

ALTAIR EXTENDED BASIC

PRELIMINARY DOCUMENTATION

THE FOLLOWING PAGES CONTAIN A CONDENSED VERSION OF THE
COMPLETE "ALTAIR EXTENDED BASIC" DOCUMENTATION.

In order to get this software to our customers with a
minimum of delay, it was decided to print this prelim-
inary documentation. This will help to expedite the
deliveries. The complete manual will be printed at a
later date, and will be in much the same format as the
previous existing BASIC documentation.

READ THESE PAGES OVER CAREFULLY. SOME OF THE INFOR-
MATION CONTAINED HERE ALSO APPLIES TO THE 4K AND 8K
VERSIONS OF BASIC.

This is meant to be an additional section to the
"ALTAIR BASIC REFERENCE MANUAL", and not a sepa-
rate manual in itself.

December '75

MITS

"Creative Electronics”
16

ALTAIR EXTENDED BASIC

ALTAIR EXTENDED BASIC includes all of the features found in the 8K

version of BASIC, with some variations.

There are also a large number of

additional features making this version one of the most powerful BASICs

available.

The following section contains the EXTENDED BASIC features and its

variations from the 8K BASIC.

COMMANDS
NAME EXAMPLE
DELETE DELETE X
DELETE -X .
DELETE Y-X

PURPOSE/USE

Deletes line in a program with
the 1ine number "X". "“ILLEGAL
FUNCTION CALL" error occurs if
there is no line "X".

Deletes all lines in a program up

to and including Tine number "X".

"ILLEGAL FUNCTION CALL" if no line
llxll.

Deletes all lines in a program from
the Tine number equal to or greater
than “Y" up to and including the
first Tine equal to or less than
"X". "ILLEGAL FUNCTION CALL" if no
line "X".

If deletion is performed, all variable values are lost.
Also continuing is not allowed, and all "FOR"s and "GOSUB"s
are made inactive. (This is the same effect caused when-
ever a program is modified.)

LIST LIST X

LIST or LIST-

LIST X-

LIST -X

LIST Y-X

n

Lists 1ine "X" if there is one.
Lists the entire program.

Lists all Tines in a program with a
line number equal to or greater than
llxll.

Lists all of the lines in a program
with a line number less than or equal
to "X".

Lists all of the lines within a pro-
gram with Tine numbers equal to or
greater than "Y", and less than or
equal to "X".

NAME
ERASE

SWAP

TRON
TROFF

STATEMENTS

EXAMPLE
ERASE J%
ERASE X%,I#
ERASE A$
ERASE D#,NMS%

SWAP 1%,d%
SWAP B$(7),T$
SWAP D#(1),D#(1+1)

TRON
TROFF

18

PURPOSE/USE

Eliminates an array. If no such
array exists an "ILLEGAL FUNCTION
CALL" error will occur. ERASE must
refer to an array, not an array ele-
ment [ERASE B(9) would be illegal].
The space the array is using is freed
up and made available for other uses.
The array can be dimensioned again,
but the values before the ERASE are
lost.

Exchanges the value of two variables.
(If X=1 & Y=5, after SWAP X,Y the
values would be switched; that is,
now X=5 & Y=1.) Both, one or neither
of the variables may be array elements.
If a non-array variable that has not
been assigned a value is referenced
an "ILLEGAL FUNCTION CALL" error will
occur. Both variables must be of
the same type (both integers, both
strings, both double precision or
both single precision), otherwise a
“TYPE MISMATCH" error will occur.

Turns on the trace flag.
Turns off the trace flag.

TRON & TROFF can be given in either
direct or indirect (program) mode.
When the trace flag is on, each time
a new program line is started, that
line number is printed enclosed in
"[1". No spaces are printed. For
example:

TRON

0K

10 PRINT 1: PRINT "A"
20 STOP

RUN

[10] 1
A

[20]
BREAK IN 20

“NEW" will also turn off the trace
flag along with its other functions.

STATEMENTS
IF-THEN-ELSE

(Similar to 8K version IF-THEN state-
ment, only with the addition of a new
"ELSE" clause.)

IF X>Y THEN PRINT “"GREATER" ELSE PRINT "NOT GREATER"

In the above example, first the
relational condition would be tested.
If it is true, the THEN clause would

be executed ("GREATER" would be
printed). If it is false, the ELSE
clause would be executed ("NOT GREATER"
would be printed).

10 IF A>B THEN PRINT "A>B" ELSE IF B>A THEN PRINT "B>A" ELSE PRINT "A=B"

The above example would indicate
which of the two variables was the
largest, or if they were equal.

As this example indicates, IF state-
ments may be nested to any desired
level (regulated only by the maximum
line length). An IF-THEN-ELSE state-
ment may appear anywhere within a mul-
tiple-statement 1ine; the THEN clause
being always mandatory with each IF
clause and the ELSE clause optional.
Care must be taken to insure that IFs
without ELSE clauses do not cause an
ELSE to be associated with the wrong
IF.

