the formula:

FV = PMT x (——(“ - ”)

where PMT is your regular savings amount, and i is the decimal value of
interest earned for the time interval, n. (Note that this formula does not
include interest on partial periods. If you're making deposits once a
month, for example, and you deposit on the 20th, interest won't be
calculated until the 1st of the month.)

To use this program you'd like to be able to:
-Enter the payment amount, and press)
-Enter the decimal interest rate per time period, press again,
and . ..
*You'd like your calculator to then display the future value of your
money (FV) for successive time periods (n = 1, 2, 3, ... etc.), along
with the total interest amount you've earned at that point.

PLANNING THE RouTE

First, store the payment amount in memory 1, and then store the interest
rate in memory 2. Then start a loop (at label 0) that will add 1 to memory 3,
recall this, and pause to display it. (This generates, increments, and
displays n — the period number — for each time around the loop.) Then
evaluate the formula.

FV = PMT X (((1 + 1)“ — 1)) , and pause to display FV. To display the
interest earned, subtract the total amount of payments so far (PMT X n)

from FV, and pause. Then, loop back to the beginning of the program
and continue for the next time period.

MakiNG TRACKS INTO PROGRAMMING 8-8

BIT BY BIT: BUILDING
A SAVINGS PLAN

CasH TRACKS

MakING Tracks

Key in the program from the Making Tracks chart on the next page.

RunnNinG IT

As an example, assume that your savings account pays 0.7% interest per
month, and you're saving $55.00 per month. Let's use our program to

watch this account grow for 12 months. Then, calculate the tuture value
(FV) at 60 months.

Press DispLaY/COMMENTS
55 55.00 PMT amount.
0.007 1.00 st month.

55.00 FV = 1st PMT (no interest).
—0.00 No interest so far.

2.00

11039 2PMTS + interest .

0.39 earned interest.

1200 n = 12.
686.01 12 PMTS + interest.

26.01 earned interest.
Press & hold to

stop Stops program.
0 In case you stopped in the
middle of a calculation.
59 3 59.00 Stores n — 1 in memory 3 to look at

n = 60. (Storen — 1 because
program adds 1 to n.)

[60] 0 (or 0) Goes to start of loop.
60.00 60th month.
4083.64 60 PMTS + interest.
783.64 Earned interest.

8-9 MaxkING TRACKS INTO PROGRAMMING

BIT BY BIT: BUILDING
A SAVINGS PLAN

2]
»
O
£
B
o
[}
o
O

Maxking Tracks

Clear and get into "learn”. OFF-ON
At this point, you'll enter PMT amt. ¢
Store PMT in memory 1. 1 0
=
Enter decimal interest rate. jEj
Store iin memory 2, clear 2
memory 3 forn = 0. 0 [STO] 3 05
i D
Identity start of loop. 0 331 i
T 06— H
It L
Generate value of n and pause. 1 SuM 3 [ReL] 3 :E:
R [20d] o H
U H
i
Evaluate FV, store in memory 4, 1 L]] A
(since you'll need it again to 1 Ra] 2 []
find interest) and pause. 3[=]1 0] [=]
2 [=]
Pause +
i 8
3+ =
Subtracts total PMTS made =1 1 H
(PMT X n) from FV to calculate 3 [=] :E:
interest earned. Pause It
T
= 11
L 4t
Go to 0 and repeat loop. [GT0] 0 imm
37
i
Come out of "learn’, reset for LRN
running & fix decimal at 2. Tl 2

MAKING TRACKS INTO PROGRAMMING 8-10

CasH TrRacks

KILOWATT
COST

Did you ever wonder how much you're paying each month to use your
lights? ... your TV set? . . . your electric fan? . . . other appliances? This
program computes the cost of operation for electrical appliances around
your house. All you'll need is your electric bill for last month (since rates
fluctuate for different areas and ditferent total usage), and the wattage
rating of each item you want to check. (You can find this either printed on
the device directly in watts or you can approximate it by multiplying

the current (amps) used by the device times the line voltage (115in U.S.).

DESTINATION

Since you want to know what it costs to run an appliance for a month, you
need a program that will calculate the cost per kilowatt-hour (kWh) from
your light bill and use this to determine the cost of using any appliance
for a month. To do this you'll need to:
-Enter the cost of last month's electric bill (push).
-Enter the kilowatt-hours used from your electric bill (push).
-Enter the number of watts used by the appliance you're testing
(push). (If the appliance shows only "amps”, enter amps
115 [=], then push)
-Enter the number of hours you use the appliance per day (push
), and then the cost to run this appliance will be displayed.

The program we'll develop will also let you keep tabs on the total cost of
all the items you enter — so you can go through your house and “total
up” what your bill should be.

PLANNING THE ROUTE

First, calculate the cost per kilowatt-hour by dividing your total electric
bill by the number of kilowatt-hours used and storing the result in
memory 0. Next, set up a loop (label 0) that takes watts entered,
multiplies by hours used per day, converts to kilowatt-hours per month
(30.4 days per month), and multiplies by cost per kilowatt-hour (stored in
memory 0) to get the cost to run the appliance for a month. This cost is
then summed to memory 1 for a running total. You then loop back for the
wattage entry of another appliance to get its cost per month. (When
you're finished, [Re 1 will give you total monthly cost for all items tested.)

MarxinG Tracks
Key in the program from the Making Tracks chart on the next page.

8-11 MAKING TRACKS INTO PROGRAMMING

0

g 8 MaxkinG TRACKS

[—4

z Clear. OFF-ON
61 Get into “learn”.

When you run the program, you'll enter
total cost of electric bill at this point.

Get ready to divide. (=]

i
¥

1
L

Enter total kilowatt-hours from bill.

Computes average cost for =] 0
kilowatt-hour & storesin 0. R/S

E 05
Label point 0 — Start of loop ! E
to find individual costs. 0 "Q

<H

Enter watts used.

Get ready to multiply.

Enter hours of operation/day.

P
-
=ttt

Converts to kilowatt-hours per month, 304 [=] i
Calculates cost, & sums to 1000 0 HH
memory | for a running total cost. [=] BuM 23 iij
jal
Enter wattage of next appliance +t
to be checked. IEI
B
Go back to find its cost. G610 ¢ R
24
A

Out of "learn” and reset for use.

RunnNING IT Let's say that your electric bill for last month

was $42.47 tor 1000 kilowatt-hours. What's
the cost per month of using a 100-watt light
for 12 hours/day and a toaster that draws 5
amps of current used 15 minutes/day (0.25

hours)?
PRESS DispLaY/COMMENTS
2 0.00 Rounds to nearest cent.
42.57 42.57 Electric bill entry.
1000 0.04 About 4¢/kWh average cost.
100 100.00 Light bulb wattage.
12 1.55 Cost $1.55 for 100 watt bulb.
5 115 =] 575.00 Wattage of toaster.
.25 0.19 19¢ per month for toaster.
1 1.74 Total cost {or both items.

Note: If a new group of items (and new running total) is to be tested, use an
(INV] key sequence to clear memories, press RS, and begin.

MakING TRACKS INTO PROGRAMMING 8-12

CAR FEVER: EVALUATING
PAYMENT ALTERNATIVES

In this example, consider a situation where you've found a car you'd like
to buy, and need a $3400 loan. Checking at a local bank, you find that
they'll gladly give you a 42-month loan at a 0.9% per month interest
charge. In making your decisions on the car and the loan, it would be
handy to have a program that would let you know exactly what your
monthly payments will be for different payment plans (payottin 1 year, 2
years, 5 months, etc.). With your calculator helping out, it's easy to create
a program that will let you tabulate the number of payments in a plan

(n), the payment amount, and the total amount you'd pay for the loan
(the total interest charge).

DESTINATION
g You'd like to set up a program that lets you enter the total loan amount,

press ; enter the monthly interest rate, press again, — and then
have your calculator calculate and display in order:
* (n) — The number of payment months — in successive | month
steps(n = 1,2,3,...).
+ (PMT) — The payment amount for a loan with n number of
payments.
+ The total interest charge if the loan was paid off in n payments.

CasH TRACKS

You'd like the program to continue to display these alternatives until you
stop things with the key.

PLANNING THE ROUTE

First, store the loan amount in memory 0 and the interest rate in memory 1.
Then label and create a loop to evaluate the payment formula:

PMT = Loan amt X — (11 P . The first step will be to generate

successive values of n (using a counting sequence such as | oM 2,
2, works well for this.) Then display n with a pause, and continue on to
calculate and display the payment amount needed for a loan with n
payments. After pausing to display this, multiply the payment amount by
n, and subtract the loan amount to calculate your total interest charge.
Display this with a pause, then loop back to the beginning and continue.

MAxkING TRACKS

Follow the program logic, and carefully enter the program steps from the
flow chart on the following page.

8-13 MAKING TRACKS INTO PROGRAMMING

" i
S 8 CAR FEVER: EVALUATING
E PAYMENT ALTERNATIVES
%
<
O
MaxING TRACKS
1ll|lll|llllll|lll:l'
Clear calculator and OFF-ON
get into "learn”.
At this point, you'll enter loan amount.
Stores loan amount. 0 0
F
Enter interest rate. it
Stores interest. 1
Labels start of loop. [2nd] 0 imi 0 %
T 04 :E:
41 u
iu H
Adds | to n each loop 1 5UM 2 [REL 2 Zgi
and displays it. [2nd] TN [2nd] 10 8
g T
45
Calculates & displays PMT amount, CEN 4
1 (=101
(=1 [
1]
2]
E Pause
2
Calculate & display interest amount. R 2 [=]
(=] 0 [=]
Pause Pause 37
Return & do it again. GTO| 0 “3“8*‘
A
Out of "learn”, reset, fix [RsT]
decimal at 2 places. 2

MAKING TRACKS INTO PROGRAMMING 8-14

CAR FEVER: EVALUATING
PAYMENT ALTERNATIVES

CasH TRACKS

RunNING IT

To check the alternatives on a $3400 loan, with 0.9% monthly interest:

PrESss DispLaY/COMMENTS
3400 3400.00 Enter monthly payment
0.009 Enter decimal interest rate and
calculator then displays
100 n = 1.

3430.60 Payment amount.

30.60 Total interest charge forn = 1.
2.00 n (2 payments).

1722.98 Payment amount.

45.97 Total interest charge forn = 2.

To stop program press whenever you wish. To check one particular
payment alternative (say n = 42 months), just storen — 1 (41) in memory
2, and press 0 (or 0).

41 2 41.00
0 42.00

97.57 per month on 42-month loan.
698.09 Total interest for 42-month loan.

8-15 MAKING TRACKS INTO PROGRAMMING

CasH Tracks

INTERESTING POINTS
ON INTEREST

As you've seen in this chapter, interest rates are an important part of any
business or financial calculation. The terminology used in describing
interest rates can be a little baffling, though. It's important to be certain
that you understand the interest rates involved when calculating for any
business decision. Be sure the interest rate in any calculation is for the
same length of time as your payment (or investment) period. If you're
doing a calculation involving monthly payments, the interest rate must be
expressed as a monthly rate.

Now, let's say that you're given an effective yearly rate, and need to get
to an equivalent monthly compound interest rate. You can calculate
equivalent interest rates for different intervals by using the compound
interest formula. For example, suppose you deposit amount (A) for a year
at 15% per year interest. '

one year

A A(l +.15)

(You would have A X (1 + .15) at the end of the year.) Now say you would
like to know what monthly compounded interest rate (i) is equivalent to
15% yearly compounded interest. To determine the equivalent monthly
compounded rate, assume you deposit the same amount (A) in an

account which pays i per month.

12 months
| | | | | | | | | | |
T T 1 1 1 T | 1] I]

A Al +1)*

The interest rates will be equivalent if the final amounts are equal, after
the same time period.

A(l + .15 =A(+ i

Now the equation may be solved for i.

Dividing both sides by A gives:

(1 +.158) = (1 + i)

taking the 12th root, 24/(1 + .15) = (1 + i)

subtracting | from both sides,

21+ .15 -1=1i

On your calculator [€] 1 15 O] [nv] 12 [=1 1 [=1 0117149 or

about 1.17% monthly interest.

This gives you a basic guide to find equivalent interest rates for different
time periods. However, in all cases involving interest, if you're in doubt as
to how it's actually figured, check with the bank or lending institution
you're considering to see exactly how they figure their interest.

MAKING TRACKS INTO PROGRAMMING 8-16

10
-

PN T B

1 Dok
il

TRACKING MATHEMATICS

=g u U

00

g8
2%

Ao
s
.._._._._l_._._l_._._._._._._l_._._l_._._._._._l_._._._._._-_I_._._._-_._._. ..\

\!.lmlmlmlmlmlmlmlmlmlm-mlmlmlmlmlmlmlmlmlmlmlml_l_l_l_l_l_I_I_l_

TRACKING MATH

Mathematics is all around us — the language of numbers allows us to
live our everyday lives more easily, handle the work we do, as well as
learn about and describe the world we live in. Up to this point, you've
learned about programming and the basic building blocks of programs
— and seen some applications of programming in financial situations.
In this chapter we'll explore some specific areas in math that are
particularly suited to your programmable calculator. Again, with your
calculator handling tedious repetitive computations — you'll tind yourselt
free to focus on the hows and whys of mathematical relationships and
techniques. The areas we'll cover in this chapter include:
¢ Polar Plots: Your calculator makes all sorts of accurate graphing
possible with speed and ease. In this section we'll investigate polar
plots — the "butterfly and flower” diagrams you may have investigated
in your classwork.

¢ Evaluating Integrals: This program finds the value of the integral of
functions (area "under the curve”) using Simpson's approximation.

» Triangle Tracking: There's a formula that enables you to calculate the
area of a triangle, knowing only the length of the sides. This program
handles it easily.

¢ The Limit: Programming simple iterative loops allows you to easily
watch functions converge to a limit, or diverge towards infinity (e). This
section illustrates a general technique for setting up these programs,
and investigates the function:

Inx
x— 1

, as x approaches 1.

» Linear Regression/Trend Line Analysis: These rather formidable
sounding terms refer to techniques that address one of the oldest
problems in the world: can you predict the future, based on past
events? We will discuss a program that allows you to predict trends
and “interpolate” from your known data points.

Programming allows you an added dimension in exploring mathematics
— the dimension of “discovery by watching in action”. You can program

a function into your calculator, and easily see it evaluated for a variety

of input variable values. In this way, you can see things working quickly —
in a way that can often be obscured by tedious computation.

MAKING TRACKS INTO PROGRAMMING 9.1

POLAR PLOTS

TRACKING MATH

You've already seen your calculator in action handling simple straight
line calculations or more,complex iterative loops. One application it
especially "shines at”’, however, is in helping you to easily and
accurately graph the behavior of functions. Normally, graphing even a
simple function is a tedious process. You evaluate the tunction for

one set of values for its variables, plot one point, change the value of

the variables in some specitied way, evaluate the function all over again,
plot another point — and so on. Even with a powertful, standard
non-programmable calculator — it's a time-consuming and error prone
process.

Your programmable calculator was made-to-order for graphing. It loves
handling repetitive calculation, and it can automatically step the
variables for you so you get your points to plot just as fast as you can
write them down!

DESTINATION

In this case we'll consider polar plots. Here, one of the variables in the
function we'll consider is an angle whose value will run from 0 to 360°;
and our plot will be made on polar coordinate axes. Let's say we want to
graph the function:
' r = asin no,
where a = 5 and
n = 2, for values of 6 from 0° to 360°.

To plot any point on this graph we'll need a value for the radius r
(distance from the origin to our point); and 6, the angle counterclockwise
from the x axis.

Point A shown is (4, 30°), where ’ vt
r =4,and 6 = 30°. If the value forr (4,30%
is negative, r is simply plotted in A

the opposite direction. Point B o
shown is (. — 4, 30°). (The value of —>
r is still 4, except in this case we <
plot it along the 30° line in the B
opposite direction.) (= 4,30%

9-2 MAKING TRACKS INTO PROGRAMMING

TRACKING MATH

POLAR PLOTS

To plot a polar graph of r = 5 sin 26, we'll start with 8 equal 0°, evaluate
r, increase 0 in 10 degree steps and display an r value for each so that
we can create a table of r and 8 values easily. the program will allow
you to change the values of a and n easily so that other functions of

this type can be plotted. To run the program you:

» Enter the value of a, press .