5 1IF A=B THEN IF A=C THEN PRINT "A=C" ELSE PRINT "A<>C" ELSE PRINT "“A<>B"

19

In the above example, the double
under-lined portion of the line is

an IF~THEN-ELSE statement which is
all a part of the THEN clause of the
first IF statement in the line. The
second ELSE (single under-lined) is
part of the first IF, and will be
executed only if the first relational
expression is false (A<>B). 1If a
line does not contain the same number
of ELSE and THEN clauses, the last
ELSE is matched with the closest THEN.

TYPING

Normally, numbers used in BASIC operations are stored and acted upon as single
precision floating point numbers. This allows for 7 digits of accuracy.

In the extended version of BASIC greater accuracy may be obtained by typing
numbers as double precision. This allows for 16 digits of accuracy. In
cases where speed is critical, it is, however, slower than single precision.
The greatest advantage, in both speed and storage space can be obtained by using
integer operations whenever possible. These fall within the rage <=32767 to
>=-32768.

Examples:

(single precision) PRINT 1/3
.3333333

(double precision) PRINT 1/3D
.3333333333333333

(integer) PRINT 1/3%
0
PRINT 2.76%
2
The use of these types of numbers will become clearer further on in the
text.
Examples:

I%(10) uses (11 * 2) + 6 + (2 * 1) = 30
I (5,5) uses (6 * 6 *4) +6+ (2*2) =154

80

TYPING

There are four types of values used in EXTENDED BASIC programming:

NAME SYMBOL # OF BYTES/VALUE
STRINGS (0 to 255 $ 3
characters)
INTEGERS (must be % 2
-32768 and =<
32767)
DOUBLE PRECISION # 8

(exponent: -38
to +38) 16 digits

SINGLE PRECISION } 4
(exponent: -38
to +38) 7 digits

The type a variable will be is explicitly declared by using one of the

four symbols listed above. Otherwise, the first letter of the variable is
used to look into the table that indicates the default type for that letter.
Initially (after CLEAR, after RUN, after NEW, or after modifying a program)
all letters are defaulted to SINGLE PRECISION.

The following four statements can be used to modify the DEFAULT table:

STATEMENT DEFAULTS VARIABLE T0
DEFINT r INTEGER

DEFSTR r STRING

DEFDBL r DOUBLE PRECISION
DEFSNG r SINGLE PRECISION

r above indicates the position for the range to be given. This
is to be of the following format: letter or letter 1 - letter 2.
(In the second format, the “-" indicates from letter] through
Tetter 2 inclusive.)

In the above four statements the default type of all of the letters within
the range is changed, depending on which DEF "type" is used. Initially,
DEFSNG A-Z is assumed. Care should be taken when using these statements
since variables referred to without type indicators may not be the same after
the statement is executed. It is recommended that these statements be used
only at the start of a program, before any other statements are executed.

The following will illustrate some of the above information:

81

10 I%=1

20 I1=2 The example on the left would
30 I#=3 print out:

40 1$="ABC" . 2 at line # 50

50 PRINT I 1 at line # 70

60 DEFINT I ABC at line # 90

70 PRINT I 3 at Tine # 110
80 DEFSTR 1

90 PRINT 1

100 DEFDBL I

110 PRINT I

TYPING_OF CONSTANTS

The type that a particular constant will be is determined by the following:

1) if it is more than 7 digits or "B" is used in the exponent,
then it will be DOUBLE PRECISION.

2) if it is >32767 or <-32768, a decimal point (.) is used,
or an "E" is used, then it is SINGLE PRECISION.

3) otherwise, it is an integer.

When a + or * operation or a comparison is performed, the operands are
converted to both be of the same type as the most accurate operand. There-
fore, if one or both operands are double precision, the operation is done
in double precision (accurate but slow). If neither is double precision
but one or more operands are single precision floating point, then the
operation will be done in single precision floating point. Otherwise,

both operands must be integers, and the operation is performed in integer
representation.

If the result of an integer + or * is too big to be an integer, the oper-
ation will be done in single precision and the result will be single preci-
sion. Division (/) is done the same as the above operator, except it is never
done at the integer level. If both operands are integers, the operation is
done as a single precision divide.

The operators AND, OR, NOT, \, and MOD force both operands to be integers
before the operation is done. If one of the operands is >32767 or <-32768, an
overflow error will occur. The result of these operators will always be an
integer. (Except -32768\-1 gives single precision.)

No matter what the operands to + are, they will both be converted to single
precision. The functions SIN, COS, ATN, TAN, SQR, LOG, EXP, and RND also
convert their arguments to single precision and give the result as such, ac-
curate to 6 digits.