* Enter n, press again.

¢ The calculator will then start 6 at 0°, pause (displaying it), then
calculate r and halt with the value in the display.

s Pressing again will increment 8 by 10°, display it, calculate
a new value for r and halt with r in the display. Continuing to
press will allow you to tabulate all the values for 8 and
r needed to complete the polar plot.

PLANNING THE ROUTE

To begin, we'll store the "a"' value in memory 0 and the r value in memory
1. We'll be using memory 2 to store ©. Then to evaluate the function,
begin with a label, recall memory 2 and pause to display O; then solve
forr = asin n© and halt to show the "t value. Then sum 10 to memory 2
(to add 10° to O), loop back and repeat for the new value of O.

Maxing TRACKS
Key in the program caretully from the flow chart on the following page.

MAKING TRACKS INTO PROGRAMMING 9-3

ool
1) POLAR PLOTS
=
O
Z
&
0
=t
o
[_¢
MakinG TRACKS
\eadiisiliil g Clear all. Get into “learn”. OFF-ON
When you run the program,
you'll enter a at this point. ¥
Store a and halt. [ST0] o
H 02
Enter n. 5%
Store n. 10 2
jEt 05
Label start of loop. 0 :B'
s 06
0
Pause to look at 2
current value of . Pause
3 09 ﬁ
RCL 0]
Solves for r and halts Re 1 =
to display it for graph point. 2) ing
sin E R/S :E:
a
[19 T
; +
Increase © by 10° 10 [SUM 2
Return for new value of r. . 0
V 23
Get out of "learn”, reset,
and fix decimal at 2 places. il 2
Running IT
To plotr = 5 sin 2 0, after your program is keyed in:
PRess DispLay/COMMENTS
[iNv] 0 Clear machine and reset.
5 500 Entera =5
2 Entern = 2

0.00 FirstO value: 8 = 0°
000 Firstrvalue:r =0

R/S 10,00 o6 = 10°
.71 r=171
2000 6 = 20°
321 r =321

9-4 MAKING TRACKS INTO PROGRAMMING

TRACKING MATH

POLAR PLOTS

As you continue to push , you'll generate a table of values for 6

andr:

S]
30.00
40.00

360

r
433
4.92

0.00

The graph of the tunction will appear as follows when plotted on polar
coordinate paper. (Note: remember for negative values of r, your plot
will go in the opposite direction. As you plot, you'll draw the "lobe" in
Quadrant I, then Quadrant IV, then Quadrant Ill, and finally, Quadrant

IL)

Quadrant II

130

140

150
180
170

180

Graphofr = 5sin 20

110 100 90
120

190
200
210
220

Quadrant 11

230

240
250

260 97

80 7

e

Quadrant [

50
40
30
20

10\

g degrees

250 290

W7
NS

N

300

350
340

330
320

310

Quadrant IV

MAKING TRACKS INTO PROGRAMMING

9-5

EVALUATING INTEGRALS:
SIMPSON'S RULE

If you've had any calculus courses, you're probably familiar with the
integral symbol /" This symbol stands for “'the integral of"”, and

o/ ? 1(x)dx is read "the integral of {(x) from ato b" — and represents the
area under the curve y = {(x) from point a to point b as shown in the
figure.

TRACKING MATH

If you know the techniques of
integral calculus, you know that b
there are methods allowing you to
evaluate most integrals exactly. You
also know that in some cases this
evaluation may be extremely
difficult, or even impossible!

In these cases, approximation
techniques are sometimes used.

One of these approximation methods
is called Simpson's approximation.

When using Simpson's
approximation (or Simpson's rule,
as it's often called), you divide the
area under the curve into an even
number of parts (n). The width of v, Y5 v,

each part, w, is then given by: b Yo
w = 2= In the figure shown, we've —7 = (%)
divided the area into 6 parts, so

w = 22 To compute the
approximate total area under the
curve (the approximate value of
the integral), you use the following
formula: a b

Area:% X (Y, + 4Y, + 2Y, + 4Y, ++ 2Y,_, +4Y_ +Y

a4

This formidable looking formula is actually quite easy to evaluate with
the program we'll develop in this section.

Here Y, = the Y value withx = a
Y, = the Yvaluewithx = a + w
Y,= the Y value withx = a + w + w,

etc.

Y... = theYvaluewithx = b

9-6 MAKING TRACKS INTO PROGRAMMING

EVALUATING INTEGRALS:
SIMPSON'S RULE

TrRACKING MATH

As an example, we'll write a program for (and evaluate) the integral of
y=2x*+ 3x — lfroma = ltob = 5, usingn = 6. (Note, the integral
approximation gets more accurate as n is made larger.)

DESTINATION

We'll construct a program with a subroutine that repeatedly solves the
equation y = 2x* + 3x — 1, tor each value of x between a and b.
Then using these values Simpson's approximation will be

computed. The program will be constructed so that you'll:

A4

- Enter n (number of divisions — must be an even integer).
and press 0.

> Enter b and press [s10] 1.

- Enter a and press 2.

+ Press [RsT] ., and after a wait, the display will read the integral of
the tunction. To evaluate the integral of any new function all that must
be altered will be subroutine 1, which evaluates the function. Just press
1 while out of LEARN mode, press [N, enter the new function
(remembering that x is in memory 2) and end with an. W] .

Press agdain, enter your new values for a, b, and n and continue.

PLANNING THE RouTE

Since vy = {(x) = 2x* + 3x — | needs to be evaluated many times in this
program, and needs to be easily changeable so that other integrals can
be evaluated, we'll place it in a subroutine at the end of the program.
We'll begin the program by calculating w = 22, storing it and recalling
as we need it. We'll include program steps to find the right multiplying
number (called coefficients) for each "Y'’ term in the Simpson's rule
formula:

Area =‘—"’3—(Y1 +4Y, + 2Y, + 4Y, + ...+ 2Y, _ +4Y. + Y.).

(Note that the coefficients of Y will either be 1, 2, or 4 depending on
which term we're evaluating.) We'll use subroutine 1 to evaluate each
Y term, multiply by the correct coetficient and sum the result to memory
3. Then we'll step to the next x value, determine a new coefficient, a
new Y value, and repeat for n steps. At the end of these steps, we'll

compute Y, ,,, sum it to 3, multiply by % and display the final result.

MAKING TRACKS INTO PROGRAMMING 9.7

TrACKING MATH

EVALUATING INTEGRALS:
SIMPSON'S RULE

MarkinNG TRACKS

Enter the program carefully from the flow diagram on the following page.

Running IT

Again, keep in mind that this program evaluates the integral of
y = 2x* + 3x — 1. To change to another function:

- Be sure you're out of “'learn”.

- Press 1.

+ Press

- Enter the new function.

- End with an [inv] sequence.

Toevaluate 2x* + 3x — lfora=1,b=5n = 6:

Press DispLaY/COMMENTS

6 0 6. Entern,

S 1 5. Enterb,

1 [st0] 2 1. Enterq,

[RsT] [R/S 114.66667 The approximate integral

value — give your calculator
some time to finish.

[N

9.8 MaxING TRACKS INTO PROGRAMMING

o
< 9 EVALUATING INTEGRALS:
= SIMPSON'S RULE
=z
¥
3]
=
=
MaxinG TRACKS
Sty Clear entire machine — get into "learn” OFF-ON
b-a ; 2 [INV] SUM]
Compute *—> and place in
PEeh P 0 W] 1
memories | and 5. , 1 50 3 108
it
The coefficient of Y. 1
+ @
Label point where correct 0 - e
coefficient for Y is inserted. 4 4!
2 1 51
H
Evaluate Y, multiply by correct 1 > i
coetficient, sum result to memory 3. 4 (=] 5V 3 <t 1
H
e 18 s
Generate next x value in memory 2. RcL] 1 [SuM ¢ 1
4L
i 9 H
Repeat computation n times. 0 s
Is memory zero = 0? - 19 ya
YES NO &
.
Generate correct coefficient for next loop. GT0| 2 | i
20 H
1T
Compute Y, , value, sum to 3, 1 BUM 3 3 Iéi
multiply by¥and display final result. 5 [=] 3 [=] 29 o
H . g
Place previous coefficient used in IR 2 9 H
"t register, & compare it to 4" 4 [=t] 4 t
[]
—H 33 H
Is 4 in display = t? Ex1 34 %
YES NO H
1T . ik
If previous coefficient was 4, change to 2. 2 H
81
ini
If previous coelficient not 4, use 4. 0 ii-.!'i'i'i'i'i'i'i‘\.'
e QRD
. . T 1
Subroutine 1 for evaluating =2 dm
y = {(x). (Can be changed for = Ezl =]
new expression.) ﬁﬂ] 2 ! ‘
: 43
¥
Get out of "learn’” and reset. [RST]

MAKING TRACKS INTO PROGRAMMING 9-9

TrRACKING MATH

TRIANGLE
TRACKING

When working with triangles, most of us

remember one formula for computing the
h
area: A = % bh (where b is the length of
the base, and h is the height). There are N
cases, however, where the height may be b

difficult to compute, or you don't know any
of the angles in the triangle, — all you
know are the length ot its 3 sides a, b, and
c. In this case you can compute the c
triangle's area with a formula known as Heron's formula.

This technique is especially handy to use where you're computing land
areas on an odd-shaped piece of land. Most odd-shaped land parcels
can easily be divided, using a survey map, into rectangles and

triangular shaped areas. The areas of the rectangles are easy to compute,
but the triangle areas can be tricky — because in some cases all you

know is the length of the triangle’s sides. This program handles Heron's
formula easily.

Odd-Shaped
Land Parcel

Odd-Shaped
Parcel Divided Up

DESTINATION

Heron's formula states that the area of any triangle equals

VS(S —a) (S — b) (S — ¢) where g, b, and ¢ are the lengths of the three
1

sidesand S = 2 (a + b + o). You'll want a program that allows you
to:

‘Enter a and pressR7A] .
-Enter b and press .
‘Enter ¢ and press .

The calculator will then calculate and display the area of the triangle.
PLaANNING THE RouTE
First, provide for storing a in memory 1, b in memory 2, and ¢ in memory 3.

Then calculate the value of S, where S = %(a + b + ¢), and store this in

memory 4. Then calculate the area =V/S(S —a) (S — b) (S — ¢) by
recalling the memories as needed. Include an at the end to reset for
the next triangle calculation.

9-10 MaxiNG TRACKS INTO PROGRAMMING

9,, TRIANGLE TRACKING

TRACKING MATH

MakinG TRacks
Key in the program from the Making Tracks flow chart below.

Clears all and into “learn”. OFF-ON
Enter st side. (a). !
Store a. 1
i 02
Enter 2nd side. (b). 7
Store b. 2
, 04
Enter 3rd side. (c).
Store c. 3
H 0s
5 K
Solve for S and 1
store it in memory 4. 2
Ra] 3 O] [=]
ST0] 4
iy
pud 17
[RCL] 4
el el
X 4
Calculate area & stop. =]) 2 0]
] ke 4 [=] [rey] 3 [O]
=] [&] [RsT]
40
 J
Out of “learn’, reset for first calculation. [RN] [RST]

Running It
As an example, find the area of this triangle:

P Note: It doesn’t matter which side is
: a, b, or c as long as all 3 are used.

55cm
PREsS DispLay/ COMMENTS
2.6 2.6 Enterside a.
3.8 3.8 Entersideb.
55 4.3914341 The area for this triangle is 4.39 cm?

MAKING TRACKS INTO PROGRAMMING 9-11

TRACKING MATH

Your calculator can add a new dimension to one of the more interesting
explorations in mathematics — investigating limits of functions. In these
situations you examine the behavior of some tunction ({(x)), as its
variable (x) approaches some specilic value. The function in some cases
may "go to infinity” or "diverge" right at the limit point, or it may
converge to a specific limit value.

At any rate, your calculator, by making rapid repetitive calculations
possible, allows you to examine the behavior of functions near limits, and
determine what functional limits will be — even in some not so obvious
situations. For example, what is the limit of the function f(x) = Inx, asx
approaches 17 x-1

(This is written hfll Inx

" ;T,) Notice that at x = 1, both In x and x-1 have

oo

the value 0, and is an "undefined” quantity. With your calculator,
though, we can set up a program that will let you "watch the limit happen'".

DESTINATION

We'll work up a program that lets you store the limit point (in this case 1)
in memory 1, and store some number you'll be coming from (say 4) in
memory 2. When you press the calculator will evaluate the function
%(T tor values of x that move from 4 to 1 (halving the distance to one each
time). The value of x will be displayed (for 2 pauses), followed by the
value of the tunction (lor 4 pauses).

PLaNNING THE RouTE

In our program we'll generate a series of x values that approach (but
never reach 1) by halving the difference between the current x value and
onie, then adding that number to 1. We'll pause to display the current x
value, then use a subroutine to compute and display {(x). We'll then loop
to the beginning and repeat.

9-12 MAKING TRACKS INTO PROGRAMMING

T
:9 THE LIMIT
2
4}
Z
9]
¥
5
)
MakiNG TRACKS
Gy Lnter the program caretully from the flow chart provided.
Clear the machine & get into “learn”. QFF-ON
Y),
Label program beginning. [2nd] 1 ¢
H
Compute half the "distance” between the | [Ret] 2 [=] Rel | [=]
current x value and the limit point. 5 =] 09
Py .
Add this to limit value to get new x value, kol 1 [=] [s19] 2
store in memory 2 and pause. Pause
B
Evaluate function at this x value. 2
+
Pause, then go back and Pause Pause
compute new x value. Pause W [Gro] 1 o1
I ——GQED
Label subroutine that evaluates function. T 2 e <t
It
Compute value of function. Ra 2 [nz) [£] [T o]
’ 2 =11 D) [=] -
H:
End of subroutine. [iNv] 2
|
Get out of "learn” — reset. [LRN]| [RST]

RunniInG IT

To watch this tunction approach its limit at x = 1, just enter the limit point
and a starting value for x as shown below-.

PREss DispLAY/COMMENTS

] [s0] 1 1. Store limit point.

4 2 4. Store point you wish to
approach from.

[RsT] 2.5 xvalue

0.6108605 {(x)
1.75 x value
0.7461544 {(x)
1.375

0.8492]1 etc.

As you watch the display, it will become obvious for this function that as x
approaches 1, the limit of {(x) approaches 1.
MEAKING TRACKS INTO PROGRAMMING 9-13

As most of us progress through school or business, there will be times
when we would like to predict the outcome of some future event — based
on our knowledge of how similar things have gone in the past. You might
want to predict the effects of changes in diet on animal growth in the
biology lab. Or if you're a businessman, you might want to predict what
effect an increase in advertising will have on product sales. In either
case you want to be able to take a known set of data, and use it to
establish a straight line graph, and then predict from the line what the

outcome should be in the future.

Regression
E;t; or gend line The way you normally do thisisto

“draw’ a linear (straight) line that
Yo —— “\T““ best represents the graph ot all of

TRACKING MATH

.i} rise (Ay) your known data or test points. Then

T
; you can extend the line either way to
{ run (Ax) : predict similar events. Data points
: I are usually expressed as two
/ { | numbers, an x coordinate and a
yintercept | Xu 4}'(2 y coordinate for each point you're
(b) plotting.

Determining and drawing the best straight line through a variety of data
points is pretty much a hit or miss matter when drawing a graph. With your
calculator, however, you can take this program and handle several
aspects of the problem easily.

First of all, any straight line graph can be expressed as the equation:

y = mx + b. Here m is the slope of the line, and b is called the "'y intercept”.
The slope (m) of the line, is the ratio of its "'rise" to its "run’’ and the
intercept (b) is where the line crosses the y axis. Once you know the slope
and intercept of a line you can easily draw it. Then, with your graph you
can extend the line to use it in making calculations and predictions with
your data — as we'll show.

With your calculator, you can calculate the slope and intercept of a line
through your data points. Finding these values can be rather involved,
however, and this is an area where programmability will bring a real
payoil. The tormula for calculating the slope is given by:

9-14 MAKING TRACKS INTO PROGRAMMING

TRACKING MATH

LINEAR REGRESSION

The formula for the intercept is:

b=%—-mx

n

f“‘fﬂl’i means the sum of all data coordinates multiplied together,
starting at | and going to n; (x,¥,, X,Y,, ...). With the help of some special
keys on your calculator and the program we'll develop, you'll be able to

solve for m and b with a fraction of the etfort normally involved in handling
these complex formulas.

The program will also allow you to use your data to make predictions.
Once you find m and b, you'll be able to enter a new "x” value and get
its corresponding "predicted” "'y’ value on the line using the formula
y = mx + b. Or you can enter a "'y"” value and "predict” the

corresponding "'x”’ value on the line using the equation D S b.

This program also lets you tind a number called the coefficient of
determination (labeled r?). The number r {computed from r* with a simple
keystroke) is called the absolute value of the correlation coetficient.
This is a measure of how well your data points correspond or correlate to
your line. This helps determine the accuracy of predictions you make
from your line. A value close to 1 indicates a high correlation. (The
calculator could fit your points accurately to a trend line.) A value close
to zero indicates that the sets of data have a low correlation and the
trend line developed by the calculator is not as reliable for predictions.
The formula for r? is:

m? 0x?
oy
The program we're about to embark on involves many, many
calculations and will pretty well "load up” your calculator. The important
point is that with your calculator handling the difficult mathematics, you

can use the powertful tools of linear regression for prediction and
planning, without getting stopped by the mass of computation involved.

r’ =

MAKING TRACKS INTO PROGRAMMING 9-15

LINEAR REGRESSION

TRACKING MATH

DESTINATION

We'll develop a program that allows you to enter all of your data points
easily, and then compute m, b, and r?. Then you'll want to be able to
compute a 'y’ value for any given "X value, or for any given y to find a
corresponding “x" value. To do all of this you'll follow these steps:

+ Enter data points by entering x, pressing [#%t] , then entering y and
pressing . You'll do this until all of your (x, y) data points are
entered.

- Then to tind m, press 0.

» To find b, press 1.

+ To find r?, press 2. Then tofind r.

(Remember a "'r'’ value near one means good correlation, a value near
zero means that the calculator could not reliably correlate your data
to a straight line.)

* To predict what value on the line that y will have for a given "x"

value, just enter the "x”" value and press 3.

+ To predict what value on the line that x will have for a particular v,
enter the "y" value and press 4

X

PLANNING THE ROuTE

The first step will be to enter all the data points using the special data
collection keys on your calculator. These are the , , and
keys on the lower right of the machine, described at the end of
Chapter 2.

Rather than pushing for each entry, we'll include a simple
sequence in the program to help in entering data points. Then we'll
divide the rest of the program into five subroutines to calculate m, b, r?,
and to find x or y. Follow the flow chart caretully as steps have been
conserved using memory arithmetic.

Maxing Tracks

Key in the flow chart caretully from the Making Tracks chart on the next
page.

9-16. MAKING TRACKS INTO PROGRAMMING

m
£9 LINEAR REGRESSION
&)
=
v
3]
=
H
MaAKING TRACKS
Clears all and into "learn”. OFF-ON
(You'll enter x press (=t] |
theny & [R/S]) L
Enters each data point & resets. RST] 03
» e),
Identifies subroutine 0. 0 w
H_
5 =) el
Solve for the slope, m. IZE':’I (=]
[INV] 16
_H @
Identifies subroutine 1. 1
_H
0 [INV]
Calculates the y intercept, b. 2nd =]
] 2
Identifies subroutine 2. (20d] 2 <ttt
4
0 [=2] [=]
Solves for 2. [INV] =]
(] N
You'll enter an x value.)
Subroutine 3. [2nd] 3 <t
H
Finds y to correspond to 7 0 7
entered value of x. NV 7 7
- 42
You'll enter a y value. b @
Identifies subroutine 4. [2nd] 4
Y
Finds x to correspond 7 1 [InV] 5UM 7
to entered value of v. g % ax 7

Note: You won't need to leave "learn” as all 50 steps are used and the calculator leaves
“learn” automatically.

MAKING TRACKS INTO PROGRAMMING . 9-17

LINEAR REGRESSION

TRACKING MATH

RunnNinG It
Test Scores vs. Performance: An Example

Let's say you're a businessman and your sales manager is spending a
considerably sum on a test for prospective sales employees. You'd like to
see if this test is actually telling you anything about how well the
employee will function in the field. Does a higher test score mean
superior sales performance? How strong a correlation is there between
these two factors in your business? If there is a good correlation, you'd
like to know the slopé and the intercept of the straight line, so you can
use these values for tuture predictions. Also, you'd like to know
specifically what a test score of 9 predicts in sales performance; and

" what value test score would indicate a sales performance of 75.

Let's say you have samples of the test scores for 10 employees, along with
records on sales performance expressed as the percentage of the time
that each employee exceeded his or her weekly sales goals last year.
The data is tabulated below:

Employee Sales
Employee Employee Test Score (x) Performdnce (y)
Jerry 5 10
Ross 13 30
Joe 8 30
Ralph 10 40
Mary 15 60
Gary 20 50
Dean 4 20
Carole 16 60
Ted 18 50
Alecid) 20

Follow the steps below in entering the data, and analyzing it to make a
prediction:

9-18 MAKING TRACKS INTO PROGRAMMING

LINEAR REGRESSION

TRACKING. MATH

PRESS DispLay/COMMENTS

[INV] [RST] Clear memories and RsT] to get started.
Then enter your data.*

5 [==t] 10 1. Note: your calculator
13 (=] 30 [RAS] 2. keeps count of each
8 [==t] 30 3. data point you enter.
10 (=8 40 RA] 4,
15 [==t] 60 5.
20 [=t] 50 6.
4 [==] 20 7.
16 [==t] 60 8.
18 [==t] 50 9.
6 [=xt] 20 10. You've entered your 10
' data points.
To find the slope
0 2.6837607 =m
To find the "y" intercept
l 6.1367521
To tind the correlation factor
2 0.7497339 = r*
0.8658717 = r There is a fairly good

correlation — the r value is
reasonably close to +1.
What sales performance would
a test score ot 9 predict?

9 3 30.290598 Prediction: about a 30%
sales performance above goal.
What test score would indicate
a 75% above goal sales
performance record?

75 4 25.659236 An employee with a score of
about 26 should achieve a 75%
above goal sales rating.

*Note: It you make a mistake entering any data point, you can remove

the bad point by re-entering it following this sequence: re-enter "x'’ value,
press [##] . Then re-enter y value and press (W] [2ad] Y . Then proceed
with correct data points as shown above.

MAKING TRACKS INTO PROGRAMMING 9-19

SciENCE TRACKS

Your programmable calculator can be an invaluable aid in your
explorations in science classes, or as you find science applied around
the home and in everyday life. Scientists often work with mathematical
"models” of phenomena — numerical descriptions of how the world is put
together. Your programmable calculator, equipped with the AOS entry
system and scientific notation, is a "natural” for helping you in quickly
and accurately handling scientific math. With looping programs, you
can actually watch events, experiments, and natural phenomena unfold
as time goes on. You see mathematical models or systems in action,
rather than just as formulas to be evaluated.

By exploring science with your calculator, you will find that your mind is
free to focus on the whys and hows of physical laws or natural events.

The formulas you'll find in the various sections of this chapter are usually
labelled in a common sense way — and relate directly to a diagram or
description of the problem that's given. This chapter includes a brief
selection of topics taken from several areas of science, including:

- Projectile motion: A simple program lets you "watch” an object
move through space in a "ballistic trajectory”.

- The Simple Pendulum: You plug in the essential parameters, and
“watch"” it swing using this program.

+ Mass and Relativity: Using your calculator, you can "watch’ the
powerful and intriguing formulas of relativity in action.

- Exponential Growth (& Decay): Many natural phenomena follow
what's called an "exponential” behavior. You can watch these
systems "develop’ using this program.

- Resonance: All types of standing structures in nature, as well as
electronic devices, exhibit what's called a "resonance” behavior.
This program allows you to enter a “'description” of a system, and
then examine its “'resonance’ response.

Note: All the examples in this chapter use the metric system and data
must be entered in the same units as shown in each example.

10-1 MaKING TRACKS INTO PROGRAMMING

b
[—

Probably all of us at one time or another have tossed or hit a projectile
into the air (baseball, golf ball, etc.). This is motion in two dimensions,
and (if we neglect the frictional eftects of the air) it usually follows a
classic parabolic curve as shown below:

ScieNCE TRACKS

4
Y i position of projectile

——— at time t

e -~ =~ /

- f~<
P i ~
i ~
e C Lo ~
Ve y: height of projectile ~Na
49 at time t AN
3] S

l distance from starting I X

point at time t: x

In the case of a golf ball (etc.) projected into the air with an initial speed
Vo, at an angle © with respect to the x axis, the motion would appear as
shown above. Once the ball is in the air, the only force acting on it is
gravity, which accelerates it downward at g = —9.8 meters/second? The
equations which describe how the distance from the starting point (x),
and the height off the ground (y) vary with time as the ball flies through
space are:

x = (Vo cosO)t
and y =(Vo sinB)t + Y4 gt? (where g = —9.8 m/s?).
We'll work up a program that lets us "watch” the projectile fly through
space.

DESTINATION
We'll develop a program allowing us to:
- Enter a time interval for our observation, and press 51 1. (We
can see where the ball is every ¥z second, | second, etc.)

- Enter the intial speed Vo, and press [rsT], .
- Enter the initial angle O in degrees, press again.

The program will then display:

- the time of the observation in seconds, pause, then,

- the distance from the starting point (x) in meters, pause and then

- the height from the ground (y) in meters. It then will step the time
by the value stored in memory 1 and continue.

MAakING TRACKS INTO PROGRAMMING 10-2

10 PROJECTILE MOTION

SciENCE TRACKS

PLANNING THE RouTE

We'll begin by storing Vo and 0, and then create a loop that first steps t
to a new value, then executes a subroutine that computes x and displays
it, and then computes y and displays it.

MaxinG TRACES
Carefully key in the program from the flow chart provided below:

Clear machine and get into "learn”. OFF-ON [IRN|

When you run the progrc?m, first you'l]
store the time interval in memory 1. Then
you'll enter V,, and press . _

Store Vo and halt. [sTo] 2 02
You'll enter O, press RS E
. 3
Store O, place a zero in memory 4. 0
_H
Label this point for a loop. Lit
Py
1 50 4
Generate and display new time value. INV] fit
2nd| [Paus
ey
Call subroutine 1 to calculate "x"" value. 1
Call subroutine 2 to calculate "y value. 2
Go back to label 0 and repeat. 0
ey
M |
Subroutine | — computes x distance kel 2
using formula and displays it. ”fs
Pause JRICTA|
Bl),
[2nd] NEIN 2 <
(] 4.9 B 4 2
Subroutine 2 — computes y distance [=2] [] [RCL] 2
using formula and displays it. ReL] 3 i (X
4 (=] iy 2
Pause ZIB [INV] [SBR)| 49
Get out of "learn” and reset.

10-3 MaxING TRACKS INTO PROGRAMMING

ScIence TRACKS

it
@

@

PROJECTILE MOTION

Running It

Let's examine the path of a bullet, fired at 130 meters per second initial
speed at an angle O of 25° from the horizontal. We'll see where the bullet

is every 0.5 seconds.

Note: The calculator must be in "degree” mode. (It's there
automatically when you turn it on.)

PRESS

0.5 M 1
130 [sT] [R7S]
25

11
11.5

DispLAY/ COMMENTS

0.5 Store the time interval

130.

25

From then on in — the following
numbers are displayed as the
program loops — first t, then x, then v.

x 4
58.91 26.25
117.82 50.04
176.73 71.39
235.64 90.28
1296.02 11.44
1354.93 —-16.21

Note: When the y distance becomes negative, the particle has hit the
ground. Remember that you can stop the program at any time, and
"freeze' any readout, by simply pressing and holding for a moment.

MaxkiNG TRACKS INTO PROGRAMMING

10-4

i
(—)

The pendulum, a simple mass hanging by a light sturdy cord, is one of
the oldest and most accurate timing devices used by man. Galileo is said
to have observed the periodic swinging of a candleholder during a
church service, and to later adopt the principle in timing his experiments
on gravity and free fall.

[1//7//01/7 /7

ScIENCE TRACKS

In mathematically describing the motion of a

/ 4 _ pendulum, we’'ll assume we have a point mass
/l o, Sz::st hanging from a light cord of length f. The mass is
'd -, pulled aside an angle 64 (less than 15°) from the

-
~—-"

vertical. When released, the pendulum (if we
assume no Irictional losses) will swing back and forth at a steady rate —
the time for one complete cycle being given by T = 27/,

length of the cord, and g is the acceleration due to gravity (= 3.8 m/s?).
The motion is described by the equation:

0 — 6, sin((% % 360) + 90).

DESTINATION
g We'll work up a program that lets you:

- Enter the initial angle 0, (the angle in degrees that the mass is
pulled from vertical) press R/} .

- Enter the length of the pendulum "'{", press .

At this point the period (time for one complete oscillation) will be
displayed.

+ To be able to watch the pendulum as it goes through the cycle,
you then enter a time interval (less than one oscillation period) at
which you want to observe the motion, press again —
and the calculator will display:
first, the time (with 0 being the release time) and
then the angle of the pendulum at that time point.

The calculator will then loop and continue by incrementing the time and
showing the new angle, to let you watch the pendulum swing.
PLANNING THE ROUTE

We'll begin by storing the original deflection angle (6,) and the length
(tin meters). The period T = 27 \/Z will be computed. The calculator will
g

then step the current time (1) by the time interval you select, and evaluate
the angle of deflection at t by computing:

9=9°><sin((%><360)+90)

10-5 MaxiNG TRACKS INTO PROGRAMMING

10 MakinG TRACKS

Caretully enter the program from the flow chart below:

Science TRACKS

Clear calculator and get into “learn.” OFF-ON

When running the program, you'll enter
the deflection angle 8, at this point. v

gttt Store 9,, and then store zero in memory 4. 0 0 [sTO] 4

04
You'll enter length of pendulum, €. T
Store length, and evaluate 1
T=2-rr‘/z‘cmdstorein 2 [X1 [2nd] IER [X]
g] 1 [=] 98]
memory 2. =] 2 20
Enter fhe time interval you select. CE:
Store time interval. ST0] 3
=
Label this point for loop. [Lo [
H i
Recall time from memory 4
and display it. ket 4 e
(=] [Rel] 2 360
67 (sin (L x 360 + 90)) %0 [=]
o ST R o [=]
L Paiise
=) -
Increase time in memory 4 [RCL] 3 [SUM 4
by time interval and repeat. 61 1
A
Get out of "learn, and (LRN] [RST]
reset and fix 2. 2

RunnNiNG IT

Let's say you would like to watch a pendulum that is 1 meter long, and
you originally displace it 15°. (Be sure your calculator is in degree

mode.
)PRESS DispLay/CoOMMENTS

You'll enter the deflection angle
15 [rsT] 0.00
You'll enter the length (] meter).

1 2.01 The period (T) is about'2 seconds.
Let's say you select a time interval of 0.2 second.
0.2 0.00 Time intervals and angle

15.00 of swing (O) are displayed.
0.20 (Negative angles indicate
12.15 pendulum has swung past
vertical).
MaxING TRACKS INTO PROGRAMMING 10-6

Science Tracks

MASS AND
RELATIVFTY

¥

Einstein's theory of Special Relativity predicts some remarkable
phenomena — phenomena which reflect some of the genuine mysteries
that are lelt to unfold as we study nature. One outcome of Einstein's
theory predicts the following:

{\ fixed observer

u

. same object moving at
object stationary: velocity u with respect to
mass me observer-mass: m

If an observer measures the mass of an object while it's stationary with
respect to him, he'll measure what Einstein termed the object’s

"rest mass” — labeled m,. Einstein’s remarkable prediction is that if our
observer measures the mass of that same object while it's moving with
respect to him, he'll measure a greater mass. (This remarkable
phenomenon predicted by Einstein has been observed experimentally.)