Using a subscript >32767 and assigning an integer variable a value too
large to be an integer gives an overflow error.

82

TYPE CONVERSION

When a number 1s converted to an integer, it 1s truncated (rounded down).
For exanmple:

I%=.999 A%=-.01
PRINT 1% PRINT A%
0 -1

It will perform as if the INT function was applied.

When a double precision number is converted to single precision, it is
rounded off. For example:

D#=77777777
I!1=D#

PRINT I!
7.77778E+07

No automatic conversion is done between strings and numbers. See the STR$,
NUM, ASC, and CHR$ functions for this purpose.

NEW FUNCTIONS

CINT Convert the argument to an integer number
CSNG Convert the argument to a single precision number
CDBL Convert the argument to a double precisijon number
Examples: CDBL(3)=3D
CINT(3.9)=3

CINT(-.01)=-1
CSNG(312456.8)=312457

NOTE: if X<=32767 and =>-32768 then CINT(X)=INT(X)
otherwise, CINT will give an overflow error

NEW OPERATORS

\(backslash=shift L) The integer division operator forces
Integer Division both arguments to integers and gives
the integer value of the division
Examples: 1\3=0 operation. (The only exception to this
7\2=3 is -37268\-1, which results in a value
-3\-1=3 too large to be an integer.)
300\7=42 NOTE: A\B does not equal INT(A/B)
-8\3=-2 (if A=-1 & B=7, 0 does not

-1\3=0 equal -1)
/ Integer division is about eight times
as fast as single precision division.
Its precedence is just below that of
B8

NEW OPERATORS (cont.)

MOD The MOD operator forces both arquments
to integers and returns a result
Examples: 4 MOD 7=4 according to the following formula:
13 MOD 3=1
7 MOD -11=7 AMOD B=A-[B* (A\B)]
-6 MOD -4=-2

If B=0 then a division by zero error
will occur. MODs precedence is just
below that of integer division and
just above + and -.

USER-DEFINED-FUNCTIONS

In the Extended version of BASIC, a user-defined function can be of any
type and can take any number of arguments of any type.

Examples: DEF FNRANDOM%Z=10*RND(1)+1
DEF FNTWO$(X$)=X$+X$
DEF FNA(X,Y,Z,I1%)=X4Z+I1%*Y

The result of the function will be forced to the function type before
the value is substituted into the formula with the function call.

FOR LOOPS (Integer)

The loop variable in a FOR loop can be an integer as well as a single
precision number. Attempting to use a string or double precision vari-
able as the loop variable will cause a Type Mismatch error to occur.
Integer FOR Toops are about three times as fast as single precision FOR
loops. If the addition of the increment to the loop variable gives a
result that is too big to be an integer, an overflow error will occur. The
initial loop value, increment value and the final value must all be in the
legal range for integers or an overflow error will occur when the FOR is
executed.

Example: 1 FOR I%=20000 TO 30000 STEP 20000
2 PRINT I%
3 NEXT I%
RUN
20000
OVERFLOW IN 3
0K

84

NEW ERROR MESSAGES

These messages replace the old error messages listed in APPENDIX C (p. 53) of
the BASIC manual.

NEXT WITHOUT FOR

SYNTAX ERROR

RETURN WITHOUT GOSUB
OUT OF DATA

ILLEGAL FUNCTION CALL
OVERFLOW

OUT OF MEMORY

UNDEFINED STATEMENT
SUBSCRIPT OUT OF RANGE
REDIMENSIONED ARRAY
DIVISION BY ZERO
ILLEGAL DIRECT

TYPE MISMATCH

QUT OF STRING SPACE
STRING TOO LONG

STRING FORMULA TOO COMPLEX
CAN'T CONTINUE
UNDEFINED USER FUNCTION

Examples: 10 GOTO 50
RUN
UNDEFINED STATEMENT IN 50
0K
PRINT 1/0
DIVISION BY ZERO
0K

ADDITIONAL NOTES ON EXTENDED BASIC

PEEK & POKE In the 8K version of BASIC you can't PEEK at or POKE
into memory locations above 32767. In the Extended
version this can be done by using a negative argument.
If the address to be PEEKed or POKEd is greater than
32767, subtract 65536 from it to give the proper

argument,
Examples: to PEEK at 65535 PEEK(-1)
to POKE at 32768 POKE -32768,1%
INT The INT function will work on numbers both

single & double precision which are too large to
be integers. Double precision numbers maintain
full accuracy. (see CINT)

Examples: INT(1E38)=1E38

INT(123456789.6)=123456789
85

ADDITIONAL NOTES (cont.) (miscellaneous)

Extended BASIC uses 10.2K of memory to reside.
String space is defaulted to 100 in the Extended version.
A comma before the THEN in an IF statement is allowed.