The faster the object moves with respect to an observer (the higher the
value of u), the greater the measured value of the moving object’'s mass
(m) becomes. The equation that describes this is:

S S
™= w7
(massof (rest ¢
moving mass)
object)

In this equation,'c” is the speed of light-a huge number— equal to 3 X 10°
meters/sec (or 1.86 X 10° miles/sec). The quantity (c) is the fraction of the
speed of light at which an object is moving. For most everyday speeds (2)?
is so small that the term /1 — Z%)Z never gets much below one — so any
increase in mass is not noticed. As"'u’”’ gets close to 'c”, however, the etfect
gets drastic. We'll write a program that demonstrates this effect. (Note:
One other prediction of Einstein’s work is that no object with a finite

rest mass can reach the speed of light with respect to a stationary
observer.)

10-7 MakING TRACKS INTO PROGRAMMING

SciENCE TRACKS

MASS AND
RELATIVITY

DESTINATION

We'll use your calculator to “'take up the speed’” and, starting out at ¥
the speed of light, increase the velocity of our object and read out what
its mass would be at each velocity in steps that approach but never reach
the speed of light.

PLANNING THE ROUTE

We'll begin by storing the rest mass and halting. Then begin with a 0.5 in
memory zero as the starting value for the object’s velocity: ¥ the speed of
light. Label the next step for a loop that: displays the speed, calls a
subroutine that displays the mass, calls a subroutine that steps the
velocity, and then repeats. Subroutine 1 is built directly from Einstein's
formula for m, Subroutine 2 steps the velocity by half the speed "left” to
reach the speed of light.

MaxinG TRACKS
Enter the program caretully from the flow chart on the next page.

Running IT

To examine this mass increase in action, watch what happens for a
particle with a rest mass (m,) of 1 gram:

Press DispLaY/COMMENTS

1 [&sTl 1. m,entered

0.5 atD.5c (Y speed of light)
1.1547005 mass about 1.15 gms
0.75 at.75c

1.5118579 mass about 1.5 gm — at %
the speed of light, the mass
has increased 50%.

0.875

2.0655911

Note: When the speed reaches .99999999 times the speed of light, your
calculator rounds the display to 1, but keeps on computing with its 11
place internal accuracy. It will eventually round to one internally and a
flashing 9.9999999 99 will result. Press and [RST] to rerun.

MaxkiNG TRACKS INTO PROGRAMMING 10-8

15
:10 MASS AND
E RELATIVITY
3]
z
)
3
125}
MakiING TRACKS
Clear calculator & get into "learn”. OFF-ON [LRN]
When you run program, you'll
enter rest mass at this point. *
Store rest mass m,, and halt. 1
H
Start at Y2 the speed of light. 5 0
T
Label this point o start the loop. 0 m p,‘-
i 06 H
H H
Display the current Q t
speed of the object. jéj
: 09 H
L b .=.
Call subroutine 1 to compute its mass m. 1 g
L1
N3 o
Call subroutine 2 to ‘ I
step up the speed. 2 IEI
: n ok
H _
Go back to Label zero & repeat.

Subroutine 1
Computes:

1
- (70)

& displays it.

Subroutine ‘2 Lol
Increases speed by half the speed "left” % ; % g O]
before reaching speed of light.
I N [i]
4]
Get out of “"learn” and reset. [RST|

10-9 MAaKING TRACKS INTO PROGRAMMING

ScIENCE TRACKS

10

Many natural phenomena follow a pattern known as exponential growth
or decay. When growth or decay depends on the amount of a substance
present, this exponential pattern is seen. Bacteria grow at a rate
proportional to the number of cells present; radioactive materials decay at
a rate proportional to the number of radioactive atoms present. This

growth or decay can be predicted by a formula that has the number “'e
(base of the natural logs) raised to some exponent:

n = n.e* for "growth”
n = n,e* for "decay”.

These formulas can be used with test data to determine the constant k,
and then used to predict behavior of various natural phenomena. For
example, if you know the amount of bacteria present in a colony at one
time (number = n,, att = 0), and then after a known time t, you measure
the number the colony has grown to (n); you can calculate k using the

formula:‘ (We're assuming that the

In(g;)

k= —=2 bacteria are in growth stage.)
t

Once k is known, you can use your calculator to "watch’' the growth of the
bacteria colony as time goes on, calculate the number of bacteria that
will be present at a given time, or compute the time at which the specified
bacteria count will be reached. (By making k a negative number in your
program, it can be used to work with decays, such as radioactive decay.)

DESTINATION

We'll develop a program that consists of several subroutines to handle
this situation.

First you'll be able to solve for k by entering test data as follows:

- Enter test value of n,, press [RA].
+ Enter test value of n, press . {
- Enter test observation time, t, press R/S] .

At this point k will be displayed.

* To find n for some time t, just enter t and press 1.
+ To watch the bacteria "grow’’ continuously, in time intervals you select,
just enter the interval and press 2. The time and bacteria level will

be displayed, then the time is increased by the time interval and the
new level displayed, etc.

* To find the time at which the bacteria will reach some growth level n,
just enter n and press 3.

MAakING TRACKS INTO PROGRAMMING 10-10

ScieNce TRacks

b
(—

EXPONENTIAL GROWTH
AND DECAY

PLANNING THE ROUTE

This program has four parts:
1) First, it stores n, in memory 0, n in memory 1, and the test observation
time t in memory 2. Then k is calculated and stored in memory 3.

2) Subroutine 1 allows you to enter any t value, and will compute n,
using n = n ek

3) Subroutine 2 allows you to enter any time increment, it sums this to the
time in memory 4, displays the new time, calculates n using subroutine
1, displays it and then steps and repeats.

4) Subroutine 3 lets you enter a bacteria count, n, and then compute the
time needed to reach it using: n

_ In(no)
t="¢"

MakinG TRACKS
Key in the program carefully from the flow chart on the next page.
Running IT

If you're watching a culture of bacteria that starts with a count of 500, and
grows to 1500 after 5 hours:
a) how many bacteria will be present atter 10 hours?
b) watch this culture "grow" from 10 to 24 hours in one hour increments.
c) after how many hours will the bacteria count reach | million?

PRESS DisprLay/COMMENTS
500 [rsT| 500. Entern,.
1500 1500. Enter observation value, n.
Enter 5 hour observation time.

5 0.2197225 k calculated and displayed.
10 10 Enter 10 hour growth time.
1 4500. Bacterial count after 10 hours.
1 1 Enter]l hour time increment.
2 11. after 1l hours. ..

5605.7892 Bacterial count

12. 12 hours.

6983.3051 Bacterial count

24. after 24 hours
97533.1 Bacterial count (press and hold).
0. To clear any pending operations.
1 06 Enter] million (1 X 108
3.4593198 01 hoursto grow to count
of | million (34.6 hours)

10-11 MaxkiNG TRACKS INTO PROGRAMMING

8

10 EXPONENTIAL GROWTH
AND DECAY

Science TRACKS

MaxinG TRACKS
Clear entire machine, get into “learn”. OFF-ON [LRN]
When running program, you'll
enter n, at this point.)
Stores n,. [570] o
Enter observed n.] F 02
Stores n. [so] 1
Enter observation time, t. as 04
Store t. 510 2
1 [=] 0
Solves for k and stores it. [=] [inz] [=] [ReL] 2
(=] [519 3
Entert. E]5
I 1 (D) <ttt
Label subroutine 1. 4
Solves n = n ext and displays it. O (inv] [inx] [=]
[INV]
JF
Enter time interval. ing
Label subroutine 2. 2
5
Store time increment in memory S. 4
Label this point for loop. [Rel 5 SUM 4
Increment the time. 4
[Pause
Display new time. m =
Calculate and display n.
Go back and repeat. [610] 4
Enter n. “EE
Label subroutine 3. [2nd] 3
e = ket 0 (=]
Solvest = 1 Mo Inx] [==] [RC] 3
=]
Y
Out of "learn”, reset. [RST]

MAKING TRACKS INTO PROGRAMMING 10-12

[
(—

SciENCE TRACKS

In nature, any standing spring/mass system, such as the one shown in
figure 1, will oscillate (bob up and down), at a well defined number of
cycles per second called its resonant frequency (if disturbed). If k is the
spring constant (a measure of the spring stiffness) and m is the mass, the
resonant frequency is given by the formula:

k

1
fres = _2; m

k Now, if frictional (or “damping”) forces are
present, this slows things down, and the
formula becomes:

m
fig. 1 E Fros = %— \/ k——(b—m)z where b is a
FRICTIONLESS SPRING/ 7mVm \2
Mass SysTeM. damping constant (describing how strong

the damping is.) If any spring/mass system is
disturbed in a periodic way (with vibrational

k forces, sound, impulses, etc.), the response of
the system will depend drastically on the

o frequency of the applied disturbance.

L In figure 3, tor example, if the driving wheel
fig. 2 applies impulses at the same number of
SpriNG/Mass SYSTEM cycles per second as the system resonant
wiTH DampING frequency, the maximum system amplitude

(how far the mass moves in its bobbing) is

driving very great. If the driving force is at much
wheel size or higher or lower frequencies, than the

‘é;“;’l;::ie resonant frequency, the system amplitude
resgonse will be much less. (The actual size of the

l.:j b response also depends on the damping — b.

fig. 3 With no damping the system amplitude will

DaMmpED SPRING/Mass System become infinitely large when the driving

witH Periopic "Driving Force” frequency equals the resonant frequency —
the system destroys itselfl)

This program lets you plot how the maximum amplitude of any resonant
spring/mass system will vary as the driving frequency of the force is
varied. This lets you plot what is called the resonance response curve for
the system. '

10-13 MAKING TRACKS INTO PROGRAMMING

RESONANCE

sty
(—)

ScleNCE TRACKS

The amplitude of the system response is given by:

F
vm? ((2n1)*~(k/m)?)? + b? (2nf)’

Amplitude =

where F is the size af the driving force (in Newtons, N)
m is the system mass (in kilograms)
f is the frequency of the driving force in cycles per second (or hertz).
hertz).
tes isthe resonant frequency of the system = %\/ k/m

DESTINATION
We'll write a program that evaluates the system'’s amplitude vs.

frequency behavior for a range of frequencies. We'll just store all of the
system's important characteristics (or parameters), in the correct units, as
follows:

F — the driving force — in memory 0 (Newtons)

k — the spring constant — in memory | (Newtons/meter)

m — the system mass — in memory 2 (kilograms)

b — the damping constant — in memory 3 (Newtons/meters/sec)
fe1ep — the steps we'll use to increment the driving frequency — in
memory 4 (hz)

t41are — the starting point for our driving frequency steps — in
memory 5 (hz).

When we press , the calculator will display the driving frequency (in
hz), pause, then display the amplitude in meters. The driving frequency
will be incremented by {,,,, and the process will loop back & continue
with the new driving frequency.

PLANNING THE RouTE

First, your program will calculate (%) and store it. Then after a label,

recall the current driving frequency which you'll store in memory 5 and
display it.

Calculate (27f)? and store in memory 6. Using the stored values, evaluate
the amplitude formula and display it. Step up the driving frequency, and
loop back and repeat.

MarinG Tracks
Enter the program carefully irom the flow chart on the following page. Be
sure to use the correct units when entering your data.

MaxING TRACKS INTO PROGRAMMING 10-14

" .
5 lo Clear get into "learn” mode. OFF-ON *
E
a \
Z Caleulate (E) and store 1 [=] 2
5] m’
8 in memory 1. (=] 51 1
1T 05

ey

1010 0

Label this point. 1

Recall f and display it. 5 [2nd]

Caleulate (277f)? and
store in memory 6.

16

< R

Calculate and display

the amplitude. Zéi
H
T
H
R
T
43
4+
=1 L
HF’ .=.
Step up { by f,., Goto L 4 5 6o 1 | :
| 44
Getoutof "learn”. Reset. [”N] [RST]
Running It
To display the amplitude vs driving frequency for the system shown:
k = 250 N/m fres 2r\/ m 27V250
F = 100N 2.5164606 hz. (cycles/second)
1 M b=79 (__I\l_) {(You'll see the resonant frequency
(m/s) as the amplitude gets to maximum.)
PRrEsS DispLaY/COMMENTS
[RsT] 0

100 0 100 The force F, 100N
250 51 1 250. The spring constant, k, 250 N/m
1 [s70] 2 1. The system mass, m, 1 kg N
7.9 57 3 7.9 The damping constant, b, 7.9 m/s)
0.25 [s70 4 0.25 The step frequency 0.25 hz
0 [s/ § 0. The starting frequency:
0. freguency

0.4 amplitude

0.25 . next frequency

10-15 MAKING TRACKS INTO PROGRAMMING

GaMes EXCURsION

=

The first time someone picks up,a calculator — even a programmable one
— what's the first thing they do? Balance a checkbook? Calculate a unit
price? Run a program? Not usually. They play with it, that's what they do!
And it's well that they should. The calculator, as well as being a powertul
tool, also qualifies as a great toy. It's one that lets you dabble at
mathematical relationships, play "what if”* types of games or just see
what 12345678 X 87654321 equals — all instantly.

Programmability adds a new dimension to the recreational side of your
calculator, just as it adds to its problem solving power. You can program
your calculator to simulate, react, present alternatives, and “play” in a
variety of stimulating game situations. In this chapter we'll present a
briet selection of the activities and games possible with your calculator.
We'll be altering our approach a bit in this section, and presenting the
programs involved in a more compact keystroke sequence tormat. Our
object here is to have you enjoy the programs — as well as illustrate the
type of games possible on your calculator.

We hope you find these activities fun, educational and stimulating — and

that they spark you to write a few of your own! The programs we'll be

discussing here include:

+ Days of Your Life/ Biorhythm:
This program enables you to easily calculate the exact number of days
you've been alive, and then to "predict” whether you'll have a "good”
or "bad” day — according to the theory of "Biorhythm".

+ Dice Toss:
Playing a bodrd game that needs a dice toss to get you around the
board? Lost your dice? This program will let your calculator fill in for
games of chance.

+ On Target:
Target practice with a cannon! Can you hit the target in fewer shots
than your opponent?

- Day of the Week:
Ever want to know what day of the week it was for some date in the
past? This program tells you that it was a Thursday on July 4, 1776, your
grandmother was born on a Saturday, etc.

+ Hi-Lo:
A number guessing and strategy game — with the calculator giving
clues. Try your luckl!

+ Ghost Ship:
You're trying to sink an "enemy” ship with 7 "wide range” missiles.
Can you do it?

11-1 MaxinG TRACKS INTO PROGRAMMING

z
9
2]
3
5
3
»q
A
0
5]
=
]
U

DAYS OF YOUR LIFE/
BIORHYTHM

The Theory of Biorhythm states that there are 3 “cycles” to your life,
each of which started on the day you were born:

The Physical Cycle: 23 days long

The Emotional Cycle: 28 days long

The Intellectual Cycle: 33 days long

The “cycles’ can be expressed as numbers that vary from plus one to
minus one. Days when the cycles are near + 1 are considered to be “"up”
or "good’ days, and days near — 1 are "down' days. Days when a cycle
is near 0 are said to be 'critical” days. The cycles are shown in the
picture below:

eosseee Physical” cycle
—=——e= 'Emotional” cycle
— = “Intellectual’’ cycle

up” day——
ﬂ\f:\.
‘//
/

Days B . \ \

into cycle

~——down" day
-
/ .
PLd /
/
~
~
N

Your programmable calculator will let you easily compute biorythm
cycles for you and your friends. Also, along the way you'll find out how
many days you've been alive.

MaxiNG Tracks

Key in the program directly from the Biorythm keystroke chart shown. The
key codes are provided for you to check on the program if needed.