USR pass routine [4,5] passes in [H,L] not [D,E], and the pass back routine
[6,7] receives in [H,L] not [A,B].

Files CSAVEd in 8K BASIC cannot be CLOADed in EXTENDED BASIC, nor the opposite.
UPDATE TO EXISTING MATERIAL

In cassette BASICs (both 8K* and Extended), CLOAD? some character file name,
reads the specified file and checks it against the file in core. If the
files do not match, the message "NO GOOD" is printed. If they do match,
BASIC returns to command level and prints "OK".

In the Extended version of BASIC, active FOR loops (integer or single
precision) require 17 bytes.

Each non-array TEtring ~ Jvariable uses FG_'bytes.
integer 5
double 11
precision
single _7J
precision

This is because. it takes 3 bytes to store the name of a vari-

able.

Each array uses: (# of elements)* [INT=2| +6+2*(# of dimensions).
DBL=8
STR=3
SNG=4

Examples:
IZ(10) wuses (11%2)+6+(2*1)=30 bytes
I(5,5) uses (6*6*4)+6+(2*2)=154 bytes
Stored programs take exactly the same amount of space as in the 8K version of

BASIC, except the reserved word ELSE takes 2 bytes instead of 1 byte as with
the other reserved words.

86

UPDATE TO EXISTING MATERIAL
(Applies to 8K versions 3.2 and later.)

In both Extended & 8K* BASIC, 1f a number is between >=1E-Z and <1E-1,
the number will be printed as:

.OXXXXXX (trailing zeros suppressed)
instead of X.XXXXXXE-2

An 8K BASIC program should run exactly the same under Extended BASIC.
No conversion should be necessary.

USRLOC in extended is:

101 octal=65 decimal,
still 111 in 8K and 4K to load.

EXTENDed:
(Non-disk) location 002 in the BOOT
should be 57 (8K=37, 4K=17)

UPDATE TO EXISTING MATERIAL
(Applies to page 57 of version 3.2 and later.)

Each active GOSUB takes 5 bytes.
Each active FOR Toop takes 16 bytes.

81

EDIT COMMAND

The EDIT command is for the purpose of allowing modifications and additions
to be made to existing program lines without having to retype the entire
Tine each time.

Commands typed in the EDIT mode are, as a rule, not echoed. Most commands
may be preceded by an optional numeric repetition factor which may be used
to repeat the command a number of times. This repetition factor should be
in the range 0 to 255 (0 is equivalent to 1). If the repetition factor is
omitted, it is assumed to be 1. In the following examples a lower case
“n" before the command stands for the repetition factor.

In the following description of the EDIT commands, the “cursor" refers to
a pointer which is positioned at a character in the line being edited.

To EDIT a line, type EDIT followed by the number of the 1ine and hit the
carriage return. The Tine number of the line being EDITed will be printed,
followed by a space. The cursor will now be positioned to the left of

the first character in the line.

NOTE: The best way of getting the "feel" of the EDIT command is to try
EDITing a few lines yourself. Commands not recognized as part of
the EDIT commands will be ignored.

MOVING THE CURSOR

A space typed in will move the cursor to the right and cause the character
passed over to be printed out. A number preceding the space (nS) will
cause the cursor to pass over and print out the number (n) of characters
chosen.

INSERTING CHARACTERS

I Inserts new characters into the line being edited. After the
I is typed, each character typed in will be inserted at the
current cursor position and typed on the terminal. To stop
inserting characters, type "escape" (or Alt<mode on some ter-
minals).

If an attempt is made to insert a character that will make

the Tine longer than the maximum allowed (72 characters),

a bell will be typed (control G) on the terminal and the

character will not be inserted.

WARNING: It is possible using EDIT to create a line which,
when listed with its 1ine number, is longer than
72 characters. Punched paper tapes containing such
lines will not be read in properly. However, such
lines may be CSAVEd and CLOADed without error.

INSERTING CHARACTERS (cont.)

A backarrow (or underline) typed during an insert command will
delete the character to the left of the cursor. Characters

up to the beginning of the 1ine may be deleted in this manner,
and a backarrow will be echoed for each character deleted.
However, if no cnaracters exist to the left of the cursor, a
bell 1s echoed instead of a backarrow.

If a carriage return is typed during an insert command, it
will be as if an escape and then carriage return was typed.
That is, all characters to the right of the cursor will be
printed and the :EDITed 1ine will replace the original line.

X is the same as I, except that all characters to the right
of the cursor are printed, and the cursor moves to the end
of the 1ine. At this point it will automatically enter the
insert mode (see I command).

X is very useful when you wish to add a new statement to the
end of an existing line. For example:

Typed by User EDIT 50 (carriage return)
Typed by ALTAIR 50 X=X+1:Y=Y+1
Typed by User X :Y=Y+1 (carriage return)

In the above example, the original 1ine #50 was:
50 X=X+1
The new EDITed Tine #50 will now read:
50 X=X+1:Y=Y+1
H is the same as I, except that all characters to the right
of the cursor are deleted (they will not be typed). The insert

mode (see I command) will then automatically be entered.

H is most useful when you wish to replace the last statements
on a line with new ones.

DELETING CHARACTERS

nD deletes n number of characters to the right of the cursor. If
less than n characters exist to the right of the cursor, only that
many characters will be deleted. The cursor is positive to the
right of the last character deleted. The characters deleted are
enclosed in backslashes (\). For example:

Typed by User 20 X=X+1:REM JUST INCREMENT X
Typed by User EDIT 20 (carriage return)

Typed by ALTAIR 20 \X=X+1:\REM JUST INCREMENT X
Typed by User 6D (carriage return)

The new Tine #20 will no longer contain the characters which
are enclosed by the backslashes.

SEARCHING

S The nSy command searches for the nth occurance of the character
y in the line. The search begins at the character one to the
right of the cursor. A1l characters passed over during the
search are printed. If the character is not found, the cursor
will be at the end of the line. If it is found, the cursor will
stop at that point and all of the characters to its left will
have been printed.

For example:

Typed by User 50 REM INCREMENT X
Typed by User EDIT 50
Typed by ALTAIR 50 REM INCR
Typed by User 2SE
K nKy is equivalent to S, except that all of the characters

passed over during the search are deleted. The deleted char-
acters are enclosed in backslashes. For example:

Typed by User 10 TEST LINE
Typed by User EDIT 10
Typed by ALTAIR 10 \TEST\
Typed by User KL

TEXT REPLACEMENT

C A character in a line may be changed by the use of the C command.
Cy, where y is some character, will change the character to the
right of the cursor to y. The y will be typed on the terminal
and the cursor will be advanced one position. nCy may be used
to change n number of characters in a line as they are typed in
from the terminal. (See example below.)

If an attempt is made to change a character which does not exist,
the change mode will be exited.

Example:

Typed by User 10 FOR I=1 .TO 100
Typed by User EDIT 10

Typed by ALTAIR 10 FOR I=1 TQ 256
Typed by User 2S1 3C256

ENDING AND RESTARTING

Carriage Return Tells the computer to finish editing and print the re-
mainder of the line. The edited line replaces the original
line.

E E is the same as a carriage return, except the remainder

of the line is not printed.

80

Quit. Changes to a 1ine do not take effect until an E

or carriage return is typed.

Q allows the user to restore

the original line without any changes which may have been
made, if an E or carriage return has not yet been typed.
"0K" will be typed and BASIC will await further commands.

Causes the remainder of the 1ine to be printed, and then
prints the 1ine number and restarts EDITing at the beginning
of the line. The cursor will be positioned to the left of the

first character in the Tine.

L is most useful when you wish to see how the changes in a line
look so that you can decide if further EDITs are necessary.

Example:
Typed by User EDIT 50
Typed by ALTAIR 50 REM INCREMENT X
Typed by User 2SM L
Typed by ALTAIR 50

Causes the original copy of the line to be restored, and EDITing
to be restarted at the beginning of the line. For example:

Typed by User

10 TEST LINE

Typed by User EDIT 10

Typed by ALTAIR 10 \TEST LINE\
Typed by User 10D A
Typed by ALTAIR 10

In the above example, the user made a mistake when he deleted
TEST LINE. Suppose that he wants to type "1D" instead of “10D"
By using A command, the original line 10 is reentered and is
ready for further EDITing.

IMPORTANT

Whenever a SYNTAX ERROR is discovered during the execution of a source
program, BASIC will automatically begin EDITing the line that caused the
error as if an EDIT command had been typed. For Example:

10 APPLE

RUN

SYNTAX ERROR IN 10
10

Complete editing of a line causes the line edited to be re-inserted.
Re-inserting a line causes all variable values to be deleted, therefore
you may want to exit the EDIT command without correcting the 1line so that
you can examine the variable values.

This can be easily accomplished by typing the Q command while in the EDIT
mode. If this is done, BASIC will type OK and all variable values will
be preserved.

91

PRINT USING

The PRINT USING statement can be employed in situations where a specific
output format is desired. This situation might be encountered in such
applications as printing payroll checks or an accounting repcrt. Other
uses for this statement will become more apparent as you go through the
text. ‘

The general format for the PRINT USING statement is as follows:
(1ine number) PRINT USING <string>; <value list>

The "string" may be either a string variable, string expression or a string
constant which is a precise copy of the 1ine to be printed. Al1l of the char-
acters in the string will be printed just as they appear, with the exception
of the formatting characters. The "value list" is a list of the items to

be printed. The string will be repeatedly scanned until: 1) the string ends
and there are no values in the value 1ist 2) a field is scanned in the string,
but the value list is exhausted.