MAKING TRACKS INTO PROGRAMMING

GAMES EXCURSION

=

Biorythm
KEY LOC CODE KEY LOC CODE
OFF-ON
[X] 00 55 3 23 03
3 01 03 1 24 611
6 02 06 RC) 25 331
5 03 05 =] 26 45
[] 04 83 2 27 02
2 05 02 8 28 08
5 06 05 1 29 611
=] 07 85 1 30 331
08 49 =] 3l 45
09 75 3 32 03
2 10 02 3 33 03
=] 11 85 1 34 611
1 12 321 1 35 8§l
13 81 (=] 36 85
0 14 860 (INv] 37 —49
[SuM | 15 341 38 55
16 8l 3 39 03
[INV] =l 17 66 6 40 06
0 18 510 0 41 00
[Rcl] 19 331 =] 42 85
20 81 43 28
= 21 45 44 81
2 22 02 [nv] 45 —pl
[RsT]

To Use THE PrROGRAM

Here's how you use the program:
- Enter your age and press [RST]
+ Next, use the following chart (and steps a through d below) to
enter the number of days from your last birthday to today.
a) First enter the number of days after your birthday in the month you
were born and press :
Number of Days in Each Month

Jan 31 April30 July 3l Oct 31
Feb 28 (29) May 3l Aug 31 Nov 30
Mar 31 June 30 Sept 30 Dec 31

b) Then enter the number of days in each month following your birth
month up to this month, pressing after each entry.
(In leap years, February has 29 days.)
c) Enter today's date (1 through 31), press .
d) Enter 0 and press 1o end the "counting days’ routine.
The display now shows the total days you've been alive.
» Press to see where your physical cycle is.
- Press again to see your emotional cycle.
- Press again to see your intellectual cycle.

Again a number close to +1 shows "up" or good for that cycle, a number
close to —1 is "down" — a number close to zero is criticall Have a good day!

11-3 MakING TRACKS INTO PROGRAMMING

DAYS OF YOUR LIFE/
BIORHYTHM

=

GAMES ExcursioN

biorythm for March 15, 1977.
PRrESS DispLAY/ COMMENTS

2 0.00 Now, enter your age and press [RsT])

17 [rsT] 6211.00 This is the number of days in the “whole”
years you've lived. Now add the number of
days since your last birthday. If you were
born on July 25, the number ot days left
inJulyis31-250r6

RunninG It
Let's say you were born on July 25th, 1959 and you're checking your

6 6.00
Enter days in August
31 31.00
Sept
30 30.00
Oct
31 31.00
Nov
30 30.00
Dec
31 31.00
Jan
31 RA] 31.00
Feb
28 28.00
Now add the date of this month
(March 15)
15 15.00
Enter 0 to tell the calculator
that's all.
0 6444.00 You've been alive
6,444 days.
0.89 Your physical cycle is
pretty good.
0.78 Your emotional cycle is
also good.
0.99 Your intellectual cycle is
very high.

March 15, 1977 (according to biorhythm theory) should have been a good
day for those born on July 25, 1959.

. MakiNG TRACKS INTO PROGRAMMING 11-4

z
e
2
2
»q
[45]
0
A
=
<
($]

1|

Many board games require a toss of the dice as part of the play. But
dice are pesky things — let’s say you can't find them. (Or how about a
game while out camping — or in the car where it's ditficult to roll them?)
Well, here's a program that lets your calculator “till in” as a pair of dice.

To “RoLL" THE DiIcE:

This program is designed to simulate rolling dice and give you a number
from 2 to 12 each time you "'roll” the dice. All you'll have to do is:

- Enter a starting number (less than one). For example, press [
and enter the number of the month, the day of the month and the
time (this will give a variety of starting numbers for repeated use).
Then press .

- To roll the dice, just press [RA] and you'll first see the value of
each die (one at a time with a pause) and then you'll see the total
of the two.

+ To roll again, just push)

MaxinG TRACKS

Key in the program using the Dice Toss keystroke chart. (Don't forget
OFF-ON and)

Running It

PREss DispLaY/ COMMENTS

RsT) [+ 412525 0.412525 Say you use April 12
at 5:25 for a starting
number. (Anything less
than 1 works.) :

[R/S] 5. lstdigit (pause)
4. 2nd digit (pause)
9. Sumoi2
2.
4. 2ndroll
6.
etc.

11-5 MaxkiNd TRACKS INTO PROGRAMMING

=

DICE TOSS

GAaMEs Excugrsion

Dice Toss

KEY LOC CODE
OFF-ON [LRN]

(S0 0 00 320
0l 8l
I 02 86
9 03 619
[s10] 1 04 321
9 05 619
EUM | 06 341
1 07 331
[Rr3) 08 81
[610]) 09 511
M 9 10 869
11 30
12 75
0 13 330
=] 14 85
15 35
8 16 08
= 17 65
2nd] 18 49
(=] 19 85
[sT0] 0 20 320
Ed 21 55
6 22 06
23 75
1 24 0l
[=] 25 85
(2nd] HE 26 49
27 36
28 36
[nv] 29 -6l
[LRN] [RST]

MAKING TRACKS INTO PROGRAMMING 11-6

GAMES EXCURSION

=

A\

QLI 1D

N\

This game puts you "in command" of a cannon that has a range of
1000-40,000 meters. You or your opponent first chooses a target distance
that {alls somewhere within that range. After the target distance is
chosen, you (or your opponent) select an angle of elevation for the
cannon between 0° and 90°, and fire! (Don't use 90°

or you'll blow up the cannon!) The calculator will flash 9.9999999 if you
score a "hit” within 100 meters of the target. (Also if you use 90°). If you
overshoot, the calculator display shows the positive distance you
overshot. If you undershoot you'll see the negative distance that you were
short. The calculator keeps track of how many shots you take — the object
being to hit the target in as few shots as possible.

angle you select

100m

target distance A—{ \Target

To Pray THE GAME

To play the game, you first enter a target distance between 1000 and
40,000; and press [51] 3. Then press (if you're playing an opponent)
and hand your calculator to your opponent and let him try to hit the
target. When he does, push 4 to see how many shots it required for
him to home in on it. Then, your opponent enters a target distance and
you try to score a hit with fewer shots.

MaxinG TrRacks

Key in the program caretully from the On Target keystroke list. Don't
forget to turn your calculator OFF-ON, and then press BN at the start
and at completion.

11-7 MAKING TRACKS INTO PROGRAMMING

=

11 ON TARGET

P4

@

z

&)
On Target
KEY LOC CODE KEY LOC CODE
OFF/ON [LRN] 1 19 01
0 00 320 0 20 00
1 0l 01 0 21 00
oM 4 02 344 [=t] 22 22
8 03 08 2 23 332
0 04 00 =] 24 85
0 05 00 [Ret] 3 25 333
0 06 00 (=] 26 85
0 07 00 En 27 40
1 08 321 (nv] Bl 28 ~76
[Ret] ¢ 09 330 1 29 511
[2nd] 10 20 [ReU 2 30 332
[X] 11 55 =1 31 65
R o 12 330 R 3 32 333
13 29 =] 33 85
[x?] 14 23 34 81
X7 15 55 [rsT] 35 71
1 16 331 Lbi [36 861
=] 17 85 [CiR] 37 15
2 18 322 38 25

[RST]

Running IT
Here's an example of how play might go with 20,000 entered as the target
distance.

PRESS DispLay/ COMMENTS
20,000 3 20000. Enter distance to target.(Press [CIR].)

Then try various angles until you

get a hit.
4)) [rsT] 19392.31 You overshot by 19392.31
meters.
22 7786.3348 Overshot.
12 —3730.5343 Undershot.
15 9.9999999 99 You scored a hit.
Stops the flashing display.
4 4. It took 4 shots for you to
score a hit.

To play again, press (INV] and reload and fire as above.

MaxkiNG TRACKS INTO PROGRAMMING 11-8

2
9
w2
«
o
Q
5
o
w2
v
=
<
O

|

Have you ever wondered, "On what day of the week was [born?"’ Here is

a program that will give you the result you want (for any date since the
adoption of the Gregorian calendar in 1582 through the year 1999).

To Use THE PROGRAM:

To find the day of the week you'll need to consider several things. Since a
calculator can only accept numbers from you as input, you'll need to code
the date, following the rules we'll describe. This program requires 4 codes
for any date: one for the month, one for the day, one for the first two

digits of the year and the last for the last 2 digits of the year. Let's look at
each of these.

+ First, you'll enter the number code for the month using this chart. (Note:
it starts with March as 1, Aprilas 2. . .) and push [0 1

March + Second, you'll enter the day of the month and push

April é -. 2 . L

May 3 " Third, enter the first two digits of the year and press
4 3.

ﬁ?e 5 " Fourth, you'll enter the last two digits of the year and

Au};ust g press 4.

Sept. 7 Important: lf you entered an 11 or 12 for the month

Oct. g (lstentry) then the number representing the year

Nov. g mustbe decreased by 1 before storing.

Dec. 10

Jan. 11

Feb. 12

Finally, push [T and the calculator will give you a one-digit code
for the day of the week according to this chart.

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

Do W ~O

MaxrinG TrRacks

Key in the program using the Day of the Week keystroke chart. (Don't
torget OFF-ON and .) Since this program has 50 steps, the calculator
will automatically leave “"learn” when the program is.completely
entered.

11-9 MAKING TRACKS INTO PROGRAMMING

P-4
11 DAY OF THE WEEK
£
O
% .
%1
=
KT,
O
Day of the Week
KEY LOC CODE KEY LOC CODE
OFF-ON [IRN] 4 26 04
[REt] 2 00 332 =] 27 65
0175 28 49
@ 02 43 2 29 02
2 03 02 3 55
lé?J g‘é SS [Rel 3 31 333
D] 32 44
06 S5 Lo [33 860
[Re 1 07 331 = 34 g
(=] 08 65 -] 3B 76
L] 09 83 1 3% 511
2 10 02 37 75
0] 11 44 7 38 07
[2nd] 12 49 0 39 510
1375 o M1 40 861
(] 14 43 =] 41 45
4 15 334 7 42 07
[=] 16 45 =] 13 85
4 17 04 [1NV] M 44 49
18 75 45 55
[REL] 4 - 19 - 334 7 46 07
L] 20 44 =] 47 85
21 49 i 48 49
22 75 49 81
(] 23 43
3 24 333
(=] 25 45
Running IT
Let's try it for July 4, 1776.
PRrESss DispLay/CoMMENTS
5 [l 1 5. code forJuly.
4 [s10] 2 4. Enter date.
17 [s10] 3 17. lst two digits of year.
76 4 76. 2nd two digits of year.
[RsT] 4. TJuly4, 1776 was a Thursday

(4 is code for Thursday).

To run this program for another date, press ,and [INV] before
proceeding.

Note: It Jan. or Feb. used, be sure and reduce yearby | —i.e., 1732 to
1731, 1700 to 1699, etc. betore storing.

MaKING TRACKS INTO PROGRAMMING 11-10

=

HI-LO

GAMES EXCURSION

How many guesses will it take you to discover a “'secret’’ number
between 0 and 10237 You'll get a clue after each guess (you're told
whether your guess was "high” or "low"). This program makes your
calculator a game that's fun to have along on trips in the car, while
camping — anywhere.

To PLay THE GAME:

The "Hi-Lo" program uses an initial entry number (less than one) to
generate a “'secret number” for you to guess. Each time you guess, a plus
| is displayed if your guess is too large, a minus one is shown if your
guess is too small, or the secret number is flashed if you guess correctly.
After you key in the program, you'll {ollow these steps:

+ Press [2], then enter the time of the day, the number of the
month, and the day of the month. (This gives a convenient starting
number less than 1.) Now press . At this point, your calculator
“knows" its secret number; and it displays a zero — telling you it's .
ready to play.

- Now try to guess the number by entering your guess and
pressing 4. If your guessis "Hi"” a 1 is displayed; it low, a — 1
is shown. If you guess right, the secret number flashes.

- To guess again, enter your new number and press 4

- After you've guessed correcily, press [Rell 1 to see the number of
guesses! To play again, press to stop the flashing and 1
— telling the calculator to create another secret number for you to
guess. Then, just enter your number, press 4 and “"guess
away”’.

MaxinG TrRacks

Key in the program using the Hi-Lo keystroke chart. (Don't forget OFF-ON
and)

JATTRYVITTT TRy
LI LU D
e

11-11 MAKING TRACKS INTO PROGRAMMING

_

=

HI-LO

GAMES EXCURSION

Hi-Lo
KEY LOC CODE KEY LOC CODE
OFF-ON 7 23 327
0 00 320 24 15
2nd| XN 1 01 86 1 25 81
0 02 00 4 26 86 4
1 03 321 2 27 322
04 30 1 28 01
05 75 BUM | 29 341
Rc] o 06 330 2 30 332
=] 07 85 [Mv] =} 31 -6
08 35 [GTo] g 32 518
8 09 08 33 66
=1 10 65 7 34 517
Int 11 49 1 35 01
(=] 12 85 (=] 36 85
0 13 320 37 81
14 55 Lol] 38 86 8
1 15 0l 1 39 0l
0 16 00 40 84
2 17 02 (=] 41 85
3 18 03 42 81
19 75 7 43 867
1 20 0l [Rel 7 44 337
[=] 21 85 3 45 513
22 49 [RST]
RunnNInG IT
Here's how a typical game might go:

Press DisprLaYy/ COMMENTS

Enter random number (less
than 1)of your choice.
243411 [RsT]
0 Secret number ready.

500 4 1. Guess too high.

250 4 —1. Guesstoo low.

400 4 —=1. Guess too low.

450 4 =1. Toolow.

475 4 1. Too high.

470 4 1. Too high.

466 4 466. Flashing — you're right.

[Ret] 1 7. It took 7 tries.

To use again, press [CR] 1. Then enter your guess, press 4 and
you're going again.

MaxkinG TRACKS INTO PROGRAMMING 11-12

=

Here's a great game for two players! You're the captain of the submarine
Seamos and your mission is to destroy the mysterious “"ghost ship", the
Dragoon (your opponent) betfore it plunders any more of your vessels on
the high seas. You're armed with powerful missiles, but your sub only
carries seven of them. To knock out the Dragoon and score a "hit”, you
must explode one missile within 7 miles of it. All you have to go on are
reports that affirm that the Dragoon is somewhere at a range of 10 to 100
miles; and between the angles ot 0 and 90° on your chart.

90 _
/Drcgoon could be anywhere

ol &
miles

ﬂ“ o
S(—:-cxmos\'&> angle E
10 . 100
miles

To help you locate the culprit, your ship's sonar will tell you how close
each of your missiles came to hitting the Dragoon. With each shot you'll
know the distance you missed — and you can use this to help you guess
the range and angle for your next shot. If you hit the Dragoon, the
distance your missile landed from it will flash (less than 7) and you've
succeeded. If you run out of missiles, the number 99999999 99 will flash
indicating you lost and the Dragoon's up to its dirty tricks again. Watch
out!

GAMES EXCURSION

(4 ~—— SCOre zone

To PLay THE GAME:

This is a program for 2 players. The first player enters the range and
angle of the Dragoon (unknown to the second) and the second player
then tries to hit the Dragoon. Then the players reverse, each trying to hit
the Dragoon in fewer shots than the other.

Here's how to use the program:

* Your opponent secretly hides the Dragoon by storing a distance
(between 10 and 100) in memory 0 and a direction (between 0°
and 90°) in memory 1.

- Then your opponent pushes and hands you the calculator.

+ You have 7 shots. To fire, enter the distance, press [RsT| ; and
then the angle and press . The display gives the distance you
missed (or flashing less than 7 miles for a hit). Continue this firing
until you hit the Dragoon or run out of missiles. Good luck!

If you hit the Dragoon, press [Re] 4 to see how many shots it took.

To play the game again, press [IW] , store a new location in
memories 0 and 1 and fire away.