The string should be constructed according to the following rules:

STRING FIELDS

! Specifies a single character string field. (The string itself
is specified in the value list.)

\n spaces\ Specifies a string field consisting of 2+n characters. Backslashes
with no spaces between them would indicate a field of 2 characters
width, one space between them would indicate a field 3 characters
in width, etc.

In both cases above, if the string has more characters than the field width,
the extra characters will be ignored. If the string has less characters
than the field width, extra spaces will be printed to fill out the entire
field.

Trying to print a number in a string field will cause a TYPE MISMATCH error
to occur.

Example: 10 A$="ABCDE":B$="FGH"
20 PRINT USING "!";A$,B$
30 PRINT USING “\ \";B$,A$

(the above would print out)

AF
FGH ABCD

Note that where the "!" was used only the first letter of each string was printed.
Where the backslashes were enclosed by two spaces, four letters from each string
were printed (an extra space was printed for B$ which has only three characters).
The extra characters in the first case and for A$ in the second case were ignored.

92

——

NUMERIC FIELDS

With the PRINT USING statement, numeric prin-outs may be altered to suit almost
any applications which may be found necessary. This should be done according
to the following rules:

#

Numeric fields are specified by the # sign, each of which will
represent a digit position. These digit positions are always
filled. The numeric field will be right justified; that is,

if the number printed is too small to fill all of the digit
positions specified, leading spaces will be printed as necessary
to fill the entire field.

The decimal point position may be specified in any particular
arrangement as desired; rounding is performed as necessary.

If the field format specifies a digit is to precede the decimal
point, that digit will always be printed (as 0 if necessary).

The following program will help illustrate these rules:

10 INPUT A$,A
20 PRINT USING A$;A
30 GOTO 10
RUN

? ##,12
1e

? ###,12

12

? #####,12

12

i H#,12
12.00

T ###.,12

12.

? #.4##,.02
0.020

? ##.#,2.36
2.4

This sign may be used at either the beginning or end of the
numeric field, and will force the + sign to be printed at

either end of the field as specified, if the number is positive.
If it is used at the end of the field, and the number is negative,
a -sign will be forced at the end of the number.

The - sign when used at the end of the numeric field designation
will force the sign to be printed trailing the number, if it is
negative. If the number is positive, a space is printed.

NOTE: There are cases where forcing the sign of a number to
be printed on the trailing side will free an extra space
for leading digits. (See exponential format.)

93

*%

$%

**$

T

%

The ** placed at the beginning of a numeric field designation will
cause any unused spaces in the leading portion of the number
printed out to be filled with asterisks. The ** also specifies
positions for 2 more digits. (Termed "asterisk fill")

When the $$ is used at the beginning of a numeric field designation,
a $ sign will be printed in the space immediately preceding the
number printed. Note that the $$ also specifies positions for

two more digits, but the $ itself takes up one of these spaces.
Exponential format cannot be used leading $ signs, nor can nega-
tive numbers be output unless the sign is forced to be trailing.

The **$ used at the beginning of a numeric field designation
causes both of the above (** & $$) to be performed on the number
being printed out. All of the previous conditions apply, except
that **$ allows for 3 additional digit positions, one of which is
the $ sign.

A comma appearing to the left of the decimal point in a numeric
field designation will cause a comma to be printed every three
digits to the left of the decimal point in the number being
printed out. The comma also specifies another digit position.

A comma to the right of the decimal point in a numeric field de-
signation is considered a part of the string itself and will be
treated as a printing character.

Exponential Format. If the exponential format of a number is
desired in the print out, the numeric field designation should

be followed by tt11 (allows space for E+XX). As with the other
formats, any decimal point arrangement is allowed. In this case,
the significant digits are left justified and the exponent is
adjusted.

If the number to be printed out is larger than the specified numeric
field, a % character will be printed and then the number itself

in its standard format. (The user will see the entire number.)

If rounding a number causes it to exceed the specified field,

the % character will be printed followed by the rounded number.
(Such as field= .##, and the number is .999 will print % 1.00.)

If the number of digits specified exceeds 24, a FUNCTION CALL error will occur.

Try going through the following examples to help illustrate the preceding

rules.

A single program such as follows is the easiest method for learning

PRINT USING.

94

Examples:

Program:

Type the short program into your machine as it is

listed below.

This program will keep looping and

allow you to experiment with PRINT USING as you

go along.

10 INPUT AS,A

20 PRINT USING AS;A
30 GOTO 10

RUN

The computer will start by typing a ?. Fill in the numeric
field designator and value list as desired, or follow along

below.