11-13 MaxING TRACKS INTO PROGRAMMING

u GHOST SHIP

GAMES Excursion

MariNG TRACKS

Key in the program from the Ghost Ship keystroke chart. (Don't forget
OFF-ON and)

Ghost Ship

KEY LOC CODE KEY LOC CODE
OFF/ON [IRN] [=7] 21 23
2 00 322 22 75
0l 81 [rel 2 23 332
[sTo] 3 02 323 [27] 24 23
7 03 07 =] 25 85
EX) 04 22 26 24
1 05 01 5 27 325
SuM 4 06 34 [x=!] 28 76
[Rcl 3 07 333 [GT0] 29 511
= 08 85 30 75
1 09 331 31 75
(=] 10 85] 32 86 1
cis 11 29 [RCL] 4 33 334
12 55 [x~] 34 76
[ret] o 13 330 2 35 512
14 55 [Rel 5 36 335
2 15 332 37 81
16 55 2 38 862
2 17 02 0 39 00
18 84 x 40 25
19 75

[red o 20 330 [RsT]

DispLaY/COMMENTS

First player hides the "Dragoon”.
75 0 75. Distance to Dragoon.
23 1 23. Angle to Dragoon.

0 Now give to opponent.

S0 [rsT] 50. lst guessis 50 miles.

45 Ist angle is 45.
34.221646 You missed by over

34 miles.

75 75.

45 28.621349 2nd shot missed

S0 [RsT] 50.

22.5 25.005711 3rd shot missed

75 [rsT] 75.

22.5 0.6544929 Flashing — a hitl

4 4., Ittook 4 shots

MAKING TRACKS INTO PROGRAMMING 11-14

A LOOK INSIDE:
THE HISTORY
AND TECHNOLOGY
OF YOUR
CALCULATOR

A Look INSIDE

Your calculator represents one "link” in what has been, and
undoubtedly will continue to be, an explosive evolution in technology. As
you become more familiar with some of its amazing features, you may
wonder about such questions as: "How did it get here, how is it built, and
just what goes on inside anyway?’’ In this chapter, we'll try to take a look
at the answers to some of these questions — and give you a quick review
ot the story of your calculator. (By the way, this chapter is strictly optional
reading — for those who may be curious about calculator operations. We
won't cover any "how to use” information here.)

EarLY CALCULATING DEVICES

The beginning of the story of any calculator goes back quite awhile —
into the origins of mathematics itself. People using mathematics realized
quite early that there were some parts of math that were a lot more fun to
use than others. Getting to the answer involved not only looking caretully
at nature and people and analyzing them (fun part), but also involved
adding, subtracting, multiplying, dividing and remembering very
cumbersome numbers (not so much tun part). People searched for tools
that would handle the arithmetic part of mathematics more easily,
quickly, and accurately.

What historians usually consider to be the first calculating device is the
abacus, which originated in the Orient more than 5000 years ago (and is
still in widespread use today). The abacus is a number storage and
manipulation device, that some folks can use to compute with great
speed and accuracy. It consists of a parallel row of wires, grooves or rods
on which small markers — beads or blocks — can be strung and
manipulated. The abacus began what was at first a rather slow
calculator evolution.

MaKING TRACKS INTO PROGRAMMING 12-1

X

EARLY CALCULATING
DEVICES

A Loox INSIDE

This evolution picked up some speed in 1617 wheu the Scotch
mathematician, John Napier, published a paper which described how
multiplication and division could be handled rapidly with the aid of
specially marked ‘'rods”. (These rods were carved out of ivory — and are
usually reterred to as "Napier's Bones''.) Napier's "'rods" and his work in
mathematics laid the groundwork for the development of the slide rule —
which up until the advent of the inexpensive hand calculator, was widely
used in handling complex computations.

The first actual "adding machine”, having a resemblance to the
mechanical desk calculators popular a few years ago, was invented by
the French scientist and philosopher, Blaise Pascal, in 1642.

It was a complex entanglement of wheels, gears and windows, which
enabled him to speed up the handling of his father’s business accounts.
This led the way to the development of a more advanced machine in the
late 1600's by Gottiried Leibnitz, called the “'Stepped Reckoner”.
Leibnitz' instrument could not only add, but could also multiply, divide,
and extract square roots. (Leibnitz’ machine used a sequence of
computations for extracting roots that's quite similar to the sequence
used in many computers andcalculators today.) Early attempts at
manufacturing calculators, however, produced highly unreliable results.
It was not until 1820 that the first commercial machines handling the
operations of addition, subtraction, multiplication and division became
available.

12-2 MAKING TRACKS INTO PROGRAMMING

—

A Looxk INsSIDE

DEVELOPMENT OF
COMPUTERS: THE
PUNCHED CARD

DevELOPMENT oF CoMPUTERS: THE PUNCHED CARD

The next major breakthrough in calculator and computer evolution
occurred during the early 1800's, and had several authors. One primary
innovator was a French inventor named Joseph Marie Jacquard, who
invented a self-controlled loom for weaving cloth. The Jacquard loom was
controlled by punched cards, which stored data and instructions in code
for each loom operation. Jacquard's brainchild — the idea of punched
card storage — was then incorporated in a novel machine invented by
Charles Babbage in England (1835). Babbage’s invention used punched
cards to store numbers to be worked with, and operations to be
performed with them. It was the first "programmable” computing device.
It could run through a series of prewritten operations, use results of one
computation as input data for another, and handle repetitive
calculations or “'loops”.

Babbage's invention is probably best known, however, for being the first
machine to handle conditional transfers. As in your calculater, the
"Analytical Engine"” could compare two numbers, and — depending on
the results, transter to various instruction sequences. The results of one
calculation could be used to change numbers and instructions previously
set into the machine. Babbage's visionary work was a milestone in the
evolution of today’s calculators and computers.

Electricity was pressed into the data processing service when Herman
Hollerith, an American statistician, used punched cards and electrical
reading equipment in helping to take the 1890 U.S. Census. Hollerith's
innovations helped cut the time needed for classitying and tallying the
census data down to one third of its former "by hand’ time — and credits
him as a primary developer of modern computers. Hollerith went on to set
the foundations for the Computing Tabulating Recording Company,
which later evolved into International Business Machines (IBM).

Work in the 1900’s turned to more and more application of electricity to
computation. Early work by Howard Aiken and others at Harvard
University, beginning in 1939, resulted in the first fully automatic
calculator — dubbed the Harvard Mark I. It was a huge device that was
sequenced or 'programmed’’ by punched paper tape. Input data then
went in on punched cards and results were recorded on cards with an
electric typewriter. The device was about 50 feet long and 8 feet high,
and could perform the 4 basic operations plus math table references, to
an accuracy of 23 decimal digits.

MaxING TRACKS INTO PROGRAMMING 12-3

12 “ALL ELECTRONIC"
COMPUTERS

A Look INSIDE

“ALL ELEcTRONIC COMPUTERS

A more rapid calculator and computer revolution was now underway —
following the rapid developmental trends in electronic technology. The
first all purpose, all electronic digital computer was completed in 1946 at
the University of Pennsylvania. It was called the ENIAC, and was
developed by]. Presper Eckert and John W. Mauchly. It was the first
machine to take advantage of the speed made possible by all electronic
calculation — and operated at speeds more than 1000 times faster than
its electromechanical counterparts. Eckert and Mauchly went on to
develop turther computers, and were instrumental in the development of
the BINAC and Univac I computers.

Early computers were still not as flexible as modern machines, and
another major step in the direction of flexibility in programming came
through the efforts of John Von Neumann, working at the Institute for
Advanced Study in Princeton, New Jersey. In a landmark paper
"Preliminary Discussion of the Logical Design of an Electronic
Computing Instrument”, Von Neumann and others reviewed the entire
field of automatic computation, and presented early designs for a stored
program computer. Their work had a major impact on computer designs
that followed.

THE INTEGRATED CIRCUIT

As computer technology began its most rapid phases of growth, it was
naturally spurred on by the rapid growth of solid state electronics. The
transistor, replacing the vacuum tube in calculating devices and
computers, cut down on size and cost,and increased reliability. Transistor
machines were a major step in computer advancement and transistor
technology in turn led the way to a turther breakthrough — the
breakthrough that pointed the way to handheld programmable
machines.

In the late 1950’s scientists at Texas Instruments were working on a device
that put complete electronic circuits — including transistors, diodes,
capacitors, resistors and their required interconnections, on a single tiny
"chip" of silicon. This type of device is called an Integrated Circuit, or
"IC" and was invented by Jack Kilby at Texas Instruments in 1958.

12-4 MAKING TRACKS INTO PROGRAMMING

A Look INSIDE

ey
&

THE INTEGRATED
CIRCUIT

Integrated circuits are built using a variety of techniques which resemble
a photographic development process. The basic substance on which they
are built is a very high purity silicon, grown via a special process into
single crystals that are cylindrical in shape (about three inches in
diameter — typically over one foot long.) These crystals are “'sliced” into
water thin slices, and many integrated circuits can be built on each slice.
The various functional layers needed for circuit operation are built up
one at a time using a method which employs a photographic "mask’ of
the circuit layer to be built, special photosensitive materials to coat the
slice during fabrication, acid etching solutions, and special dittusion
techniques.

Integrated circuits bring the advantages of small size, reliability, and
extreme cost savings to the computational machine. A typical integrated
circuit can have the equivalent of 10,000 transistors operational in it.
Integrated circuit development, including those devices utilizing the
Metal-Oxide Semiconductor Field Effect Transistor (MOSFET), continued
on through the 1960's, and was a key factor in making handheld
portable calculators a reality.

At the same time integrated circuits were rapidly developing, other
breakthroughs were being made in display technology. Solid-state
displays based on the Gallium Arsenide (GaAs) diode became
available in the late 60's. These easy-to-read, relatively low power, high
reliability displays were a natural match to the processing capability
available in Integrated Circuit “'chips”. In 1972 Texas Instruments put
these IC and display technologies together and introduced its first
four-function calculators. These first units sold for $149.95 and were the
result of work that began as early as 1965. (T] holds a patent on the
Integrated Circuit cqlculator that dates back to 1967.)

MAKING TRACKS INTO PROGRAMMING 12-5

£

A Look INSIDE

THE "SOAP" BAR

THE “"Soar” Bar

IC technology has undergone explosive growth during the 1970’s with
more powertul and efficient IC's becoming available at ever reducing
costs. With increased experience in building a device, driven by a
steadily rising volume of production, the costs for manufacturing

can be brought down predictable curves known as “'Learning

Curves". In the highly competitive consumer electronics industry — these
savings (and added benefits) have in large part been passed directly on
to you, the consumer. As a result, the mid 1970's have seen the advent of
low cost scientific and technical calculators, and today’s low cost
programmables.

One such single IC chip is the heart and brain of your calculator. This
device represents the very latest state of the art development in MOS
IC's, incorporating the equivalent of over 30,000 MOSFET's on a single
rectangular silicon chip less than Y% of an inch on each side. Due to its
architecture, this chip is called the “Serially Organized Arithmetic
Processor”, or "SOAP" Bar for short. It's quite a remarkable device,
handling all of the juggling necessary to receive keyboard inputs,
operate the display, handle complex keyboard calculations, as well as
learn and remember the program steps you teach it. The SOAP bar is a
major step forward in IC technology and developers used new and

very stringent “'rules of the game’’ to achieve this highly innovative
design. It's a very "dense’’ device, cramming more transistors into
smaller spaces than conventional IC’s. Its "'Serial” rather than "Parallel”
design eliminates many of the interconnections that normally take up
room on an IC chip, so mote functions can be put on it. ("Serial”’ means
that many numbers and operations are handled inside the chip one after
another "bit by bit”, rather than with many functions and pieces of
numbers being handled all at once — which is termed "parallel” design.)

Because of the power and complexity of this single chip, the inside of
your calculator can be made highly rugged and reliable — and
deceptively simple to look at. Basically there's just the SOAP bar, the
keyboard, a display unit, a small printed circuit board, the power supply,
and a battery pack. This low number of parts is a major tactor leading to
low cost, and there's less to go wrong. But, when you turn it on, you're
commanding a powerful bundle of technology, ready to solve 2 X 2 = 4
or handle complex personal programming problems with equal skill.

12-6 MAKING TRACKS INTO PROGRAMMING

i

A Look INSIDE

o

WHAT GOES ON
INSIDE

WHuAT GOES oN INSIDE

The SOAP bar is the “"brain” of your calculator and is always active and
working while your machine is on — even if it appears to be placidly
sitting there with a 0" in the display. The SOAP bar checks for inputs
from the keyboard, keeps the display lit up with the correct readout, and
handles computations or program steps, all with a tremendous
organization and precision.

All of the calculator’s tasks are executed with a basic “clock signal”,
operating at about 1.0 megahertz (that's a clock ticking 1,000,000 times
per second!). This means the time interval between some calculator
tasks can be as short as 0.000001 seconds. The operations you enter from
the keyboard are handled internally by many thousands of calculator
tasks, so the time you actually see between a keyboard input and a
displayed response may be the good part of a second for some direct
calculations — and can be very long for extended looping programs.

SCAN LINE DISPLAY
lIIIlII__||II||||I|||||I||
NN RN
P T T 3 POWER

12 DISPLAY DIGIT SCAN LINES LINES
INTEGRATED CIRCUIT — “'soapr”’ BAr

8 KEYBOARD AND DISPLAY 5 KEYBOARD POWER
SEGMENT SCANLINES ~ INPUT LINES SUPPLY

“a'’ line

KEYBOARD

Figure 1: CALCULATOR SCHEMATIC

Figure 1 is a simplified schematic diagram of the inside of your calculator,
showing the Display, the "SOAP" bar, the Keyboard and the Power
Supply. A remarkable thing about the SOAP bar is that for all its power,
it's connected to the outside world by only 30 connections. If you consider
all of the things the chip has to handle, and all of the information it
processes, 30 connections is really a very small number. Let's briefly
examine how this works.

MakING TRACKS INTO PROGRAMMING 12-7

A Look INSIDE

THE DISPLAY

THE DispLAY

Let's say for a moment that your calculator is just sitting there with a "'2.”
in the display — waiting for your next command. What's it doing? Well,
it's keeping that 2 turned on in the display through a technique called
"segment scan’’; and also checking the keyboard for your next move.
Here's how the segment scan operation works. Each number in your
display (display digit) is made up of 8 Light Emitting Diodes (LED’s).
These are special devices that emit light when electric current is passed
through them. The 7 segments needed to make each of the numbers, 0
through 9, plus an 8th segment for the decimal point, are designated "a"
through “h", as shown in figure 2.

I
{ b
g
T
e c
d h
Figure2 w1

There are 8 "wires'' coming from the SOAP bar — called segment scan
lines, each of which has a dual function. First of all, each scan line is
responsible for lighting all of the segments of any one type. For
example, when the drive voltage is "turned on" in the "a'’ segment line,
it goes to all of the "a" segments. (In all 12 digits on the display, all
segments of any one type are connected together. All the a's connect

to all other a’s, b'sto b's, etc.)

Secondly, each segment scan line runs down to the keyboard and
provides keyboard scan input to one whole row of keys. In the case of
your calculator, the "a” line runs to the 6th row down from the top —
the row with the [4] [5] [6] [=] keys. If you were pressing any
of these 5 keys, current would then be directed to go from the scan line
up one of the keyboard input lines, and let the chip know which key
you pushed.

Now at this point, you might wonder — if all of the "a" segments of all the
display digits are activated at the same time, why don't they all go on at
once? And — how does your calculator know which key was pushed?
Well, the SOAP bar handles both of these tasks quite well by using the
fact that any electrical device needs 2 connections to turn it on.

12-8 MAKING TRACKS INTO PROGRAMMING

A Look INSIDE

THE DISPLAY

In your calculator’s display, as we've said, all of the segments of any one
type are wired together. So, when the SOAP bar turns on the "a”
segment line, all of the "a"" segments get ready to turn on; but one more
connection is required to "complete the circuit” before it will actually
light up. The SOAP bar handles this second connection with 12 more of
its 30 connecting wires. These 12 leads are called digit scan lines. All of
the segments {a-h) of any single digit are activated by one of these lines.
So by simultaneously activating one of the 8 segment scan lines, and one
of the 12 digit scan lines, the SOAP bar can turn on any segment of any
digit in the display. To display a number, the SOAP bar just turns on
the proper segments (a-h) for the number and the proper digit scan line
(1-12) to put the number in the correct digit place in the display.
However, the calculator does not show any digit "all at once’. The SOAP
bar "builds” the number in the display one segment at a time by turning
on the correct segments in rapid sequence. Figure 3 shows the scan
sequence for lighting up a 2, with a decimal point. The SOAP bar will
turn on the "a" scan line, and simultaneously turn on only those digits in
the display that need an “'a" segment. It then goes on through the rest.

the display. The
Scanning Sequence
a through h,
happens more than
200 times per

—
-

. b (digiton) process is called multiplexing or
strobing.) This whole juggling act

- ¢ (digit OFF) happens so fast (more than 200 times
each second) that your eye puts the

Figure 3 Sequence O % I ‘)
of Segments that L. LJ. a(digiton) Your calculator lights up each piece
lightupa™2"in = 45 of a digit one at a time. (This

Ll

17
]

—
|

—

second. '—_' l:f "_‘i d (digit on) pieces of each digit together into an
et . apparently continuous bright
,T_,,' !':; ’7_'_’, ® (digiton) display. In addition to all this, as
Scan a-h happens 7 (71,71, (digit OFF) ©€ach segment gets turned on,
so last, tbdt your i another row of keys is checked for a
eye sees. 1.1, g(digiton) keystroke input down on the
L 000 keyboard.

)

. h (digit on)

No matter how fast you press the keys, the scan lines are turned on and
off in sequence so fast that one scan will catch you "in the act”, and send
a current pulse up one of the 5 keyboard input lines. The SOAP bar
keeps track of which of the 5 lines the pulse came in on, as well as which
scan line was "on’* when the pulse came in, and with this "matrix” of
information it knows which key you've pressed. So — all of this scanning,
keyboard checking, and display lighting happens all the time —
whenever your machine is on — even if it's just sitting there.

MaKING TRACKS INTO PROGRAMMING 12-9

A Look INSIDE

O

A SIMPLE
CALCULATION

A SimpLE CALCULATION

Now, let's consider what happens when you do a simple calculation

[2] [X] 51 [=], for example. Figure 4 is a simplified block diagram of the
various features built into the IC chip. With « little patience, you can
follow along with the various processes that go on as your calculator
performs.

- When you press (2], your keyboard sends a pulse into keyboard
control circuitry (beginning at point A on the block diagram) This
circuitry interprets this as a 2" and loads it, via input/output and
control circuitry, into one of the 4 arithmetic registers (A, B, C, or D) and
the display control circuitry. Your calculator now displays a 2, and is
waiting for your next input.

- When you press , the input is received and interpreted by the
keyboard decode circuitry, and a special signal or flag is set up inside
your calculator — letting it know that a multiplication instruction is to be
performed.

- When you press [5], the signal is interpreted as a 5, and a 5 is moved
into register A and into display contrel. The 2 is saved in a separate
math register

+ When you press [=] things really start moving. The flag signal is
scanned telling the machine, “You need to multiply.” The control
circuitry then goes to the Read Only Memory (ROM), and pulls out the
instructions necessary to multiply. The 2 and the 5 are then moved to
the arithmetic logic unit, where they are multiplied together by means
ol a repetitive addition procedure, as controlled by instructions from
the ROM. The result then gets moved back to register A and the display
control circuitry — and appears in the display. At this point, the
calculator is ready tor your next instruction.

All of this happens in the wink of an eye — you don't really sit around
waiting very long for the SOAP bar to perform. The basic building block
operations needed to carry out each of your keyboard commands are
stored in the calculator's ROM. The calculator gets-the detailed
instructions it needs from the ROM as it goes along — either in response
to keyboard inputs or to instructions it receives from program memory.

For additional reading on how a calculator works, reter to Eugene
McWhorter’s excellent article "The Small Electronic Calculator”
(Scientific American, March 1976). Note, though, that in this article,
McWhorter describes the operation of a Digit Scanned machine — while
your calculator is segment scanned as we've mentioned.

12-10 MaxING TRACKS INTO PROGRAMMING

é 12 : A SIMPLE
= CALCULATION
3
Q
—
59
12 Display Digit T
Turn-On Lines N F‘g 2
- =5 — 50
Tttt st | EE LS
L1 L1 Scan Control| & > &4
St
Display Control w S 3
—
é A Operands In
3 —
)]
e
o B — Arithmetic
L_E Logic Unit
3 Control
Z C > Circuitry
E ~ Results Out
< D —
Read Only Memory (ROM)
0 ' . (Contains Calculator Internal
w 7 Operating Instructions)
=
a2 .
g 3 ’
o —
o 4 A A |
5
& 5
g Input/Output . g
bt 6 Control § o ' g
7 I KEYBOARD | 9 5% ‘;®
| DECODE |% 5[3
8 MO g
E—% oz oS — ¢
g—= g& 2 Program Memory -
mn —e — A,
i

Figure 4: SimpLIFIED CaLcuLaTor IC BLock Diagram

Your programmable calculator represents the latest development

in calculator and IC technology. The costs of bringing you the massive
amounts of logic and memory found in a device like your calculator are
ever decreasing. You'll be seeing more uses and implementation of
programmability in devices for use in your home, at school, for work and
for recreation. Your calculator is a glimpse of this facet of the future —
here today. So enjoy it and explore with it — it's the ideal way to begin
learning about what will become an important part of life through the
next several decades and beyond.

MAKING TRACKS INTO PROGRAMMING 12-11

APPENDIX A: BATTERY
AND AC OPERATION

NorMAL OPERATION

Your calculator is designed for portable operation with periodic
recharging of the battery pack with the adapter/charger supplied. It is
important that the proper adapter/charger is used. lf replacement of the
battery pack or charger becomes necessary, be sure that an exact
replacement is obtained.

| I] O/ 7
p
Charger EONNNW =
Number b [. Battery
Number
T]
I1 1

Note: Two different combinations of battery pack and adapter/charger
may be used with your calculator. The BP/6 battery pack is used with the
ACS9131 adapter/charger. The BP/7 battery pack is used with the AC9132
adapter/charger.

Caution: Use of other than the proper Adapter/Charger may apply
improper voltage to your calculator and damage the unit.

To ensure maximum portable operating time, connect the
Adapter/Charger to a standard 115V /60 Hz outlet, plug into calculator,
and charge battery pack at least 4 hours with the calculator OFF or 10
hours with the calculator ON. The adapter/charger and battery pack
may become warm when used on AC power. This is normal and of no
consequence. {Caution: The BP-6 battery pack should only be recharged
while properly installed in your caleulator.)

SR
D, 2y
0.2

Make certain
Alignment Bar

on Adapter Plug
matches Guide Slot
in Calculator

0
Guide \ Alignment

Slot Bar

A-] MakING TRACKS INTO PROGRAMMING

APPENDIX A:
BATTERY AND
AC OPERATION

When the battery pack is tully charged, the calculator will operate
approximately 2 to 3 hours before recharging is necessary. However,
don't hestitate to connect the adapter/charger if you know or suspect the
battery pack is nearly discharged. A battery pack near discharge can
adversely aflect all calculator operations giving erroneous results. A
discharged battery pack is typically indicated by a dim, erratic or blank
display.

While individual cell life in a battery pack is difficult to predict, under
normal use, rechargeable batteries have a life ot 2 to 3 years or about
500 to 1000 recharge cycles.

PERIODIC RECHARGING

Although the calculator will operate indefinitely with the
adapter/charger connected, the rechargeable battery pack can lose its
storage capacity if it is not allowed to discharge occasionally. For
maximum battery life, it is recommended that you operate the calculator
as a portable at least twice a month, allowing the batteries to
discharge, then recharge accordingly.

ExcEsSIVE BATTERY DISCHARGING

If the calculator is left on for an extended period of time after the battery
pack is discharged (accidentally left on overnight, tor example), connect
the adapter/charger for at least 24 hours with the calculator OFF. If this
does not restore normal battery operation the battery pack should be
replaced. Repeated occurrences of excessive battery discharging will
permanently damage the battery pack. Spare and replacement battery
packs can be purchased directly from Texas Instruments Incorporated,

P.O. Box 53, Lubbock, Texas, 79408.

STORAGE

If the calculator is stored or unused for several weeks, the battery pack
will probably need recharging betore portable use. The battery pack will
not leak corrosive material; therefore, it is safe to store the calculator with
the battery pack installed.

MAKING TRACKS INTO PROGRAMMING A2

APPENDIX A:
BATTERY AND
AC OPERATION

BATTERY PACK REPLACEMENT

The battery pack can be quickly and simply removed from the calculator.
Hold the calculator with the keys facing down. Place a small coin in the
slot in the bottom of the calculator. A slight prying motion with the coin
will pop the slotted end of the pack out of the calculator. Carefully
disconnect the wires that attach the battery pack to the calculator. The
pack can then be removed entirely from the calculator.

The metal contacts on the battery pack (where charger and calculator
plug in) are the battery terminals. Care should always be taken to

prevent any metal object from coming into contact with these terminals
and shorting the batteries.

To re-insert the battery pack, first, attach the connecting wires to the
terminals of the battery pack. Alignment should not be a problem as the
connector will only fit in one position. Then, place the pack into the
compartment so that the small step on the end of the pack fits under the
edge ot the calculator bottom. A small amount of pressure on the battery
pack will snap it properly into position. (Do not force. It will fit easily
when properly oriented.)

A-3 Making TRACKS INTO PROGRAMMING

APPENDIX B:
IN CASE OF DIFFICULTY

In the event that you have difficulty with your calculator, the following
instructions will help you to analyze the problem. You may be able to
correct your calculator problem without returning it to a service facility. I
the suggested remedies are not successful, contact the Consumer
Relations Department by mail or telephone (refer to "If You Have
Questions or Need Assistance’ later in this appendix). Please describe in
detail the symptoms of your calculator.

Symptom Remedy

1. Display is blank for no obvious Press and hold momentarily. If
redason. display returns, the calculator was
running a long program or operating
in a continuous program loop.

The battery pack may be discharged
or improperly installed. Also, check to
be sure the ON-OFF switch is fully in
the ON position.

2. Display shows erroneous The battery pack is probably
results, flashes erratic discharged or improperly connected.
numbers, grows dim, or goes Refer to Battery and AC Operation in
blank. appendix A.

3. Display flashes while An invalid operation or key sequence
performing keyboard has been pressed or the limits of the
operations. calculator have been violated. See

Appendix C for a list of these
conditions.

If none of the above procedures corrects the difficulty, return the
calculator and charger PREPAID and INSURED to the applicable
SERVICE FACILITY.

If the calculator is out of warranty, service rates in effect at time of return
will be charged. Please include information on the difficulty experienced
with the calculator as well as return address information including name,
address, city, state and zip code. The shipment should be caretully
packaged, adequately protected against shock and rough handling and
sent to one of the Texas Instruments Service Facilities listed with the
warranty.

NOTE: The P.O. box number listed for the Lubbock Service Facility is for
United States parcel post shipments only. If you use another carrier, the
street address is: Texas Instruments Incorporated

2305 University Ave., Lubbock, Texas 79415

MAKING TRACKS INTO PROGRAMMING A-4

APPENDIX B:
IN CASE OF DIFFICULTY

CaLcuLATOR ExCHANGE CENTERS

If your calculator requires service, instead of returning the unit to a
service facility tor repair, you may elect to exchange the calculator for a
factory-rebuilt calculator of the SAME MODEL by going in person to one
of the exchange centers which have been established across the United
States. A $3.00 charge will be made by the exchange center for
in-warranty exchanges. Out-of-warranty exchanges will be charged at
the rates in effect at the time of the exchange. Please call the Consumer
Relations Department for further details and the location of the nearest
exchange center. Do not mail. :

Ir You HAVE QUESTIONS, OR NEED ASSISTANCE OR GENERAL INFORMATION

If you have questions concerning calculator repair, accessory purchase
or the basic functions of your calculator, please call our Customer
Relations Department at 800-858-1802 (toll free within the contiguous
United States except Texas) or 800-692-1353 within Texas.

For TECHNICAL ASSISTANCE

For technical questions such as programming, specific calculator
applications, etc., you can call 806-747-3841. We regret that this is not a
toll-free number, and we cannot accept collect calls. As an alternative,
you can write to:

Consumer Relations Department

Texas Instruments Incorporated

P.O. Box 53

Lubbock, Texas 79408

Because of the number of suggestions which come to Texas Instruments
from many sources containing both new and old ideas, Texas Instruments
will consider such suggestions only if they are freely given to Texas
Instruments. It is the policy of Texas Instruments to refuse to receive any
suggestions in confidence. Therefore, if you wish to share your
suggestions with Texas Instruments, or if you wish us to review any
calculator program key sequence which you have developed, please
include the following statement in your letter:
"All of the information forwarded herewith is presented to Texas
Instruments on a noncontidential, nonobligatory basis; no
relationship, confidential or otherwise, expressed or implied, is
established with Texas Instruments by this presentation. Texas
Instruments may use, copyright, distribute, publish, reproduce, or
dispose of the information in any way without compensation to

it

me.

A5 MAakING TRACKS INTO PROGRAMMING

APPENDIX C:
ERROR CONDITIONS

A flashing display indicates that the limits of the calculator have been
violated or that an invalid calculator operation has been requested.
Pressing or stops the tlashing. also clears the display and
pending operations. stops the flashing only, permitting further
calculations with undisturbed pending operations. The display flashes
for the following reasons:

1. Calculation entry or result (in display or memories) outside the range
of the calculator, £1 X 10-*°to £9.9999999 X 10% . The exceeded
limit is flashed, indicating undertlow or overtlow.

2. Inverse of a trigonometric tunction with an invalid value for the-
function such as sin-!x with x greater than 1. The invalid value x is
flashed.

3. Root or logarithm of a negative number. The root or logarithm of the
absolute value of the number is flashed to indicate the sign error.

4. Raising a negative number to any power (or root). The power (or root)
of the absolute value of the number is flashed.

5. Pressing two operation keys in succession. This affects , =1,

, (=1, , and [N} (for W The last entered number is
flashed.

6. Pressing (=1 or] after 31, [=1, [XJ, [=], [¥7], or [INV] tor

X\/';). The last entered number is flashed.

7. Having more than 9 open parentheses or more than 4 pending
operations. The 10th parenthesis or Sth operation is not accepted so
calculation can continue. The last displayed number is flashed.

8. Dividing a number by zero. '9.9999999 99" is flashed. (Except 0 [=1 0
[=] 1 flashing.)

9. Pressing an operation key belore completing any memory operation,
fix decimal operation or direct transter operation. The value in the
display is flashed. (i.e. (+1)

10. Attempting to store, recall, or use other memory operations with
locations other than 0 through 7. (i.e. 8).

11. Attempting to find values of tunctions with entered values outside
these limits:

Function Limit

sin~xX, cos~x -1 = x =l

ex — 22795592 < x =£230.25850
10* —99 <« x <100

Inx 1 X 10-% < |x|<<]1 x 10w°
log x 1 X 1079 << x <1 x 10w°
[nv] 1 X 10+% <R

MAKING TRACKS INTO PROGRAMMING A6

APPENDIX C:
ERROR CONDITIONS

12. Direct transter instructions ([6%] or [$BR) that attempt to branch to
unassigned label positions. Current display value is flashed. A
nn key sequence where nn is greater than 49 also produces a
flashing condition.

13. Attempting to execute a program past location 49. Current display
value is flashed.

14. Attempting to calculate ¥ or ¢* without entering any data or only
entering a single data point.

WHEN Erronrs AR ENCOUNTERED WHEN RUNNING A PROGRAM:

When any of the foregoing errors occur in a program, the program will
stop and show you a flashing display. This means you've asked the
calculator to do something in a program that it cannot do — even directly
from the keyboard.