? +%#,9

+9

? +#%#,10
Z+10

? ##,-2
-2

? +#,-2
-c

,y—2

CH##, .02
.020
###4.#,100

100.0

? ##+,2

o+

? THIS IS A NUMBER ##,2
THIS IS A NUMBER 2

? BEFORE ## AFTER,12
BEFORE 12 AFTER

? ####,44444

Z4yyuy

? kREH]

***l

? kR4, 12

**la

? ORR{H,123

*123

? **§H,1234

#
-2
0

LV S N

1234

? **##,12345
712345

? k%]

*],

? k%22

2o

? k% B4 12
12.00

? *REEEH, 1

*****l

85

(note: not floating $)

(note:

floating $)

?

&

?

?
s
?
A
?

?

?
*
?
*
?
*
?

7.

?
?
?
?
?
?
?
?
0
?

?

1

SHHE . H#H, 12,34
12.34
SSHHHH.HH, 12,50
%12. 50
SS.##,1.23
1-23
$S.##,12.34
$12.34
S$SH###,0.23
=0
SSHEHH.##,0
=0.00
*ESHEH H#,1.23
*k*kg5] .03
**S _#4#,1.23
£1.23
*ESHAH, L
***$1|
#,6.9

#.#,6.99
a
##-,2
Z
##~,-2
E._
##4+,2
c+
##+ ’ -2
E_
#HTTTT, 2
2E+00
##TTTT,12
1E+01
#i### ., HHETTTT, 2. 45678
c45k. 780E-03
HAH##TTTT, 123
- 123E+03
#.##TTTT,-123
- 12E+03
#HA#H, HHEH.H#,1234567.89
21234-567.9

96

APPENDIX A SUPPLEMENT

HOW TO LOAD BASIC

For BASIC versions 3.2 and later, the load procedure has been updated to
allow the use of the new I/O boards (2SI0 & 4PIO), the old 88-PIO board,
and more general channel assignments.

Location 001 of the bootstrap loaders listed in APPENDIX A must be changed
from 175 to 256 to load BASIC versions 3.2 and later. For the older ver-
sions of BASIC, the location should be left at 175.

For EXTENDED BASIC, location 002 (set at 017 for 4K & 037 for 8K) should
be set at 057.

The checksum loader has a new error message "M" which indicates that the
data that was loaded into memory did not read back properly (see step 22
on page 50 of APPENDIX A). Loading into non-existent, protected or mal-
functioning memory can cause this to occur. The new error message will
also be sent repeatedly, instead of only once. The message 1is sent on
channels 1, 21 and 23; so, if no terminal device is on one of these three
channels, the panel lights must be examined to see if a checksum error has
occured.

Error Detection

The new checksum loader (BASIC versions 3.2 & later) will display X7647
on the address lights when running properly. (X above will be 0 for 4K
BASIC, 1 for 8K or 2 for EXTENDED.)

When an error occurs (checksum "C"-bad tape data, memory "M"-data won't
store properly, overlay "O"-attempt to load over top of the checksum
loader) the address lights will then display X7637. The ASCII error
code will be stored in the accumulator (a).

More simply, A5 should be on with A4 & A3 off during proper loading.
When an error occurs, A5 will turn off and A4 & A3 will turn on.

Load Options

OCTAL STATUS BITS OCTAL
LOAD DEVICE SWITCHES UP CHANNELS ACTIVE MASKS
SIOA,B,C (not REV 0) none 0,1 low 1/200
ACR Al5 (and 6,7 low 1/200

terminal opts.)
SIOA,B,C (REV 0) Al4 ‘ 0,1 high 40/2 e LERe il
O /o /b i

88-PI0 Al3 - 0,1 high 2/1 o 7 'LOQ
4PIO Al2 20,21 high 100/100
2SI0 All (and Al0 20,21 high 1/2

up=lstop bit -
down=2 stop bits) 97

There are six different bootstrap loaders, one for each of the six types
of I/0 boards listed in the Load Option chart. Be sure that you use the
correct one for your particular board.

If the load device is an ACR, the Terminal Options (see second chart)
can be set in the switches (along with Al5) before the loading is done.
If Al5 is set, the checksum loader will ignore all of the other switches
and BASIC will ignore AlS.

If the load device and the terminal device are not the same, and the load
device is not an ACR, then only the load options should be set before the
loading. When the load completes, BASIC will start-up and try to send a
message to the load device. STOP BASIC, EXAMINE LOCATION O, SET THE TER-
MINAL OPTION SWITCHES, AND THEN DEPRESS RUN.

If the initialization dialog hasn't completed, everytime BASIC is restarted
at zero, it will examine the sense switches and reconfigure the terminal
input/output options. Once the initialization dialog is complete, the
sense switches are no longer examined and the I/0 configuration is fixed
until BASIC is reloaded.

Terminal Options

TERMINAL DEVICE SWITCHES UP OCTAL CHANNEL DEFAULT
SIOA,B,C (not REV 0) none 0,1

SIOA,B,C (REV 0) Al4 0,1

88~PIO Al3 0,1

4PT0 Al2 20,21 (INPUT)

22,23 (OUTPUT)

25810 All 20,21 (Al0 up=1 stop bit
down=2 stop bits)

The default channels listed above may be changed as desired by raising
A8 and storing the lowest channel number (Input flag channel) in one
of the following locations: 7777 (octal) for 4K BASIC
17777 (octal) for 8K BASIC
27777 (octal) for EXTENDED BASIC
(non-disk version)

NOTE: The "Input flag channel" may also be refered to as the "control
channel" in other ALTAIR documentation.

The above information is useful only when the load device and terminal
device are not the same. During the load procedure A8 will be ignored;
therefore, the board from which BASIC is loaded must be strapped for the
channels listed in the Load Option chart.

The following page contains three new bootstrap loaders for the 88-PIO,
4PIO and 2SIO boards. The conditions for using the other loaders listed
in APPENDIX A are given at the beginning of this supplement.

88-PI0 (for versions 3.2 & later only)

OCTAIL ADDRESS

OCTAL CODE

000
001
002
003
004
005
006
007
010
011
012
013
014
015
Ole
017
020
021
022
023
024

041
256
017
061
023
000
333
000
346
040
310
333
001
275
310
055
167
300
351
003
000

(for 4K, 037 for 8K, 057 for EXTENDED)

NOTE:

2810 (for versions 3.2 & later only)

OCTAL ADDRESS

000
001
002
003
004
005
006
007
0lo
011
012
013
014
015
0le
017
020
021
022
023
024
025
026
027

Switch Al3 should be up;
88-PI0 should be strapped
for channels 0,1.

OCTAL CODE OCTAL ADDRESS OCTAL CODE
076 030 300
003 031 351
323 032 013
020 033 000
076
021 (=2 stop bits,
323 025=1 stop bit)
020
041
256
017 (for 4K, 037 for 8K, 057 for EXTENDED)
061
032
000 NOTE: Switch All should be up;
333 If the 2SI0 also is the
020 terminal device, set Al0
017 up- for 1 stop bit or down
320 for 2 stop bits. The 2SI0O
333 should be strapped for
021 channels 20,21.
275
310
055
167

4P10 (ter versions 3.2 & later only)

OCTAL ADURESS — OCTAL CODE

000 257
0ol 323
002 020
Go3 000
D 323
GO5 021
006 076
007 004
010 323
0il 020
012 041
013 256
014 017 (for 4K, 037 for 8K, 057 for EXTENDED)
Q15 06l
0l6 035"
017 000
0290 333 NOTE: Switch Al2 should be up.
021 020
022 346
023 100
0241 310
025 333
026 021
027 275
030 310
031 055
032 167
033 300
034 351
035 015
036 000

The following three programs are echo programs for the 88-PIO, the 4PIO
and the 2SI0 boards.

If you wish to test a device that does Input only, dump the echoed
characters on a faster device or store them in memory for examination.

For ain Lutput only device, send the data in the sense switches or some
wonstant for the test character. Make sure to check the ready-to-receive
kit before doing output.

if the echo program works, but BASIC doesn't; make sure the load device's
UART is strapped for 8 data bits and that the ready-to-receive flag gets
set properly on the terminal device.

100

——

ECHO PROGRAMS:

88-PI0O

OCTAL ADDRESS OCTAL CODE

000 333

001 000

002 346

003 040

004 312

005 000

006 000
25810
OCTAL ADDRESS OCTAL CODE

000 076

001 003

002 323

003 020 (flag ch.)

004 076

005 021 (1 st. bt.,

006 323 025 for 2)

007 020

010 333

011 020

012 017
4PI0
OCTAL ADDRESS OCTAL CODE

000 257

001 323

002 020

003 323

004 021

005 323

006 022

007 057

010 323

011 023

012 076

013 004

014 323

015 020

Oleo 323

017 022

020 333

021 020

022 346

023 100

OCTAL ADDRESS OCTAL CODE

007 333

010 001

011 323

012 001

013 303

014 000

015 000
OCTAL ADDRESS OCTAL CODE

013 322

014 010

015 000

016 333

017 021 (data ch.)

020 323

021 021

022 303

023 010

024 000
OCTAL ADDRESS OCTAL CODE

024 312 v %

025 020

026 000

027 333

030 022

031 346

032 100

033 312

034 027

035 000

036 333

037 021

040 323

041 023

042 303

043 020

044 000

101

2450 Alamo SE
Albuquerque, NM 87106

2-SI10 BOARD ERRATA

Refer to Special Note, page 8 of Theory of Operation:

Note that if the 2-SI0 boot loader is used, first start the program (push
STOP/RUN switch to RUN), then start the reader.