A-7 MAKING TRACKS INTO PROGRAMMING

APPENDIX D: DISPLAYED
RESULIS VS ACCURACY

The basic mathematical tolerance of the calculator is controlled by the
number of digits it uses for calculations. The calculator appears to use 8
digits as shown by the display, but actually uses 11 digits to perform all
calculations. Combined with the built-in 5/4 rounding capability, these
extra digits guard the 8-digit display to improve accuracy. Consider the
following example in the absence of these guard digits.

13 x 3 = .99999999 (inaccurate)

The example shows that | + 3 = .33333333 when multiplied by 3
produces an inaccurate answer. However, an eleven-digit string of nines
will round to | when rounded to 8 places.

The higher order mathematical functions use interative calculations. The
cumulative rounding error is usually maintained below the 8-digit
display so that no eftect can be seen. The three "guard digits” act to
protect the display from small cumulative errors.

Normally, there is no need to even consider these guard digits. In certain
calculations, however, the guard digits may appear as an answer when
not expected. Results of two computations may appear to be equal when
shown in the display, but have an inequality in their guard digits. If these
two results are subtracted, the calculator may display a nonzero result.

This fact is especially important when writing your own programs. If
you're testing a calculated result to be equal to another value, such as
with the instruction, you may need to take precautions to prevent
improper evaluation due to the guard digit differences. The key
sequence [EE] [IN] [EE] will truncate the guard digits of a result leaving
only the rounded display value for further use.

For the standard display, results are accurate for all calculations that do
not violate the restrictions listed in Appendix C, except as defined below.

TRiIGONOMETRIC FUNCTIONS

All displayed digits are accurate for a + 36,000 degree range (£ 200 7
radians and 440,000 grads). In general, the accuracy decreases one
digit for each decade outside this specified accuracy range. An
exception is the tangent of an odd multiple of +£90°, +#/2 radians or

1+ 100 grads that results in an overflow condition because the function is
undefined at these points.

Roots AND POWERS

There can be some accuracy loss for roots and powers in calculations
when the base (y) gets very close to 1 and the power (x) gets very large.

MAKING TRACKS INTO PROGRAMMING A-8

APPENDIX E: TYPICAL ANSWERS
TO“NEXT STOP” PROBLEMS

(Note: In general, there is no one "right” program answer to any problem situation. We
will show one approach here)

Travel Expenses The Complete On Sale! Pause for a
page 3-6 Vacation page 3-12 Rest Stop

page 3-10 page 3-14
OFF/ON OFF/ON OFF/ON OFF/ON [LRN]
[LrN] 1 Pause
X] 0.16 (=] Xoos =] OO =1 Xa[=] [z @8
[(+1 500 (=] kel 3 (] [=] X1 3[=] [2nd] @8
5 4 [=] Pause
OFF/ON UM 3 | [5UM 4 X1 5 (=] [2nd] R
(Rl 3 5 6 [=]
7 =]
(decimal sales [rsT] 8 [=]
tax rate) [tRN] [RST] RST 9 [=] [2nd) [
=] CLR] [RST
LRN
[LRN]
Getting Around Fill It Up Area/Volume Hello!
page 3-17 page 3-22 page 3-27 page 4-3
OFF/ON [~N] OFF/ON OFF/ON [N OFF/ON [tRN]
(sto] | [Ret] | [X] (2nd) [N) 1 [2nd] R
X1 4 [=] [Rey 2 [X] X]9[xl5 2 [2nd])
[Rel 3 [=] [(+132 [=] RS 3 [2nd] [
1 [2nd] 2 4
[=2] [rsT] [=] 32 (=] 5
OFF/ON [FN] X159 6 nd EE
[RST) [=7] 1 (=] 7 Pause
(22] (LRN] 8 Pase

[Re] 1 (This program [RsT]

[=] converts Celsius

to Fahrenheit, &

[trn] vice versa.)

Controlled Round
Graph Watch Count Off Cash in the Bank Trips
page 4-6 page 4-9 page 4-12 page 4-16
OFF/ON [LRN] OFF/ON OFF/ON OFF/ON [(RN]
1 2 2 1 1 0
o] EE) 2ol @ 5TO) 2 [z0a] I 1 [z0a] IO 1
[=7] 2 [=] 1 [=2] 0
[10 1
g V1= Ry 3=
Pause Pause Is:
0.5 UM j 1
[REL] 2 fsUM 3 [RCL] 1
[RsT] 1 [iRN] [RST]
[RsT] [LRN] [RST]
1
LRN| [RST|

A-9 MAKING TRACKS INTO PROGRAMMING

Rent a Car

"NEXT STOP"” PROBLEMS
page 6-8

TYPICAL ANSWERS TO

APPENDIX E:

Counting Up
Exactly B
page b-4

Counting Up
Exactly A
page 6-4

Factorial!
page 4-19

I
B . &5 .
g 5 Dy -Os g
=1 _11.-.-E@-@-

SBE S EREE -

oD
288 @

SEOEEREE

e HEEH

I
S5HE"BE .. B5E
SR EE

n -~
B. m

2
ause

EE-m g
58 _EE-ERR B
<ExZREE - C
HHESHHEERE

mmﬂ .va _““— ——— ——— ———
m-@. BB
SEMH I EmiE

°z

E o-_w_-

e = R

Bouncing Ball

page 6-11

A-10

MakING TRACKS INTC PROGRAMMING

APPENDIX F:
KEY GODES

CaLcuraror Key Copes — Using AcTuaL KEYBOARD ARRANGEMENT

Rows
No Minus A s 19
1 Code N Sign (inz] 13 [cE] 14 15
I3 26 27 28 29 20
2 [AN] (No Code) [=] 22 (=% 23 24 25
Pause el (No Code) 38 39 30
3 [SST] (No Code) 32 33 BuM 34 35
46 R (No Code) 48 49 40
4 (No Code) [EE] 42 3 43 (O] 44 (=] 45
56 EA
5 [6T0] 5] [71 a7 (8] 08 (9] 09 [X] 55
 x=t IS 60
6 [SBR) 6] 2] o4 (51 05 (6] 06 (=165
= 75 70
7 [R8T] 71 1] ol 2] o2 3] 03 [+] 75
86 88 EH s 80
8 [RA] 81 o7 0o 7 83 [+4] 84 [=] 85
Columns 1 2 3 4 5
(for — 6 7 8 9 0
second tunctions)
CarLcuLAaToR KEY CopES In NuMERICAL ORDER
00 (0] —27 [NV 50
01 O] 28 sin 51
02 (23 —28 [INV] Sir 55
03 3] 29 56
04 [4] —29 [In] s —56 [INV] [2nd]
05 [5] 30 [2nd] IEH 80 Rad
06 [6] 32 [510] 81
07 33 —61 [NV
08 34 [SUM 85 (=1
09 [9] —34 [N] [SuM 86 x=|
13 [inx] 35 —66 [NV =
—13 [INV] [Inz] —35 [nv] 70 Grad
14 [CE] 36 71 [RST)
15 38 75
18 [2nd] A 39 P 76 x=t
—18 [n] [2nd] IEH —39 ONV] [2nd] IEE —76 [Nv] [2nd] EED)
19 40 [|z | 80
—19 [N [2nd] IR 42 [EE] —-80 [n] [2nd] A
20 tai —42 [INV] [EE] 81
—20 [INV] tan 43 [83 [
22 (=4 44 O] 84
23 (=2 45 [=] 85 [=]
24 46 86
25 48 88
26 (2nd] [IB — 48 [NV] —g8 [In]
—26 (NV] [2nd]) FEH 49 [2nd) W 89 (2nd]
27 P~ —49 [NV 0t | —gg [mv] | % |

A-11

MaxrING TRACKS INTO PROGRAMMING

A

Absolute value key sequence — e,
2-12

AC adapter, A-1

Accuracy, A-8

Angle conversions, 2-18

Angular mode keys —
,2-16

Answers — "Next Stop” problems, A-9it

AOS™ entry method, 2-5

B

Bank book balance, 8-5
Basic operation keys, 2-4
Battery pack, A-14
Biorhythm program, 11-2
Bouncing ball program, 6-10

C

Car payment program, 8-13
“Cash in the bank”, 4-10

Cash tracks, 8-11

Celsius (°C), 3-27

Clear entry key [€E], 2-3

Clear key — ,2-3

Clear "t" register key sequence — ,
Clearing the calculator, 2-3
Combinations program, 6-14
Comparative shopping, 8-3
Comparison instructions, 6-2
“Complete vacation, The", 3-7
Compound interest, 4-10
Controlled round trips, 4-13
Conversions, 2-18it

“Count off”, 4-7

Counting down — [NV] ,6-16
Counting up exactly, 6-4

Credit card account, 1-6
Cylinder: area and volume, 3-18

D

Data entry keys, 2-4

Day of the week, 11-9

Days of your life/Biorhythm, 11-2

Decrement and skip on zero key sequence
, 7-61f; 6-19tf; 4-13

Decrement and skip if not zero key
sequence [INV] ,7-7

Dice toss program, 11-5

Difficulties, A-4t

Discount program, 3-11

Display, 2-2

Display register, 6-2

"Do’" loops, 4-13

Documentation, 5-18

E

Error conditions, A-6it

Evaluating integrals, 9-6

Exponential growth (and decay), 10-10

F

Factorial, 4-17

Fahrenheit (°F), 3-27

“Fill it up! Leaving holes in programs”,
3-18

Finding program steps, 5-2

Fix decimal key sequence — n,
2-11

Free fall program, 4-4

G

Games excursion, 11-1

Graphic symbols, 3-2

Graphing, 4-4

Ghost ship game, 11-13

Go to key sequence — [61] n, 7-5; 3-23

Go to a step number key sequence [670)
nn, 7-5;5-16

H
Heron's Formula, 8-10
Hi-Lo game, 11-11

I

Inserting or deleting steps N,
,5-11

Integer/iractional part of a number —
,2-15

Integrals, 9-6

Interest rates, 8-16

Inverse key — W] 2-2

"Isxequal to t" key sequence =, 7-8;

6-3ft

“Is x unequal to t?” key sequence [INV]
,7-9; 6-3if

“Is x greater than or equal to t?"" — [2nd]
B ,7-10;6-3

“Is x less than t?" — (W] ,7-10; 6-3

K

Key codes, 5-2ff; A-11
Keys without codes, §-9
Kilowatt cost, 8-11

L

Label key sequence — n, 7-4;3-23
Learn key — [N | 7-2: 3-6; 1-2

Limits, 9-12

Linear regression, 9-14

Logarithm key sequence — (inz] and

N, 2-14
Loops, 4-1ft
Loops with 61 n and Bl n 47

M

Making changes and correctings, 5-10
Mass and relativity, 10-7

Mean value key sequence — ,2-22
Memory keys, 2-71t

Merged codes, 7-4

MaxkING TRACKS INTO PROGRAMMING

INDEX

O
"On Sale!”, 3-11

Parentheses keys — [(1 [0 1, 2-6

"Pause for a rest stop”’, 3-13

Pause key sequence — [2nd] . 7-3;3-13

Pending operations, 2-6

Pendulum, 10-5

Pikey sequence — . 2-12

Polar plots, 9-2

Polar/Rectangular conversion — [2nd] ,
2-20

Program editing; key codes, 7-13

Program “holes”, 3-18

Program keystiroke numbers, 8-5

"Program sign posts”, 3-23

Program record form, 5-18f

Programming keys, 7-11f

Programming style, 7-17

Projectile motion, 10-2

Pythagorean theorem, 3-22

R

Reciprocal key — (=], 2-12
Relativity, 10-7
Rent-a-car program, 6-8
Reset key — 81, 7-2; 3-6
Resonance, 10-15
Round trips, 4-1
Run/stop key — ,7-3:3-6

S

Same birthday, probability of, 6-6

Savings plan program, 8-8

Science tracks, 10-1

Scientific notation — [€E], 2-10

Second function key — ,2-2

Simple pendulum program, 10-5

Simpson's Rule, 9-6

Single step and back step keys — 5811 ,
5-2#

Square and square root keys — (=7 ,
2-12

Statistical functions and keys, 2-22

Steps in writing a program, 7-16

Straight-line programs, 3-3

Subroutines, advantages of, 6-13

Subroutine key — ,T7-114: 6-12

Subroutine return — (W] 7-114;6-12

Sum data points key sequence, 2-22

Switch tracks, 6-1

T

“t" or “test” register, 6-1; 2-9

Tracking mathematics, 9-1

Trackmakers, the, 7-11t

“Travel expenses, 3-3

Triangle tracking, 9-10

Trigonometry key sequences,
B, Gw R, 2-17

Troubleshooting programs, 5-20

U

Unconditional branches, 4-1f

Universal powers and roots — [7%] | [NV
,2-13

v ,

Variance key sequence — [2nd] ,2-22

w
"Writing up” programs: documentation,
-18

X
“x exchange tkey — (=%t 7-8

1-2

MaxING TRACKS INTO PROGRAMMING

ONE-YEAR LiMITED WARRANTY FOR
CALCULATOR AND/OR LIBRARY MODULE

WARRANTEE: This Texas Instruments Electronic Calculator Warranty extends only to the
original purchaser of the calculator or module.

WARRARTY DuRarioN: This Texas Instruments Electronic Calculator and/or Library
Module is warranted to the original purchaser for a period of one (1) year from the
original purchase date.

WaRRaNTY COVERAGE: This Texas Instruments Electronic Calculator and/or Library
Module is warranted against defective materials and workmanship. THIS WARRANTY
IS VOID IF: (i) the calculator or module has been damaged by accident or
unreasonable use, neglect. improper service or other causes not arising out of defects
in material or workmanship, (ii) the serial number has been altered or defaced.

WARRANTY PERFORMANCE: During the above one (1) year warranty period your
defective calculator or module will either be repaired or replaced with a reconditioned
model of an equivalent quality (at Tl's option) when the calculator or module is
returned, postage prepaid and insured, to a Texas Instruments Service Facility listed
belew. In the event of replacement with a reconditioned model, the replacement unit
will continue the warranty of the original unit or 90 days, whichever is longer. Other
than the postage and insurance requirement, no charge will be made for such repair,
adjustment, and/or replacement.

WARRANTY DIscLAIMERS: Any implied warranties arising out of this sale. including but
not limited to the implied warranties or merchantability and fitness for a particular
purpose, are limited in duration to the above one (1) year. Texas Instruments shall not
be liable for loss of use of the calculator or other incidental or consequential costs,
expenses or damages incurred by the purchaser.

Some states do not allow the exclusion or limitation of implied warranties or
consequential damages, so the above limitations or exclusions may not apply to you.

LecaL REMEDIES: This warranty gives you specitic legal rights, and you may also have
other rights that vary from state to state.

TExas INSTRUMENTS CONSUMER SERVICE FACILITIES

Texas Instruments Service Facility Texas Instruments Service Facility
P.O. Box 2500 41 Shelley Road
Lubbock, Texas 79408 Richmond Hill, Ontario, Canada

Consumers in California and Oregon may contact the {ollowing Texas Instruments
offices for additional assistance or information:

Texas Instruments Consumer Service Texas Instruments Consumer Service
3186 Airway Drive, Bldg.] 10700 Southwest Beaverton Highway
Costa Mesa, California 92626 Park Plaza West, Suite 111

(714) 540-7190 Beaverton, Oregon 97005 (503) 643-6758

IMPORTANT NOTICE REGARDING PROGRAMS AND BOOK MATERIALS

Texas Instruments makes no warranty, either expressed or implied, including but not
limited to any implied warranties of merchantibility and fitness for particular purpose,
regarding these programs or book materials or any programs derived therefrom and
makes such materials available solely on an “As-Is” basis.

In no event shall Texas Instruments be liable to anyone for special, collateral,
incidental. or consequential damages in connection with or arising out of the purchase
or use of these book materials or programs and the sole and exclusive liability to
Texas Instruments, regardless of the form of action, shall not exceed the purchase
price of this book. Moreover, Texas Instruments shall not be liable for any claim of any
kind whatsoever against the user of these programs or book materials by any other

party.

N
<
B K
AT
TEXAS INSTRUMENTS o
INCORPORATED
DALLAS, TEXAS
Printed in u.s:“)A, : < : 1014828-2

